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Abstract. Certain polynomials in n2 variables which serve as generating functions
for symmetric group characters are sometimes called (Sn) character immanants. We
point out a close connection between the identities of Littlewood-Merris-Watkins
and Goulden-Jackson, which relate Sn character immanants to the determinant,
the permanent and MacMahon’s Master Theorem. From these results we obtain
a generalization of Muir’s identity. Working with the quantum polynomial ring
and the Hecke algebra Hn(q), we define quantum immanants which are generat-
ing functions for Hecke algebra characters. We then prove quantum analogs of the
Littlewood-Merris-Watkins identities and selected Goulden-Jackson identities which
relate Hn(q) character immanants to the quantum determinant, quantum perma-
nent, and quantum Master Theorem of Garoufalidis-Lê-Zeilberger. We also obtain
a generalization of Zhang’s quantization of Muir’s identity.
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1. Introduction

Among their abundant results expressing generating functions in terms of matrix
traces and determinants, Goulden and Jackson [14] obtained several identities con-
cerning polynomials

Immλ(x) =
def

∑

w∈Sn

χλ(w)x1,w1
· · ·xn,wn

in x = (x1,1, . . . , xn,n) whose coefficients are given by irreducible characters χλ of Sn.
We will call these polynomials irreducible character immanants. Using their identi-
ties, Goulden and Jackson gave new presentations of results of Littlewood, MacMa-
hon, and Young, reiterating a little-known interpretation of MacMahon’s celebrated
Master Theorem which had been stated by Vere-Jones in [31]. Also giving new in-
terpretations of Littlewood’s results, Merris and Watkins [25] stated similar formulae
for irreducible (and other) character immanants by summing products of permanents
and determinants. As we will show in Section 3, one may use the Littlewood-Merris-
Watkins identities to give a new proof of the Goulden-Jackson identities, and conse-
quently to generalize Muir’s identity.

Many of the above results have natural noncommutative extensions. Authors
such as Cartier-Foata [1], Foata-Han [6], [7], [8], Garoufalidis-Lê-Zeilberger [11], Hai-
Lorenz [16], Konvalinka-Pak [19], Krattenthaler-Schlosser [21], and Zhang [33] have
stated quantum analogs of the Master Theorem, Muir identity, and related identities.
After reviewing the relevant quantum algebras in Section 4, we will state and prove
quantum analogs of identities of Littlewood-Merris-Watkins and selected identities of
Goulden-Jackson in Section 5, showing that these new quantum identities are related
to one another in much the same way as their classical analogs. While natural quan-
tum analogs of the most general Goulden-Jackson identities fail to hold, we employ
results of Garoufalidis-Lê-Zeilberger to quantize the Vere-Jones interpretation of the
Master Theorem, and to generalize Zhang’s quantization of Muir’s identity.

We remark that the irreducible character immanants appeared originally in the
work of Schur [26] and Littlewood [22] on representations of Sn and GLn, and later
in work connected to permanent inequalities. (See, e.g., references in [25], [30].)
More recent appearances of immanants in the areas of total nonnegativity and Schur
nonnegativity (e.g., [15], [17], [20], [29]) were inspired by a conjecture of Goulden and
Jackson in [13], quite different in flavor from the results in [14].

2. The symmetric group, C[x], and immanant identities of

Littlewood-Merris-Watkins

Classical generating functions for symmetric group characters are polynomials be-
longing to a special graded component of the ring C[x] = C[x1,1, . . . , xn,n]. Recall
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that the symmetric group Sn is generated by the adjacent transpositions s1, . . . , sn−1

subject to the relations

s2
i = 1, for i = 1, . . . , n − 1,

sisjsi = sjsisj, if |i − j| = 1,

sisj = sjsi, if |i − j| ≥ 2.

A standard action of Sn on rearrangements of the word 1 · · ·n is defined by letting si

swap the letters in positions i and i + 1,

si ◦ a1 · · ·an = a1 · · ·ai−1ai+1aiai+2 · · ·an.

For each element v = si1 · · · siℓ ∈ Sn, we define the one-line notation of v to be the
word v1 · · · vn = v ◦ 1 · · ·n. Thus, denoting the identity permutation of Sn by e, the
one-line notation of e is 12 · · ·n. Using this convention, the one-line notation of vw is

(vw)1 · · · (vw)n = v ◦ (w ◦ e) = v ◦ w1 · · ·wn = wv1
· · ·wvn

.

Thus, the one-line notation of s1s2 ∈ S3 is 312. We will denote the one-line notation
of v−1 = siℓ · · · si1 by v−1

1 · · · v−1
n .

Let ℓ(w) be the minimum length of an expression for w in terms of the generators.
Equivalently, ℓ(w) is the number of inversions in the one-line notation of w. Let ≤
denote the Bruhat order on Sn, i.e., v ≤ w if every reduced expression for w contains
a reduced expression for v as a subword. (See, e.g., [18].)

The ring C[x] is naturally graded by degree,

C[x] =
⊕

r≥0

Ar,

where Ar is the C-span of all monomials of total degree r, and the natural basis
{x

a1,1

1,1 · · ·x
an,n
n,n | a1,1, . . . , an,n ∈ N} of C[x] is a disjoint union

⋃

r≥0

{x
a1,1

1,1 · · ·xan,n

n,n | a1,1 + · · · + an,n = r}

of bases of the homogeneous components {Ar | r ≥ 0}.

We may further decompose each homogeneous component Ar by considering pairs
(L, M) of multisets of integers. Thus we obtain the multigrading

Ar =
⊕

L,M
|L|=|M |=r

AL,M ,

where AL,M is the C-span of monomials whose row indices and column indices (with
multiplicity) are equal to the multisets L and M , respectively. Just as the Z-graded
components Ar and As satisfy ArAs ⊂ Ar+s, the multigraded components AL,M and



4 MATJAŽ KONVALINKA AND MARK SKANDERA

AL′,M ′ satisfy AL,MAL′,M ′ ⊂ AL⋒L′,M⋒M ′, where ⋒ denotes the multiset union of two
multisets,

1ℓ1 · · ·nℓn ⋒ 1ℓ′
1 · · ·nℓ′n =

def
1ℓ1+ℓ′

1 · · ·nℓn+ℓ′n .

Thus A[n],[n] is the C-span of the monomials {x1,w1
· · ·xn,wn

|w ∈ Sn}. We will call
elements of this submodule immanants. Defining the notation xu,v = xu1,v1

· · ·xun,vn
,

we may rewrite the natural basis of the immanant space as {xe,w |w ∈ Sn}.

For a function f : Sn → C, we follow [28] in defining the f -immanant to be the
element

Immf(x) =
∑

w∈Sn

f(w)x1,w1
· · ·xn,wn

of the immanant space. Two well-known examples are the determinant and perma-
nent, whose coefficient functions are the sign and trivial characters of Sn, respectively.

Let λ = (λ1, . . . , λℓ) be an integer partition (with ℓ > 0) and let λ⊤ denote the
transpose (also called the conjugate) of the integer partition λ. (See [9].) Immanants
Immχλ(x) constructed from the irreducible characters χλ : Sn → R of Sn are usually
abbreviated Immλ(x),

(2.1) Immλ(x) =
∑

w∈Sn

χλ(w)xe,w.

It is well known that irreducible characters are class functions on Sn in the sense
that if v and w have the same cycle type in Sn, then χλ(v) and χλ(w) are equal.
Equivalently, we have χλ(v) = χλ(w) if v = uwu−1 for some u ∈ Sn.

Immanants which are somewhat better understood than irreducible character im-
manants correspond to characters {ǫλ | λ ⊢ n} induced from the sign character of
Young subgroups of Sn and to characters {ηλ | λ ⊢ n} induced from the trivial char-
acter of Young subgroups of Sn. Simple formulas for these immanants employ deter-
minants and permanents of submatrices

xI,J =
def

(xi,j)i∈I,j∈J

of x. In particular, Littlewood [22] and Merris and Watkins [25] showed the following.

Theorem 2.1. Fix a partition λ = (λ1, . . . , λℓ) ⊢ n. Then we have

(2.2)

Immǫλ(x) =
∑

(I1,...,Iℓ)

det(xI1,I1) · · ·det(xIℓ,Iℓ
),

Immηλ(x) =
∑

(I1,...,Iℓ)

per(xI1,I1) · · ·per(xIℓ,Iℓ
),

where the sums are over all sequences (I1, . . . , Iℓ) of pairwise disjoint subsets of [n]
satisfying |Ij | = λj.
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We will give our own proof of this fact in Section 5.

Each of the sets {χλ | λ ⊢ n}, {ηλ | λ ⊢ n}, {ǫλ | λ ⊢ n} forms a basis for the space
of class functions on Sn. We may express the first basis in terms of the others by

(2.3) χλ =
∑

µ

K−1
µ,λη

µ =
∑

µ

K−1
µ,λ⊤

ǫµ,

and we therefore may express irreducible character immanants in terms of the induced
character immanants by

(2.4) Immλ(x) =
∑

µ

K−1
µ,λImmηµ(x) =

∑

µ

K−1
µ,λ⊤

Immǫµ(x).

The coefficients appearing in these identities are called the inverse Kostka numbers
and may be defined by

(2.5) det(ξλi+j−i)
ℓ
i,j=1 =

∑

µ⊢n

K−1
µ,λξµ1

· · · ξµℓ
,

where {ξi | i > 0} are commuting indeterminates, and where we define ξ0 = 1, and
ξi = 0 for i < 0. This definition implies that we have K−1

µ,λ = 0 unless λ ≤ µ in
majorization. (See [9].) Thus the sums in (2.3) and (2.4) may be taken over µ ≥ λ
and µ ≥ λ⊤, respectively.

While the immanant space is just one graded component of C[x], one can un-
derstand all other components in terms of immanants as well. In particular, given
multisets L = 1ℓ12ℓ2 · · ·nℓn , M = 1m12m2 · · ·nmn with ℓ1+· · ·+ℓn = m1+· · ·+mn = r,
we define the L, M generalized submatrix of x to be the r × r matrix xL,M obtained
from x by repeating the ith row ℓi times and ith column mi times for i = 1, . . . , n.
For example when L = 1112, M = 1334 we have

(ℓ1, ℓ2, ℓ3, ℓ4) = (3, 1, 0, 0), (m1, m2, m3, m4) = (1, 0, 2, 1),

xL,M =




x1,1 x1,3 x1,3 x1,4

x1,1 x1,3 x1,3 x1,4

x1,1 x1,3 x1,3 x1,4

x2,1 x2,3 x2,3 x2,4


 .

In general, it is easy to see that elements of the component AL,M of C[x] are precisely
the specializations of the r × r immanants

{Immf(y1,1, . . . , yr,r) | f : Sr → C}

at y = xL,M .

Using generalized submatrices, we may generalize the Littlewood-Merris-Watkins
identities (2.2) as follows.
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Proposition 2.2. Fix an r-element multiset M = 1m
1 · · ·nmn of [n] and a partition

λ = (λ1, . . . , λℓ) of r. Then we have

Immǫλ(xM,M) = m1! · · ·mn!
∑

(J1,...,Jℓ)

det(xJ1,J1
) · · ·det(xJℓ,Jℓ

)

where the sum is over all sequences (J1, . . . , Jℓ) of subsets of [n] satisfying |Ji| = λi

and J1 ⋒ · · · ⋒ Jℓ = M .

Proof. Let y = (y1,1, . . . , yr,r). The map y 7→ xM,M defines a ring homomorphism
C[y] → C[x] and thus preserves the identities (2.2). We therefore have

Immǫλ(xM,M) =
∑

(I1,...,Iℓ)

det((xM,M)I1,I1) · · ·det((xM,M)Iℓ,Iℓ
).

Each term in the above sum has the form det(xJ1,J1
) · · ·det(xJℓ,Jℓ

), where (J1, . . . , Jℓ)
is a sequence of submultisets of M satisfying |Ji| = λi and J1 ⋒ · · · ⋒ Jℓ = M .
Since repeated rows and columns cause the determinant to vanish, we may sum
over sequences of subsets. Now if J1, . . . , Jℓ are all sets, then the number of times
det(xJ1,J1

) · · ·det(xJℓ,Jℓ
) appears in this sum is m1! · · ·mn!. �

Similarly, we have the following generalization of the permanent identity in (2.2).

Proposition 2.3. Fix an r-element multiset M = 1m1 · · ·nmn of [n] and a partition
λ = (λ1, . . . , λℓ) of r. Then we have

Immηλ(xM,M) =
∑

(J1,...,Jℓ)

θ(J1, . . . , Jℓ)per(xJ1,J1
) · · ·per(xJℓ,Jℓ

),

where the sum is over all sequences (J1, . . . , Jℓ) of submultisets Ji = 1ji,1 · · ·nji,n of
[n] satisfying |Ji| = λi, J1 ⋒ · · · ⋒ Jℓ = M , and where

θ(J1, . . . , Jℓ) =
ℓ∏

i=1

(
mi

ji,1, . . . , ji,n

)
.

Proposition 2.2 leads to another generalization of Theorem 2.1.

Corollary 2.4. For k = 1, . . . , n define

αk =
∑

I⊂[n]
|I|=k

det(xI,I).

Fix a partition λ = (λ1, . . . , λℓ) ⊢ r. Then we have

αλ1
· · ·αλℓ

=
∑

M

Immǫλ(xM,M)

m1! · · ·mn!
,

where the sum is over all r-element multisets M = 1m1 · · ·nmn of [n].
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3. The Goulden-Jackson identities, MacMahon Master Theorem and

Muir identity

Goulden and Jackson [14] stated several identities relating the irreducible character
immanants {Immλ(x) | λ ⊢ n} to multivariate generating functions and to MacMa-
hon’s Master Theorem. We will summarize their results and give new proofs which
expose connections to the Littlewood-Merris-Watkins identities in Theorem 2.1 and
Propositions 2.2-2.3.

To begin, we state the following fact [14, Eqn. (6)] concerning a power series and
its inverse. (For a proof, see [10, Ch. 1 §4], [23, pp. 22-23].)

Proposition 3.1. Let λ = (λ1, . . . , λℓ) be a partition and let (αk)k≥0 and (βk)k≥0 be
sequences of elements of a commutative ring R. If the sequences are related by the
identity

1∑
k≥0 αk(−t)k

=
∑

k≥0

βkt
k

in R[[t]], then the λ1 × λ1 matrix A = (αλ⊤i−i+j) and the ℓ × ℓ matrix B = (βλi−i+j)

satisfy det(A) = det(B).

To state the main results [14, Thm. 2.1, Cor. 2.3] on irreducible character im-
manants, we define the sequences (αk)k∈Z, (βk)k∈Z, (γk)k∈Z, (δk)k∈Z of polynomials
in Z[x] by the generating functions

(3.1)

det(I + tx) =

n∑

k=0

αkt
k,

1

det(I − tx)
=

∑

k≥0

βkt
k,

per(I + tx) =
n∑

k=0

γkt
k,

1

per(I − tx)
=

∑

k≥0

δkt
k,

and by the requirement that polynomials with indices not appearing here be zero.
Now fix a partition λ = (λ1, . . . , λℓ) ⊢ r and define the λ1 × λ1 matrices A, D and
the ℓ × ℓ matrices B, C by

(3.2) A = (αλ⊤i−i+j), B = (βλi−i+j), C = (γλi−i+j), D = (δλ⊤i−i+j).

It is easy to see that the determinant of each of these matrices belongs to Ar. By
Proposition 3.1 we also have det(A) = det(B) and det(C) = det(D). Moreover, we
have the following more specific descriptions of these polynomials.

Theorem 3.2. Fix a partition λ ⊢ r and define matrices A, B as in (3.2). Then we
have

(3.3) det(A) = det(B) =
∑

M

Immλ(xM,M)

m1! · · ·mn!
,
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where the sum is over all r-element multisets M = 1m1 · · ·nmn of [n].

Proof. Observe that the polynomials {αk | k ∈ Z} in the commutative ring Z[x] satisfy
α0 = 1, αk = 0 if k < 0, and

(3.4) αk =
∑

I⊂[n]
|I|=k

det(xI,I)

if k > 0. Thus by Propositions 2.2-3.1 and the definition of the inverse Kostka
numbers, we have

det(B) = det(A) =
∑

µ≥λ⊤

K−1
µ,λ⊤

αµ1
· · ·αµλ1

=
∑

µ≥λ⊤

K−1
µ,λ⊤

∑

M

Immǫµ(xM,M)

m1! · · ·mn!

=
∑

M

Immλ(xM,M)

m1! · · ·mn!
.

�

In the special case r = n, we have that the projection of det(A) = det(B) onto the
immanant space is equal to Immλ(x). A weaker result applies to det(C) and det(D).

Theorem 3.3. Fix a partition λ ⊢ r and define matrices C, D as in (3.2). Then
we have det(C) = det(D) and for any r-element subset I ⊂ [n], the projection of this
polynomial onto AI,I is equal to Immλ(xI,I).

Proof. The polynomials {γk | k ∈ Z} satisfy γ0 = 1, γk = 0 if k < 0, and

(3.5) γk =
∑

I⊂[n]
|I|=k

per(xI,I)

if k > 0. By (2.2), Proposition 3.1 and the definition of the inverse Kostka numbers,
we have

det(D) = det(C) =
∑

µ≥λ

K−1
µ,λγµ1

· · · γµλ1

=
∑

µ≥λ

K−1
µ,λ

( ∑

M⊂[n]
|M |=r

Immηµ(xM,M) +
∑

N

ImmfN,µ
(xN,N)

)

=
∑

M⊂[n]
|M |=r

Immλ(xM,M) +
∑

N

ImmgN
(xN,N ),
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where the last sums on the above two lines are over r-element multisets N of [n] in
which some element appears with multiplicity at least two, and fN,µ, gN are functions
from Sr to Z. �

Again, in the special case r = n, we have that the projection of det(C) = det(D)
onto the immanant space is equal to Immλ(x).

The special case of Theorem 3.2 corresponding to the partition λ = (r),

(3.6) βr =
∑

M

per(xM,M)

m1! · · ·mn!
,

is equivalent to MacMahon’s Master Theorem [24]. This easy equivalence seems to
have been first stated explicitly by Vere-Jones [31]. (See also [32], and the earlier
paper [27], which does not explicitly mention the Master Theorem.) Goulden and
Jackson [14, Thm. 3.3] state and prove this more explicit version of the Master The-
orem as follows.

Theorem 3.4. Fix a multiset M = 1m1 · · ·nmn of [n]. The coefficient of zm1

1 · · · zmn
n

in

(3.7)
( n∑

j=1

x1,jzj

)m1

· · ·
( n∑

j=1

xn,jzj

)mn

and the projection of

(3.8)
1

det(I − x)

onto AM,M are both equal to
per(xM,M)

m1! · · ·mn!
.

Proof. The coefficient of zm1

1 · · · zmn
n in (3.7) may be interpreted as follows. Circle n

entries of the matrix xM,[n] so that each row contains exactly one circled entry and
column i contains exactly mi circled entries for i = 1, . . . , n, and take the sum of
products of all such collections of circled entries. But this sum is the same as that
obtained by circling one entry per row and one entry per column in the matrix xM,M

in all possible ways, divided by m1! · · ·mn!. Thus the coefficient in question is equal
to per(xM,M)/(m1! · · ·mn!).

On the other hand, the projection of (3.8) onto AM,M is equal to the projection of
βr onto AM,M , which by (3.6) is per(xM,M)/(m1! · · ·mn!). �

This same special case (3.6) of Theorem 3.2 provides a proof of (a generalization
of) Muir’s indentity.
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Corollary 3.5. Let M = 1m1 · · ·nmn be an r-element multiset of [n], r > 0. Then
we have

min{r,n}∑

k=0

(−1)k
∑

I⊂M
|I|=k

det(xI,I)per(xMrI,MrI)

(m1 − i1)! · · · (mn − in)!
= 0,

where the second sum is over sets I = 1i1 · · ·nin contained in M .

Proof. By the definitions in Equation (3.1), the sequences (αk)k≥0 and (βk)k≥0 satisfy

(3.9)

min{r,n}∑

k=0

(−1)kαkβr−k = 0

for r > 0. Using (3.4) and (3.6) and projecting both sides of (3.9) onto AM,M , we
have the desired result. �

In the special case M = [n], we obtain Muir’s classical identity

n∑

k=0

(−1)k
∑

I⊂[n]
|I|=k

det(xI,I)per(x[n]rI,[n]rI) = 0.

4. The Hecke algebra and quantum polynomial ring

In order to state and prove quantum analogs of the identities concerning generating
functions for symmetric group characters, we present the Hecke algebra, a quantum
analog of C[Sn], and the quantum polynomial ring, a quantum analog of the ordinary
polynomial ring in n2 variables.

The Hecke algebra Hn(q) is a noncommutative C[q
1

2 , q−
1

2 ]-algebra generated either
by the set {Tsi

| 1 ≤ i ≤ n − 1} of natural generators, or equivalently by the set

{T̃si
| 1 ≤ i ≤ n − 1} of modified natural generators, subject to the relations

T 2
si

= (q − 1)Tsi
+ q, T̃ 2

si
= (q

1

2 − q−
1

2 )T̃si
+ 1, for i = 1, . . . , n − 1,

Tsi
Tsj

Tsi
= Tsj

Tsi
Tsj

, T̃si
T̃sj

T̃si
= T̃sj

T̃si
T̃sj

, if |i − j| = 1,

Tsi
Tsj

= Tsj
Tsi

, T̃si
T̃sj

= T̃sj
T̃si

, if |i − j| ≥ 2.

The natural and modified natural generators are related by T̃si
= q−

1

2 Tsi
. If si1 · · · siℓ

is a reduced expression for w ∈ Sn we define

Tw = Tsi1
· · ·Tsiℓ

, T̃w = q−
ℓ
2 Tw = T̃si1

· · · T̃siℓ
, Te = T̃e = 1.
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We shall call the elements {Tw |w ∈ Sn} and {T̃w |w ∈ Sn} the standard basis and

modified basis, respectively, of Hn(q) as a C[q
1

2 , q−
1

2 ]-module. Specializing Hn(q) at

q
1

2 = 1, we obtain the classical group algebra C[Sn] of the symmetric group.

One multiplies modified basis elements by recursively using either of the formulae

(4.1)

T̃si
T̃w =

{
T̃siw if siw > w,

T̃siw + (q
1

2 − q−
1

2 )T̃w if siw < w,

T̃wT̃si
=

{
T̃wsi

if wsi > w,

T̃wsi
+ (q

1

2 − q−
1

2 )T̃w if wsi < w.

This procedure yields elements cw
u,v ∈ C[q

1

2 , q−
1

2 ] occurring as coefficients in the ex-
pression

(4.2) T̃uT̃v =
∑

w

cw
u,vT̃w.

By the symmetry of the formulae (4.1), we see immediately that these coefficients
satisfy cw

u,v = cw−1

v−1,u−1 . We also have the following equalities.

Lemma 4.1. The coefficients {cw
u,v | u, v, w ∈ Sn} satisfy cw

u,v = cu−1

v,w−1.

Proof. First consider the case w = e. It is clear from (4.1) that we have ce
u,u−1 = 1.

On the other hand, it is also clear that if ℓ(u) 6= ℓ(v), or if ℓ(u) = ℓ(v) and v 6= u−1,

then T̃e does not appear in the expansion of T̃uT̃v. Thus we have

ce
u,v =

{
1 if v = u−1,

0 otherwise,

which is clearly equal to cu−1

v,e .

Now consider the identity

T̃uT̃vT̃w−1 =
( ∑

y∈Sn

cy
u,vT̃y

)
T̃w−1 = T̃u

( ∑

y∈Sn

cy

v,w−1T̃y

)
.

Equating the coefficients of T̃e in these expressions, we have cw
u,v = cu−1

v,w−1. �

A second noncommutative C[q
1

2 , q−
1

2 ]-algebra is the quantum polynomial ring A(q).
It is generated by n2 variables x = (x1,1, . . . , xn,n) representing matrix entries, subject
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to the relations

(4.3)

xi,ℓxi,k = q
1

2 xi,kxi,ℓ,

xj,kxi,k = q
1

2 xi,kxj,k,

xj,kxi,ℓ = xi,ℓxj,k,

xj,ℓxi,k = xi,kxj,ℓ + (q
1

2 − q−
1

2 )xi,ℓxj,k,

for all indices i < j, k < ℓ. The quantum polynomial ring often arises in conjunction
with the quantum coordinate ring of SL(n, C), which may be expressed as a quotient
OqSL(n, C) ∼= A(q)/(detq(x) − 1), where

(4.4) detq(x) =
def

∑

w∈Sn

(−q−
1

2 )ℓ(w)x1,w1
· · ·xn,wn

=
∑

w∈Sn

(−q−
1

2 )ℓ(w)xw1,1 · · ·xwn,n

is the quantum determinant. (We caution the reader that the second equality above
is implied by the third relation in (4.3), and does not hold in an arbitrary noncommu-

tative ring in n2 variables.) Specializing A(q) at q
1

2 = 1, we obtain the commutative
polynomial ring C[x].

As a C[q
1

2 , q−
1

2 ]-module, A(q) is spanned by monomials in lexicographic order, and
we can use the relations above to convert any other monomial to this standard form.
It is easy to see that the monomials {xu,v | u, v ∈ Sn} satisfy
(4.5)

xsiu,v =





xu,siv if siu > u and siv > v, or if siu < u and siv < v,

xu,siv + (q
1

2 − q−
1

2 )xu,v if siu > u and siv < v,

xu,siv − (q
1

2 − q−
1

2 )xu,v if siu < u and siv > v.

Thus for all w ∈ Sn we have the identity

(4.6) xw,e = xe,w−1

.

On the other hand, we do not in general have the equality of xv,w and xw−1,v−1

.
Applying (4.5) recursively to express xv,w in terms of the natural basis, we obtain an
expression of the form

(4.7) xv,w = xe,v−1w +
∑

u>v−1w

du
v,wxe,u,

where the coefficients du
v,w belong to N[q

1

2 − q−
1

2 ].

Like C[x], the noncommutative ring A(q) has a natural grading by degree,

A(q) =
⊕

r≥0

Ar(q),

where Ar(q) is the C[q
1

2 , q−
1

2 ]-span of all monomials of total degree r. As before, the
natural basis {x

a1,1

1,1 · · ·x
an,n
n,n | a1,1, . . . , an,n ∈ N} of A(q) is a disjoint union of bases of
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the homogeneous components {Ar(q) | r ≥ 0}, and we may further decompose each
homogeneous component Ar(q) as

Ar(q) =
⊕

L,M
|L|=|M |=r

AL,M(q),

where AL,M(q) is the C[q
1

2 , q−
1

2 ]-span of monomials whose row indices and column
indices (with multiplicity) are equal to the multisets L and M , respectively. Again
we have AL,M(q)AL′,M ′(q) ⊂ AL⋒L′,M⋒M ′(q).

Thus A[n],[n](q) is the C[q
1

2 , q−
1

2 ]-submodule of A(q) spanned by the monomials
{xe,w = x1,w1

· · ·xn,wn
|w ∈ Sn}. We will call elements of this submodule quantum

immanants, and for any C[q
1

2 , q−
1

2 ]-linear function f : Hn(q) → C[q
1

2 , q−
1

2 ], we define
the quantum f -immanant to be

(4.8) Immf (x) =
∑

w∈Sn

f(T̃w)xe,w.

We will see in Theorems 5.4, 5.7 and 5.9 that the modified basis {T̃w |w ∈ Sn} is a
more natural choice for the definition (4.8) than is the standard basis {Tw |w ∈ Sn}.

Corresponding to the Hecke algebra sign character χ1n

q : T̃w 7→ (−q−
1

2 )ℓ(w) is the
quantum determinant

detq(x) =
∑

w∈Sn

(−q−
1

2 )ℓ(w)xe,w,

and corresponding to the Hecke algebra trivial character χn
q : T̃w 7→ (q

1

2 )ℓ(w) is the
quantum permanent

perq(x) =
∑

w∈Sn

(q
1

2 )ℓ(w)xe,w.

When n = 3 we have

detq(x) = x1,1x2,2x3,3 − q−
1

2 x1,1x2,3x3,2 − q−
1

2 x1,2x2,1x3,3

+ q−1x1,2x2,3x3,1 + q−1x1,3x2,1x3,2 − q−
3

2 x1,3x2,2x3,1,

perq(x) = x1,1x2,2x3,3 + q
1

2 x1,1x2,3x3,2 + q
1

2 x1,2x2,1x3,3

+ qx1,2x2,3x3,1 + qx1,3x2,1x3,2 + q
3

2 x1,3x2,2x3,1.

5. Formulae for quantum character immanants

In analogy to the irreducible Sn character immanants, we shall construct quantum
immanants Immχλ

q
(x) from the irreducible characters χλ

q : Hn(q) → C[q
1

2 , q−
1

2 ] of
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Hn(q),

(5.1) Immχλ
q
(x; q) =

∑

w∈Sn

χλ
q (T̃w)xe,w =

∑

w∈Sn

χλ
q (Tw)(−q−

1

2 )ℓ(w)xe,w.

Two examples, as we have mentioned, are the quantum determinant and quantum
permanent. The following table shows the values of irreducible characters on modified
basis elements of H4(q).

w χ1111
q (T̃w) χ211

q (T̃w) χ22
q (T̃w) χ31

q (T̃w) χ4
q(T̃w)

1234 1 3 2 3 1

1243, 1324, 2134 −q−
1

2 q
1

2 − 2q−
1

2 q
1

2 − q−
1

2 2q
1

2 − q−
1

2 q
1

2

1423, 1432, 3124, 2314 q−1 q−1 − 1 −1 q − 1 q
2143 q−1 q−1 − 2 q−1 + q q − 2 q

4123, 2413, 3142, 2341 −q−
3

2 q−
1

2 0 −q
1

2 q
3

2

1342, 3214 −q−
3

2 −q−
3

2 0 q
3

2 q
3

2

4132, 4213, 2431, 3241 q−2 0 −1 0 q2

3412 q−2 −1 q−1 + q −1 q2

4312, 3421 −q−
5

2 q−
1

2 q−
1

2 − q
1

2 −q
1

2 q
5

2

4231 −q−
5

2 −q−
3

2 q−
1

2 − q
1

2 q
3

2 q
5

2

4321 q−3 −q−1 2 −q q3

Note that the trace χq of a matrix representation of Hn(q) is not an Sn-class func-

tion, in the sense that χq(T̃v) and χq(T̃u−1vu) are not in general equal (equivalently,
χq(Tv) and χq(Tu−1vu) are not in general equal). On the other hand, χq does have

the conjugation property one would expect: χq(T̃v) = χq(T̃
−1
u T̃vT̃u). We will use the

term Hn(q) character to refer to any function χq : Hn(q) → C[q
1

2 , q−
1

2 ] having this
conjugation property, whether or not the function is the trace of a matrix representa-
tion. Quantum analogs of the immanants {Immǫλ(x) | λ ⊢ n} and {Immηλ(x) | λ ⊢ n}
correspond to characters {ǫλ

q | λ ⊢ n} and {ηλ
q | λ ⊢ n} induced from the sign character

and trivial character of Hecke algebras of Young subgroups of Sn.

We will use the following standard notation and facts about Young subgroups. Let
J be a subset of the standard generators {s1, . . . , sn−1} of W = Sn and let WJ be the
corresponding Young subgroup of W . Let W/WJ be the set of cosets of the form uWJ .
Each such coset is an interval in the Bruhat order and thus has a unique minimal
element and a unique maximal element. Let W J

− be the set of minimal representatives
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of cosets in W/WJ . It is well known that we have

(5.2)

W J
− = {w ∈ Sn |wsi > w for all si ∈ J}

= {w ∈ Sn | siw
−1 > w−1 for all si ∈ J}

= {w | i appears before i + 1 in w1 · · ·wn for all si ∈ J}

= {w |w−1
i < w−1

i+1 for all si ∈ J}.

To prove quantum analogs of the formulae (2.2), we consider elements of Hn(q)
which are often used in conjunction with Young subalgebras. (See, e.g., [2], [3], [5].)
For each permutation u ∈ W J

−, define the Hecke algebra elements

(5.3) TuWJ
= T̃u

∑

y∈WJ

(−q−
1

2 )ℓ(y)T̃y, T ′
uWJ

= T̃u

∑

y∈WJ

(q
1

2 )ℓ(y)T̃y.

Note that if J = ∅ then each coset W/WJ is a single element u ∈ Sn and we have

T ′
uWJ

= TuWJ
= T̃u.

The elements (5.3) are used to construct induced representations as follows. Given
a partition λ = (λ1, . . . , λℓ) of n, choose any rearrangement ν = (ν1, . . . , νℓ) of λ and
define the subset J = J(ν) of generators of Sn by

(5.4) J = {s1, . . . , sn−1} r {sν1
, sν1+ν2

, . . . , sν1+···+νℓ−1
}.

Letting Hn(q) act by left multiplication on the C[q
1

2 , q−
1

2 ]-spans of coset sums

(5.5) span
C[q

1

2 ,q−
1

2 ]
{TuWJ

| u ∈ W J
−}, span

C[q
1

2 ,q−
1

2 ]
{T ′

uWJ
| u ∈ W J

−},

we obtain the two Hn(q) modules corresponding to induction of the sign and trivial
representations (respectively) of Young subalgebras of type λ. For each w ∈ Sn, the

matrices representing the two actions of T̃w have entries indexed by permutations
u, v ∈ W J

−, which we describe as follows.

Lemma 5.1. Fix w in Sn and u, v in W J
−. For the above constructions of the induced

sign and trivial Hn(q) modules, the u, v entries of the matrices representing T̃w are

equal to the coefficients of T̃w in T̃uTWJ
T̃v−1 and T̃uT

′
WJ

T̃v−1 respectively.

Proof. The two u, v entries are equal to the coefficients of TuWJ
in T̃wTvWJ

and of

T ′
uWJ

in T̃wT ′
vWJ

. Equivalently, they are equal to the coefficients of T̃u in T̃wTvWJ
and

T̃wT ′
vWJ

. By the definitions (4.2) and (5.3), these coefficients are

∑

y∈WJ

(−q−
1

2 )ℓ(y)cu
w,vy,

∑

y∈WJ

(q
1

2 )ℓ(y)cu
w,vy.
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On the other hand, the coefficients of T̃w in

T̃uTWJ
T̃v−1 =

∑

y∈WJ

(−q−
1

2 )ℓ(y)T̃uT̃y−1v−1 , T̃uT
′
WJ

T̃v−1 =
∑

y∈WJ

(q
1

2 )ℓ(y)T̃uT̃y−1v−1

are equal to ∑

y∈WJ

(−q−
1

2 )ℓ(y)cw
u,y−1v−1 ,

∑

y∈WJ

(q
1

2 )ℓ(y)cw
u,y−1v−1 .

Since cw
u,y−1v−1 = cu−1

y−1v−1,w−1 = cu
w,vy by Lemma 4.1, we have the desired result. �

From this fact, we obtain the following Hecke algebra “generating functions” for
induced characters.

Lemma 5.2. Let λ, ν and J be as above. Then we have
∑

v∈W J
−

T̃vTWJ
T̃v−1 =

∑

w∈Sn

ǫλ
q (T̃w)T̃w,

∑

v∈W J
−

T̃vT
′
WJ

T̃v−1 =
∑

w∈Sn

ηλ
q (T̃w)T̃w.

Proof. Using the formulae in Lemma 5.1 and summing over all diagonal matrix entries,
we obtain the desired equalities. �

These Hecke algebra generating functions in turn are related to quantum im-
manants by the actions of Hn(q) on A[n],[n](q) defined by

(5.6)

T̃si
◦ xe,v = xsi,v =

{
xe,siv if siv > v,

xe,siv + (q
1

2 − q−
1

2 )xe,v if siv < v,

xe,v ◦ T̃si
= xv−1,e ◦ T̃si

= xv−1,si =

{
xe,vsi if vsi > v,

xe,vsi + (q
1

2 − q−
1

2 )xe,v if vsi < v.

A straightforward but tedious computation shows that the left and right actions
commute. By the definitions, it is easy to see that we have

(5.7) T̃v ◦ xe,e = xe,e ◦ T̃v = xe,v

for all v ∈ Sn. On the other hand, we do not in general have the equality of T̃v ◦ xe,w

and xe,w ◦ T̃v. One consequence of the definitions (5.6) is the following formula.

Lemma 5.3. For all v ∈ W J
−, y ∈ WJ , we have T̃v ◦ xe,y ◦ T̃v−1 = xv−1,yv−1

.

Proof. By (5.2) and (5.6) we have

T̃v ◦ xe,y ◦ T̃v−1 = xe,vy ◦ T̃v−1 = xy−1v−1,e ◦ T̃v−1 = xy−1v−1,v−1

.

By (4.5), this is equal to xv−1,yv−1

. �

Now we quantize the Littlewood-Merris-Watkins identities in Theorem 2.1 as fol-
lows.
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Theorem 5.4. Fix a partition λ = (λ1, . . . , λℓ) of n and let ν = (ν1, . . . , νℓ) be any
rearrangement of λ. Then we have

(5.8)

Immǫλ
q
(x) =

∑

(I1,...,Iℓ)

detq(xI1,I1) · · ·detq(xIℓ,Iℓ
),

Immηλ
q
(x) =

∑

(I1,...,Iℓ)

perq(xI1,I1) · · ·perq(xIℓ,Iℓ
),

where the sums are over all sequences (I1, . . . , Iℓ) of pairwise disjoint subsets of [n]
satisfying |Ij | = νj.

Proof. Define the set J = J(ν) of generators as in (5.4). By definition of the induced
character immanants and by Lemma 5.2 we have

Immǫλ
q
(x) =

∑

v∈Sn

ǫλ
q (T̃v) ◦ xe,v =

∑

v∈Sn

ǫλ
q (T̃v)T̃v ◦ xe,e =

∑

v∈W J
−

T̃vTWJ
T̃v−1 ◦ xe,e.

Similarly, Immηλ
q
(x) =

∑
v∈W J

−

T̃vT
′
WJ

T̃v−1 ◦ xe,e.

On the other hand, we may describe terms in the sums on the right hand side of
(5.8) by using the last expression in (5.2) to deduce that all monomials which appear

have the form xv−1,yv−1

for some v ∈ W J
− and y ∈ WJ . In particular, choose v ∈ W J

−

and define sets L1, . . . , Lℓ of indices by L1 = {v−1
1 , . . . , v−1

ν1
} and

Li = {v−1
ν1+···+νi−1+1, . . . , v

−1
ν1+···+νi

}, i = 2, . . . , ℓ.

Then we have

(5.9) detq(xL1,L1
) · · ·detq(xLℓ,Lℓ

) =
∑

y∈WJ

(−q−
1

2 )ℓ(y)xv−1,yv−1

.

By (5.7) and Lemma 5.3, this sum is equal to
∑

y∈WJ

(−q−
1

2 )ℓ(y)T̃v ◦ xe,y ◦ T̃v−1 = T̃vTWJ
◦ xe,e ◦ T̃v−1 = T̃vTWJ

T̃v−1 ◦ xe,e.

Furthermore, by letting v vary over W J
− in (5.9), we obtain all possible products of

complementary principal quantum minors of sizes ν1×ν1, . . . , νℓ×νℓ (in order). Thus
we have

∑

(I1,...,Iℓ)

detq(xI1,I1) · · ·detq(xIℓ,Iℓ
) =

∑

v∈W J
−

T̃vTWJ
T̃v−1 ◦ xe,e = Immǫλ

q
(x).

Similarly, the identity perq(xL1,L1
) · · ·perq(xLℓ,Lℓ

) = T̃vT
′
WJ

T̃v−1 ◦ xe,e leads to the
claimed formula for Immηλ

q
(x). �
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We caution the reader that the quantum identities in Theorem 5.4 do not specialize
as simply via generalized submatrices as do their classical analogs. For instance, we

may use the following table of characters (in which the (w, χq) entry gives χq(T̃w))

w\χq χ111
q = ǫ3

q χ21
q χ3

q = η3
q η111

q = ǫ111
q η21

q ǫ21
q

123 1 2 1 6 3 3

132 −q−
1

2 q
1

2 − q−
1

2 q
1

2 3(q
1

2 − q−
1

2 ) 2q
1

2 − q−
1

2 q
1

2 − 2q−
1

2

213 −q−
1

2 q
1

2 − q−
1

2 q
1

2 3(q
1

2 − q−
1

2 ) 2q
1

2 − q−
1

2 q
1

2 − 2q−
1

2

231 q−1 −1 q q − 2 + q−1 q − 1 q−1 − 1
312 q−1 −1 q q − 2 + q−1 q − 1 q−1 − 1

321 −q−
3

2 0 q
3

2 q
3

2 − q¯
3

2 q
3

2 −q−
3

2

to compute

Immǫ21q
(x112,112) = (3 + q

1

2 − 2q−
1

2 )x2
1,1x2,2 + (q

1

2 − 2q−
1

2 + q−1 − 1)x1,1x1,2x2,1

+ (q−1 − 1 − q−
3

2 )x1,2x1,1x2,1

= (3 + q
1

2 − 2q−
1

2 )x2
1,1x2,2 + (−q−

1

2 − 1)x1,1x1,2x2,1.

This is not equal to the specialization of the first sum in (5.8) at x = x112,112,

detq(x11,11)x2,2 + 2detq(x12,12)x1,1 = (3 − q−
1

2 )x2
1,1x2,2 − 2q−

1

2 x1,1x1,2x2,1.

The authors do not know quantum analogs of Propositions 2.2-2.3 or Corollary 2.4.
Nevertheless, we will succeed in quantizing a special case of the Goulden-Jackson
identities in Theorem 3.2 by applying Theorem 5.4.

Just as inverse Kostka numbers describe the expansions of induced sign and trivial
characters of Sn in terms of irreducible Sn characters, these numbers also describe
the expansions of induced sign and trivial characters of Hn(q) in terms of irreducible
Hn(q) characters. (No “quantum analog” of inverse Kostka numbers is needed for
this purpose. See [12, §9.1.9].) Specifically we have

(5.10) χλ
q =

∑

µ

K−1
µ,λη

µ
q =

∑

µ

K−1
µ,λ⊤

ǫµ
q .

Now let us quantize the Goulden-Jackson generating functions (3.1). We define the
sequences (αk)k∈Z, (βk)k∈Z, (γk)k∈Z, (δk)k∈Z of polynomials in A(q) by the generating
functions

(5.11)

detq(I + tx) =
n∑

k=0

αkt
k,

1

detq(I − tx)
=

∑

k≥0

βkt
k,

perq(I + tx) =
n∑

k=0

γkt
k,

1

perq(I − tx)
=

∑

k≥0

δkt
k,
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in A(q)[[t]], and again by the requirement that polynomials with indices not appearing
here be zero. In terms of these sequences, define the λ1 × λ1 matrices A, D and the
ℓ × ℓ matrices B, C as before,

(5.12) A = (αλ⊤i−i+j), B = (βλi−i+j), C = (γλi−i+j), D = (δλ⊤i−i+j).

To provide a quantum analog of Theorems 3.2-3.3, we must evaluate some form of
the determinant at the matrices defined in (5.12). Perhaps surprisingly, we will use
the classical (commutative) determinant and will justify this by stating the following
commutative properties of the sequences defined in (5.11).

Theorem 5.5. The polynomials {αk | k ∈ Z} in A(q) pairwise commute, as do the
polynomials {βk | k ∈ Z}.

Proof. The pairwise commutation of the polynomials {αk | k ∈ Z} is due to Domokos
and Lenagan [4, Thm. 6.1]. Using (5.11) to write βk = βk−1α1 − · · · ± β1αk−1 ∓ αk,
we see that the polynomials {βk | k ∈ Z} pairwise commute as well. �

While it is not in general true that the polynomials {γk | k ∈ Z} or {δk | k ∈ Z}
in A(q) pairwise commute, we do have the following weaker result. Let R(q) be the
quotient of A(q) modulo the ideal generated by all monomials of the forms xi,kxj,k

and xi,kxi,ℓ.

Theorem 5.6. In R(q), the canonical images of the polynomials {γk | k ∈ Z} pairwise
commute, as do the canonical images of the polynomials {δk | k ∈ Z}.

Proof. It is easy to see that we have

(5.13) γi =
∑

I⊂[n]
|I|=i

perq(xI,I).

Choose indices i < j, define the partition λ = (j, i), and consider the product γjγi

in R(q). Each term of the form perq(xJ,J)perq(xI,I) vanishes in R(q) unless I and J
are disjoint. Collecting terms of the form perq(xJ,J)perq(xI,I) for each (i+ j)-element
subset K of [n], we have

γjγi =
∑

K

∑

(J,I)

perq(xJ,J)perq(xI,I),

where K varies over all (i+ j)-element subsets of [n] and (J, I) varies over all pairs of
disjoint subsets of [n] satisfying |J | = j, |I| = i, I ∪ J = K. On the other hand, for
each subset K of [n], we have by Theorem 5.4 that the induced character immanant
Immǫλ

q
(xK,K) is equal to this second sum, and also to the similar sum over pairs (I, J)

satisfying |I| = i, |J | = j. It follows that γjγi = γiγj in R(q).
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As in the previous proof, we may write each polynomial δj as a sum of products of
the polynomials γ1, . . . , γj to see that we have δiδj = δjδi in R(q). �

Now we compute the determinants of A, B, C, D in R(q). For the matrices A,
B, whose classical determinants are well-defined even in A(q), this is equivalent to
computing the determinants in A(q) and projecting them onto the immanant space.

Theorem 5.7. In R(q), the nonquantum determinants det(A), det(B), det(C), and
det(D) are all equal to Immχλ

q
(x).

Proof. By Proposition 3.1, we have det(A) = det(B). Computing in R(q), we have

(5.14) det(A) = det(B) =
∑

µ≥λ⊤

µ=(µ1,...,µm)

K−1
µ,λ⊤

∑

(I1,...,Im)

detq(xI1,I1) · · ·detq(xIm,Im
),

where the second sum is over all sequences (I1, . . . , Im) of pairwise disjoint subsets of
[n] satisfying |Ij| = µj. By Theorem 5.4, this is equal to

∑

µ≥λ⊤

K−1
µ,λ⊤

Immǫ
µ
q
(x) = Immχλ

q
(x).

Similarly, by Proposition 3.1 we have det(C) = det(D) in R(q) and thus

det(C) = det(D) =
∑

µ≥λ
µ=(µ1,...,µm)

K−1
µ,λ

∑

(I1,...,Im)

perq(xI1,I1) · · ·perq(xIm,Im
),

where the second sum is over all sequences of pairwise disjoint subsets of [n] satisfying
|Ij| = µj. By Theorem 5.4, this is

∑

µ≥λ

K−1
µ,λImmη

µ
q
(x) = Immχλ

q
(x).

�

When quantizing an identity, one often replaces nonnegative integers and the ordi-
nary factorial function with appropriate quantum analogs. We will do this as follows.
For each nonnegative integer k, define the quantum analog of k to be the expression

(k)q =

{
0 if k = 0,

1 + q
1

2 + q
2

2 + · · ·+ q
k−1

2 otherwise.

Define the quantum factorial function ! by

(k)q! =

{
1 if k = 0,

1 · (2)q · · · (k)q otherwise.
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Note that the evaluation of the above expressions at q
1

2 = 1 gives the classical non-
negative integers and factorial function.

The most natural quantization of Theorem 3.2 would assert the equality of det(A),
det(B) and

(5.15)
∑

M

Immχλ
q
(xM,M)

(m1)q! · · · (mn)q!
.

Unfortunately, this equality does not hold in general. For instance, when λ = 21, we
have

det

[
α2 α3

1 α1

]
= (detq(x12,12)+detq(x13,13)+detq(x23,23))(x1,1 +x2,2 +x3,3)−detq(x)

= Immχ21
q

(x) + (x2
1,1x2,2 − q−

1

2 x1,1x1,2x2,1) + · · ·+ (x2,2x
2
3,3 − q−

1

2 x2,3x3,2x3,3).

Computing Immχ21
q

(x112,112), Immχ111
q

(x112,112) = detq(x112,112), etc., we see that this
is equal to

Immχ21
q

(x)+
Immχ21

q
(x112,112) − detq(x112,112)

2q!1q!
+ · · ·+

Immχ21
q

(x233,233) − detq(x233,233)

2q!1q!
,

which differs from the formula (5.15).

Problem 5.8. Fix a partition λ and define a matrix A as in (5.12). Express det(A)
as a linear combination of quantum (irreducible) character immanants of generalized
submatrices of A.

On the other hand, the special case of Problem 5.8 corresponding to the partition
λ = 1r does lead to the identity one would expect, and is equivalent to a quantization
of the MacMahon Master Theorem. This quantized Master Theorem was first stated
by Garoufalidis-Lê-Zeilberger [11, Thm. 1] in a slightly more general form, using “right
quantum” variables which satisfy only three of the four relations in (4.3). In the spirit
of Vere-Jones, we state the quantized Master Theorem as follows.

Theorem 5.9. Let z = (z1, . . . , zn) be a vector of quasicommuting variables satisfying

zjzi = q
1

2 zizj if i < j, and commuting with x. Let M = 1m1 · · ·nmn be an r-element
multiset of [n]. Then the coefficient of zm1

1 · · · zmn
n in

(5.16)
( n∑

j=1

x1,jzj

)m1

· · ·
( n∑

j=1

xn,jzj

)mn

and the projection of

(5.17)
1

detq(I − x)
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onto AM,M(q) are both equal to

perq(xM,M)

(m1)q! · · · (mn)q!
.

Proof. The equality of the coefficient of zm1

1 · · · zmn
n in (5.16) and the projection of

(5.17) onto AM,M(q) is due to Garoufalidis-Lê-Zeilberger [11, Thm. 1].

Let S(M) be the set of rearrangements of M , and for each word w = w1 · · ·wr

in S(M) define ℓ(w) to be the number of pairs (i, j) of indices satisfying i < j and
wi > wj. Now define the r × n matrix

F = diag(z1, . . . , z1︸ ︷︷ ︸
m1

, z2, . . . , z2︸ ︷︷ ︸
m2

, . . . , zn, . . . , zn︸ ︷︷ ︸
mn

)xM,[n],

and expand the sum ∑

w∈S(M)

(q
1

2 )ℓ(w)F e,w.

Using the relations zjzi = q
1

2 zizj to express terms of this expansion as lexicographi-
cally ordered monomials, we obtain the coefficient of zm1

1 · · · zmn
n in (5.16). But this

is equal to

1

(m1)q! · · · (mn)q!

∑

w∈Sr

(q
1

2 )ℓ(w)(xM,M)e,w =
perq(xM,M)

(m1)q! · · · (mn)q!
.

�

As a consequence, we obtain the following natural quantum analog of (3.6).

Corollary 5.10. The functions (βr)r∈Z defined in (5.11) satisfy

(5.18) βr =
∑

M

perq(xM,M)

(m1)q! · · · (mn)q!
,

where the sum is over all r-element multisets M = 1m1 · · ·nmn of [n].

As another consequence, we obtain the following quantization of the generalized
Muir identity in Corollary 3.5.

Corollary 5.11. Let M = 1m1 · · ·nmn be an r-element multiset of [n], r > 0. Then
we have

min{r,n}∑

k=0

(−1)k
∑

I⊂M
|I|=k

detq(xI,I)perq(xMrI,MrI)

(m1 − i1)q! · · · (mn − in)q!
= 0,

where the second sum is over sets I = 1i1 · · ·nin contained in M .
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Proof. As before, we deduce from (5.11) that

(5.19)

min{r,n}∑

k=0

(−1)kαkβr−k = 0

for r ≥ 1, and it is easy to see that we have

αk =
∑

I⊂[n]
|I|=k

detq(xI,I)

for k = 0, . . . , n. Now using (5.18) and projecting both sides of (5.19) onto AM,M(q),
we have the desired result. �

In the special case M = [n], we obtain Zhang’s quantization [33, Thm. 3.2] of Muir’s
identity,

n∑

k=0

(−1)k
∑

I⊂[n]
|I|=k

detq(xI,I)perq(x[n]rI,[n]rI) = 0.
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