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Abstract. We state new results concerning the zero sets of polynomials belonging
to the dual canonical basis of C[x1,1, . . . , xn,n]. As an application, we show that
this basis is related by a unitriangular transition matrix to the simpler bitableau
basis popularized by Désarménien-Kung-Rota. It follows that spaces spanned by
certain subsets of the dual canonical basis can be characterized in terms of products
of matrix minors, or in terms of their common zero sets.

1. Introduction

Let x = (xi,j) be an n × n matrix of variables and consider the polynomial ring
C[x] = C[x1,1, . . . , xn,n] as an infinite dimensional complex vector space. It is often
convenient to construct a basis of C[x] by modifying and combining bases (Br)r≥0 of
spaces

(1.1) spanC{y1,w1
· · · yr,wr

|w ∈ Sr} ⊂ C[y1,1, . . . , yr,r],

where y = (yi,j) is an r × r matrix of variables, for r arbitrarily large. Following [56],
we will call these spaces immanant spaces. For example, it is possible to show that
the natural basis

{x
a1,1

1,1 · · ·xan,n

n,n | a1,1, . . . , an,n ∈ N}

of C[x] may be constructed as above. A second basis which may be constructed as
above was made popular by Désarménien-Kung-Rota [12] and has a rather simple
description in terms of Young tableaux. A third basis which is of great interest
in the representation theory of quantum groups was shown in [53] also to have a
construction as above. Known as the dual canonical basis, it arose naturally from
Kashiwara’s [28] and Lusztig’s [35] work on canonical bases, and currently has no
elementary description.

Du [17] expressed the dual canonical basis elements in terms of Kazhdan-Lusztig
polynomials, which led to the term Kazhdan-Lusztig immanants used in [50] for those
elements belonging to the immanant space of C[x]. Since then, nonnegativity prop-
erties of Kazhdan-Lusztig immanants studied in [50] have played an important role
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in establishing inequalities satisfied by Littlewood-Richardson coefficients [31] and
in creating a representation theoretic model for the combinatorial action of jeu-de-
taquin promotion [48], thus proving conjectures of Fomin-Fulton-Li-Poon [20], Reiner-
Stanton-White [47] and others.

While the problem of providing an explicit and elementary description of dual
canonical basis elements is widely believed to be difficult, one can obtain interesting
partial results by describing spaces spanned by nested subsets of these polynomials,
by studying the corresponding algebraic varieties, and by relating the dual canonical
basis to any simpler basis. Indeed, we will continue such work begun in [49], [50], [51]
by considering a family of nested subsets defined in terms of a partial order on Sn

which we call iterated dominance. This partial order helps to describe spaces spanned
by dual canonical basis elements, their zero sets, and a unitriangular transition matrix
relating the bitableau and dual canonical bases.

In Sections 2-3, we discuss a multigrading of C[x] and the natural, bitableau, and
dual canonical bases. We also include standard facts about the symmetric group
Sn, several partial orders and Kazhdan-Lusztig preorders. In Section 4, we give new
sufficient conditions for a matrix to belong to the zero sets of certain dual canonical
basis elements. We state these conditions in terms of repetition patterns among
matrix rows and columns. In Section 5, we define the iterated dominance order on
Sn. This partial order then allows us to combine results in Section 4 with those of
Greene and others to prove the unitriangularity of transition matrices relating the
bitableau and dual canonical bases. We finish in Section 6 by showing that natural
filtrations of the immanant space (1.1) have similar descriptions in terms of the two
bases.

2. A multigrading of C[x] and two bases

C[x] has a natural grading by degree,

C[x] =
⊕

r≥0

Ar,

where Ar = Ar(x) is the span of all monomials of total degree r. It is easy to see
that the natural basis {x

a1,1

1,1 · · ·x
an,n
n,n | a1,1, . . . , an,n ∈ N} of C[x] is a disjoint union

⋃

r≥0

{x
a1,1

1,1 · · ·xan,n

n,n | a1,1 + · · · + an,n = r}

of bases of the homogeneous components {Ar | r ≥ 0}. One may further decompose
each homogeneous component Ar by considering pairs (L, M) of r-element multisets
of [n] =

def
{1, . . . , n}, written as weakly increasing sequences

L = (ℓ(1), . . . , ℓ(r)), M = (m(1), . . . , m(r)).
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In particular, define the multigrading

(2.1) Ar =
⊕

L,M
|L|=|M |=r

AL,M ,

where AL,M is the linear span of monomials whose row indices and column indices
(with multiplicity) are given by the multisets L and M , respectively. The component
A[n],[n] is the immanant space (1.1) corresponding to r = n, and we will call any
element of A[n],[n] an n × n immanant.

If the numbers 1, . . . , n appear in the multiset L with multiplicities α = (α1, . . . , αn),
we write L = 1α1 · · ·nαn . Just as the Z-graded components Ar and As satisfy
ArAs ⊂ Ar+s, the multigraded components AL,M and AL′,M ′ satisfy

AL,MAL′,M ′ ⊂ AL⋒L′,M⋒M ′,

where ⋒ denotes the multiset union of two multisets,

(2.2) 1α1 · · ·nαn ⋒ 1α′

1 · · ·nα′
n =

def
1α1+α′

1 · · ·nαn+α′
n .

The convenience of the multigrading (2.1) manifests itself in the situation that one
can do the following.

(1) Construct for all r ≥ 0 a basis Br of the r × r immanant space (1.1).
(2) For each pair (L, M) of r-element multisets of [n], evaluate the immanants in

Br at the generalized submatrix

(2.3) xL,M =
def









xℓ(1),m(1) · · · xℓ(1),m(r)

xℓ(2),m(1) · · · xℓ(2),m(r)
...

...
xℓ(r),m(1) · · · xℓ(r),m(r)









,

i.e., substitute y = xL,M .
(3) Select from the resulting polynomials a basis of the component AL,M of C[x].

The constructed basis of C[x] is then a union of bases of AL,M over all r ≥ 0 and all
pairs (L, M) of r-element multisets of [n]. Thus this basis of C[x] requires knowledge
only of bases of immanant spaces (1.1).

Three such bases of C[x] may be described in terms of integer partitions, the
symmetric group, and Young tableaux. We define these and related partial orders as
follows. (For more information see, e.g., [21], [52], [54], [55].)

Call a weakly decreasing sequence λ = (λ1, . . . , λℓ) of positive integers which sum
to r an integer partition of r and write λ ⊢ r or |λ| = r. The components of λ are
called parts. A left-justified array of boxes with λi boxes in row i (1 ≤ i ≤ ℓ) is
called a Young diagram of shape λ. Transposing this diagram as one would transpose
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a matrix, we obtain a diagram whose shape is another integer partition of r which we
denote by λ⊤. (This is often called the conjugate of λ.)

We define the dominance order on partitions of r by declaring λ � µ if we have

λ1 + · · ·+ λi ≤ µ1 + · · · + µi,

for i = 1, . . . , r (with λi and µj defined to be zero for i, j larger than the number
of parts of these partitions). It is well known that we have λ � µ if and only if
λ⊤ � µ⊤. Filling a Young diagram of shape λ ⊢ r with positive integers, we obtain
a Young tableau T of shape λ. T is called injective if no number appears more than
once in T , column-(semi)strict if entries (weakly) increase downward in columns,
row-(semi)strict if entries (weakly) increase to the right in rows, semistandard if it
is column-strict and row-semistrict, and standard if it is injective, semistandard, and
has entries 1, . . . , r.

To define bases of the immanant space, we will find it convenient to associate an
n-letter word, two tableaux, and a partition of n to each element of the symmetric
group Sn as follows.

Let s1, . . . , sn−1 be the standard generators of Sn, satisfying the relations

s2
i = 1, for i = 1, . . . , n − 1,

sisjsi = sjsisj, if |i − j| = 1,

sisj = sjsi, if |i − j| ≥ 2.

Let Sn act on rearrangements of the letters [n] by

si ◦ v1 · · · vn =
def

v1 · · · vi−1vi+1vivi+2 · · · vn.

For each permutation w = si1 · · · siℓ ∈ Sn we define the one-line notation of w to be
the word

(2.4) w1 · · ·wn =
def

si1 ◦ (· · · (siℓ ◦ (1 · · ·n)) · · · ).

For example, we define the one-line notation of s1s2 in S3 to be 312.

We associate two tableaux P (w), Q(w) to w by applying the Robinson-Schensted
column insertion map to w1 · · ·wn,

(2.5) w1 · · ·wn 7→ (P (w), Q(w)).

These two tableaux necessarily have the same shape, which we declare also to be the
shape of w,

sh(w) =
def

sh(P (w)) = sh(Q(w)).

It is well known that w has a decreasing subsequence of length k if and only if the
first part of sh(w) is at least k. Similarly, w has an increasing subsequence of length
k if and only if sh(w) has at least k parts.
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In this paper, the notation P (w) and Q(w) will always refer to the tableaux in
Equation (2.5) defined in terms of the one-line notation given in Equation (2.4). In
the literature, the one-line notation of w = si1 · · · siℓ is often defined to be the word we
associate in (2.4) to w−1 = siℓ · · · si1 . (See, e.g., [21, p. 83].) Furthermore, the notation
(P (w), Q(w)) is more often associated with the Robinson-Schensted row insertion of
w. (See, e.g., [21, Sec. 4].) Since changing from column to row insertion transposes a
tableau, and since we have P (w−1) = Q(w) by either insertion method, our notation
(P (w), Q(w)) corresponds to a pair of tableaux which might more traditionally be
denoted (Q(w)⊤, P (w)⊤).

Given a permutation w ∈ Sr expressed in terms of generators as w = si1 · · · siℓ ,
call w reduced if it cannot be expressed as a shorter product of generators. Call
ℓ = ℓ(w) the length of w. We define the Bruhat order on Sr by v ≤ w if some reduced
expression for w contains a reduced expression for v as a subexpression. It is easy to
see that we have v ≤ w if and only if v−1 ≤ w−1. (See [6] for more information.)

A subgroup of Sr generated by some subset J of {s1, . . . , sr−1} is called parabolic
and is denoted WJ . In particular, given a multiset M = (m(1), . . . , m(r)), we may
use the generators ι(M) = {si |m(i) = m(i+1)} to define a parabolic subgroup Wι(M)

of Sr. If M = 1α1 · · · rαr , then we have Wι(M)
∼= Sα1

× · · · × Sαr
. For each partition

λ ⊢ r and the corresponding multiset M = 1λ1 · · · rλr , we write Sλ =
def

Wι(M).

We may use the symmetric group to express the natural basis of C[x] in terms of
immanants as follows. Given an r × r matrix y = (yi,j), define the r × r immanant
yw = y1,w1

· · · yr,wr
. Then the set

(2.6) {(xL,M)w |w ∈ Sr}

of at most r! distinct monomials forms a basis of AL,M . The union of these sets over
all pairs (L, M) of r-element multisets of [n] forms a basis of Ar. Using the fact that
each double coset Wι(L)wWι(M) ⊂ Sr has a unique Bruhat-maximal element, and that
for each element v ∈ Wι(L)wWι(M), we have (xL,M)v = (xL,M)w, one may express the
basis (2.6) more precisely as {(xL,M)w |w Bruhat-maximal in Wι(L)wWι(M) ⊂ Sr}.

A second basis of C[x], consisting of polynomials parametrized by pairs of Young
tableaux, is called the bitableau basis. Appearing in the work of Mead [41] and others
(see [9, pp. 488-489]), it was later popularized by Désarménien-Kung-Rota [12], who
substantially improved our understanding of it and used it to advance combinatorial
methods in invariant theory. Outside of invariant theory, the bitableau basis appears
often in papers treating problems in representation theory and quantum groups. (See,
e.g., [1], [32].)

Let T , U be column-strict tableaux of the same shape and having k columns,
and recall the submatrix notation (2.3). We define the bitableau (T :U)(x) to be the
product of k minors

det(xI1,J1
) · · ·det(xIk,Jk

),
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where I1, . . . , Ik are the sets of entries in columns 1, . . . , k of T and J1, . . . , Jk are the
sets of entries in columns 1, . . . , k of U . For example, we have

( 1 1 2
3 3 : 1 2 3

2 3 )(x) = det(x13,12) det(x13,23) det(x2,3)

= (x1,1x3,2 − x1,2x3,1)(x1,2x3,3 − x1,3x3,2)x2,3.

We call a bitableau (T :U)(x) column-strict, semistandard, etc., if both T and U have
these properties.

Define the content of a bitableau (T :U)(x) to be the pair of multisets of entries
of T and U . Mead [41] showed that for all pairs (L, M) of multisets of [n], one
obtains a basis of AL,M by taking the set of all semistandard bitableaux (T :U)(x)
having content (L, M). (See also [12, Thm. 2.2], [15, Thm. 3] and references cited in
[9, p. 486].)

Theorem 2.1. The set of semistandard bitableaux

{(T :U)(x) | content(T, U) = (L, M)}

forms a Z-basis of AL,M .

In particular, the set of all standard bitableaux forms a Z-basis of the immanant
space A[n],[n]. Using the conventions (2.4), (2.5), we will index standard bitableaux
by permutations as

Rw(x) =
def

(Q(w):P (w))(x).

Denoting the transpose of the matrix x by x⊤, we have the following elementary
identity.

Proposition 2.2. For all v ∈ Sn we have Rv(x) = Rv−1(x⊤).

Proof. It is clear that (T :U)(x) = (U :T )(x⊤) for any tableaux T , U . Since the
Robinson-Schensted column insertion map satisfies (P (v−1), Q(v−1)) = (Q(v), P (v)),
we have

Rv(x) = (Q(v):P (v))(x) = (P (v):Q(v))(x⊤) = (Q(v−1):P (v−1))(x⊤) = Rv−1(x⊤).

�

It is easy to see that each semistandard bitableau can be expressed as the evaluation
of a standard bitableau at a generalized submatrix of x. Conversely, the evaluation
of a standard bitableau at a generalized submatrix of x is either zero or is equal to
a semistandard bitableau. Thus for |L| = |M | = r, a basis of AL,M is given by the
nonzero elements of the set

(2.7) {Rw(xL,M) |w ∈ Sr}.

We will show in Corollary 5.11 that this basis may be expressed more precisely as

{Rw(xL,M) |w Bruhat maximal in Wι(L)wWι(M)}.
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(The relationship between the standard and semistandard bitableaux bases above
can be described in terms of the Robinson-Schensted-Knuth correspondence and a
variation of the standardization procedure in [55, Sec. 7.11].)

3. The Hecke algebra and dual canonical basis of C[x]

The Hecke algebra (of type A), denoted Hn(q), is the noncommutative C[q
1

2 , q¯
1

2 ]-
algebra generated by the set {Tsi

| 1 ≤ i ≤ n − 1}, subject to the relations

T 2
si

= (q − 1)Tsi
+ q, for i = 1, . . . , n − 1,

Tsi
Tsj

Tsi
= Tsj

Tsi
Tsj

, if |i − j| = 1,

Tsi
Tsj

= Tsj
Tsi

, if |i − j| ≥ 2.

If si1 · · · siℓ is a reduced expression for w ∈ Sn we define Tw = Tsi1
· · ·Tsiℓ

. (This

element does not depend upon the chosen reduced expression for w. See, e.g., [27].)
We also define Te = 1. We call the elements {Tw |w ∈ Sn} the natural basis of Hn(q)

as a C[q
1

2 , q¯
1

2 ]-module. Specializing Hn(q) at q
1

2 = 1, we obtain the classical group
algebra C[Sn] of the symmetric group, with each natural basis element Tw specializing
to the permutation w.

In [29], Kazhdan and Lusztig defined another basis {C ′
w(q) |w ∈ Sn},

C ′
w(q) = q−ℓ(w)/2

∑

v≤w

Pv,w(q)Tv,

where {Pv,w(q) | v, w ∈ Sn} are the unique polynomials in N[q] satisfying a certain
recursive formula. (See, e.g., [29].) The basis and polynomials are known as the
Kazhdan-Lusztig basis and Kazhdan-Lusztig polynomials, respectively. Neither has an
entirely elementary description. Even the integers C ′

w(1) and Pv,w(1) have no simple
descriptions. (See [5, Ch. 6] for a summary of interpretations of the polynomials, and
[4] for recent progress.) The Kazhdan-Lusztig basis has many interesting properties,
including that multiplication of the basis elements is described by structure constants
belonging to N[q

1

2 , q¯
1

2 ]. (See [26, Appendix] and references there.)

Kazhdan and Lusztig used the basis {C ′
w(q) |w ∈ Sn} and a preorder ≤L on Sn to

construct irreducible representations of Hn(q). We define the (Kazhdan-Lusztig) left
preorder ≤L on Sn to be the transitive closure of the relation ⋖L defined by v ⋖L u if
C ′

v(q) appears with nonzero coefficient in the Kazhdan-Lusztig expansion of TwC ′
u(q)

for some w ∈ Sn. Following the treatment given in [26, Appendix], one constructs
an irreducible Hn(q)-module indexed by a partition λ ⊢ n by first choosing any fixed
standard Young tableau T of shape λ, and any permutation w satisfying P (w) = T .

One then lets Hn(q) act by left multiplication on the C[q
1

2 , q¯
1

2 ]-module

span{C ′
v(q) |P (v) = T},
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regarded as the quotient

span{C ′
v(q) | v ≤L w}/span{C ′

v(q) | v ≤L w, w 6≤L v}.

Analogous to the left preorder is a right preorder ≤R, defined to be the transitive
closure of the relation ⋖R defined by v ⋖R u if C ′

v(q) appears with nonzero coefficient
in the Kazhdan-Lusztig expansion of C ′

u(q)Tw for some w ∈ Sn. It is easy to see that
v ≤R u if and only if v−1 ≤L u−1. A third preorder, the left-right preorder ≤LR, is
the transitive closure of the relation ⋖LR defined by v ⋖LR u if v ⋖L u or v ⋖R u.
The preorders defined above are closely related to the dominance order on partitions.
In particular, we have the equivalence of v ≤LR u and sh(u) � sh(v), which is often
attributed to [2]. Thus,

(3.1) (v ≤L u or v ≤R u) ⇒ v ≤LR u ⇔ sh(u) � sh(v).

Building upon results in [13] and [25], Du [17, Sec. 2] gave an expression for the dual
canonical basis of C[x], relating it to the natural basis of C[x] by a transition matrix
whose entries are alternating sums [17, Sec. 1] of Kazhdan-Lusztig polynomials. (See
also [18].) Not surprisingly, the dual canonical basis has no entirely elementary de-
scription. In [53, Thm. 2.1] these basis elements were described in terms of immanants
and (single) Kazhdan-Lusztig polynomials,

Immv(x) =
def

∑

w≥v

(−1)ℓ(w)−ℓ(v)Pw0w,w0v(1)x1,w1
· · ·xn,wn

,

where w0 is the longest element of Sn, with one-line notation n · · · 1.

The inversion formula [29, Sec. 3] for the matrix of Kazhdan-Lusztig polynomials
implies the identity

(3.2)
∑

w

f(w)x1,w1
· · ·xn,wn

=
∑

w

f(C ′
w(1))Immw(x),

for immanants defined in terms of a linear function f : Sn → C. Other proper-
ties of Kazhdan-Lusztig polynomials imply that matrix transposition has the same
effect on Kazhdan-Lusztig immanants [50, Prop. 15] that it has on elements of the
bitableau basis. (Compare to Proposition 2.2.)

Proposition 3.1. For all v ∈ Sn we have Immv(x) = Immv−1(x⊤).

The dual canonical basis of C[x] may be expressed as a union of bases of AL,M ,
over all r-element multisets of [n], for r ≥ 0. In particular, the dual canonical
basis elements in each component AL,M are the nonzero polynomials in the set
{Immv(xL,M) | v ∈ Sr}, or more precisely

(3.3) {Immv(xL,M) | v Bruhat maximal in Wι(L)vWι(M) ⊂ Sr}.

(See [53] for more details.) In particular, each matrix minor det(xI,J) belongs to the
dual canonical basis.
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Nonnegativity properties [35], [37] of the dual canonical basis imply various in-
equalties in matrix minors, symmetric functions, and characters. (See, e.g., [7], [14],
[16], [31], [50], [51].) Furthermore, just as the structure constants describing multipli-
cation of Kazhdan-Lusztig basis elements in C[Sn] belong to N, so do those describing
multiplication

(3.4) Immv(xL,M)Immv′(xL′,M ′) =
∑

w

m̂v,v′

w Immw(xL⋒L′,M⋒M ′)

of dual canonical basis elements [38]. (We have supressed from our notation the
dependence of these coefficients upon the multisets L, L′, M, M ′.) More precisely,
in an appropriate quantization of the polynomial ring C[x], the resulting structure

constants belong to N[q
1

2 , q¯
1

2 ]. This nonnegativity result is a known special case of
the more general conjecture [36, Conj. 25.4.2]. (See also [36, Sec. 29.5].)

4. Zero sets of basis elements

While the bitableau and dual canonical bases have quite different definitions, the
two bases have rather similar vanishing properties. Let us consider several conditions
on a permutation w and a matrix A which imply that Immw(A) = 0 or Rw(A) = 0.
Since det(x) = Re(x) = Imme(x) is an element of both bases, it is natural to expect
that repetition of rows and/or columns in a matrix A causes some basis elements to
vanish on A. Indeed we have the following proposition [50, Cor. 17] and observation
concerning the equality of two rows or columns of a matrix.

Proposition 4.1. If rows i and i+1 of A are equal and siw > w, then Immw(A) = 0;
if columns i and i + 1 of A are equal and wsi > w, then Immw(A) = 0.

Observation 4.2. If rows i and i + 1 of A are equal and i, i + 1 appear in the same
column of Q(w), then Rw(A) = 0; if columns i and i + 1 of A are equal and i, i + 1
appear in the same column of P (w), then Rw(A) = 0.

We also have the following proposition [51, Prop. 2.2] and observation concerning
the equality of k rows of a matrix.

Proposition 4.3. If A has k equal rows or k equal columns and w has no decreasing
subsequence of length k, then Immw(A) = 0.

Observation 4.4. If A has k equal rows or k equal columns and w has no decreasing
subsequence of length k, then Rw(A) = 0.

Proof. Suppose w has no decreasing subsequence of length k. Then each of the
tableaux P (w) and Q(w) has at most k − 1 entries in its first row. If A has k equal
rows or k equal columns, then two of the corresponding k indices appear together
in a single column of P (w) and two appear together in a single column of Q(w). It
follows that Rw(A) = 0. �
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In order to state stronger results about vanishing properties of standard bitableaux
and dual canonical basis elements, we will use a partial order on Young tableaux
known as the chain order, and a family of preorders on Sn introduced by Geck.

The chain order on tableaux, in some sense induced by dominance on partitions,
was introduced by Melnikov [42] in her work on orbital varieties of sl(n, C), and also
by Van Leeuwen [58]. (See [43, Sec. 3.7] and [57].) We define the chain order (actually
dual to that defined in [42], [58]) as follows.

Given indices i, j satisfying 1 ≤ i ≤ j ≤ n, let [i, j] be the interval of integers
{i, i+1, . . . , j}. Define T[i,j] to be the tableau obtained by applying the jeu de taquin
algorithm (see, e.g., [21, Sec. 1.2], [55, Ch. 7]) to the subtableau of T consisting of all
boxes holding entries belonging to the interval [i, j], and by subtracting i − 1 from
the resulting tableau. For example, if

T =
1 3
2 4
5 6

,

then we have T[1,3] = 1 3
2 and T[2,4] = 1 2

3 . We will denote the tableau T[1,j] by T[j].
We define the chain order on tableaux by declaring T EC U if for all 1 ≤ i ≤ j ≤ n
we have

sh(T[i,j]) � sh(U[i,j]).

By considering the condition corresponding to i = 1 and j = n, we see that T EC U
implies sh(T ) � sh(U).

Melnikov demonstrated the following relationship between the Kazhdan-Lusztig
preorders and the chain order [43, Sec. 3.6, 4.7]. (See also [43, Sec. 1.9], [57, Thm. 3.7].)

Lemma 4.5. If w ≤R v then Q(v) EC Q(w); if w ≤L v then P (v) EC P (w).

The tableaux {Q(w)[i,j] |w ∈ Sn} have a natural interpretation in terms of the one-
line notation of permutations. Define w[i,j] to be the element of Sj−i+1 obtained by
rearranging the letters 1, . . . , j − i+1 so that their relative order matches that of the
letters of the word wi · · ·wj. Then we have the following result of Schützenberger.
(See [30, Thm. 5.1.4 C].)

Lemma 4.6. For any w ∈ Sn and indices 1 ≤ i ≤ j ≤ n, we have

sh(w[i,j]) = sh(Q(w)[i,j]).

Now define S[i,j] to be the parabolic subgroup of Sn generated by {si, . . . , sj−1}. In
terms of one-line notation, S[i,j] consists of all permutations w1 · · ·wn in Sn satisfying
wk = k for k = 1, . . . , i − 1, j + 1, . . . , n. The restriction of the left-right preorder to
S[i,j] (from Sn) is related to the shapes of the tableaux {Q(w)[i,j] |w ∈ Sn} as follows.
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Lemma 4.7. Permutations u, v in S[i,j] satisfy v ≤LR u (in Sn) if and only if they
satisfy sh(u[i,j]) � sh(v[i,j]).

Proof. Recall that we have

sh(u) = sh(P (u)) = sh(Q(u)), sh(v) = sh(P (v)) = sh(Q(v)).

Since u, v belong to S[i,j], each of the four tableaux above contains the numbers
1, . . . , i−1, j+1, . . . , n in its first column. Removing these numbers from the tableaux
and applying jeu de taquin, we obtain the shapes

sh(u[i,j]) = sh(P (u)[i,j]) = sh(Q(u)[i,j]), sh(v[i,j]) = sh(P (v)[i,j]) = sh(Q(u)[i,j]),

each of which differs from the corresponding original shape only by the subtraction
of 1 from each of the first i − 1 parts and last n − j parts. It is therefore easy to
see that we have sh(u[i,j]) � sh(v[i,j]) if and only if sh(u) � sh(v), which by (3.1) is
equivalent to v ≤LR u. �

Studying connections between representations of Coxeter groups, parabolic sub-
groups, and Hecke algebras defined in terms of unequal parameters, Geck [23] defined
families of parabolic analogs of the Kazhdan-Lusztig preorders on Sn. Each preorder
is parametrized by a subset J ⊂ {s1, . . . , sn−1} of generators of Sn. Define ≤L,J , the
relative left preorder parametrized by J to be the transitive closure of the relation ⋖L,J

defined by v ⋖L,J u if C ′
v(q) appears with nonzero coefficient in the Kazhdan-Lusztig

expansion of TwC ′
u(q) for some w ∈ WJ . Similarly, define a relative right preorder

≤R,J to be the transitive closure of the relation ⋖R,J defined by v ⋖R,J u if C ′
v(q)

appears with nonzero coefficient in the Kazhdan-Lusztig expansion of C ′
u(q)Tw for

some w ∈ WJ . Finally, define a relative left-right preorder ≤LR,J to be the transitive
closure of the relation ⋖LR,J defined by v ⋖LR,J u if v ⋖L,J u or v ⋖R,J u.

It is easy to see that the relative preorder inequalities v ≤L,J u, v ≤R,J u, v ≤LR,J u
imply the ordinary preorder inequalities v ≤L u, v ≤R u, v ≤LR u, respectively, and
that we have

(4.1) (v ≤L,J u or v ≤R,J u) ⇒ v ≤LR,J u ⇒ v ≤LR u ⇒ sh(u) � sh(v).

A more surprising implication concerns factorizations of the form v = v′v′′ where v′

belongs to WJ and v′′ is Bruhat-minimal in the coset WJv′′. (Given J and v, such a
factorization necessarily exists and is unique. See, e.g., [6, Prop. 2.4.4].) In particular,
Geck showed the following [23, Prop. 4.4].

Proposition 4.8. Fix generators J ⊂ {s1, . . . , sn−1} and let v, w ∈ Sn factor uniquely
as v = v′v′′, w = w′w′′, where v′, w′ belong to WJ and v′′, w′′ are Bruhat-minimal in
WJv′′, WJw′′, respectively. Then w ≤L,J v implies that w′ ≤LR,J v′.

This result allows us to construct certain Sn bimodules as follows.
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Lemma 4.9. Fix indices i ≤ j ≤ n, and let S[i,j] and Sn act on C[Sn] by left and
right multiplication, respectively. Then for each partition λ of j − i + 1, the space

W = W (i, j, λ) =
def

span{C ′
u(1) | sh(u[i,j]) � λ} ⊂ C[Sn]

is a sub-bimodule of C[Sn].

Proof. Fix λ ⊢ j − i + 1 and define W as above. To see that S[i,j]W ⊂ W , choose
z ∈ S[i,j] and v ∈ Sn satisfying sh(v[i,j]) � λ. Expand zC ′

v(1) with respect to the
Kazhdan-Lusztig basis of C[Sn] and let w ∈ Sn be a permutation for which C ′

w(1)
appears with nonzero coefficient in this expansion. Letting J be the set of generators
{si, . . . , sj−1}, we have by definition that w ≤L,J v.

Now factor v, w uniquely as v = v′v′′, w = w′w′′, with v′, w′ ∈ S[i,j] and v′′, w′′

Bruhat-minimal in S[i,j]v
′′ and S[i,j]w

′′. By Proposition 4.8 and (4.1), the condition
w ≤L,J v implies that w′ ≤LR,J v′ and therefore that sh(v′) � sh(w′). By Lemma 4.7,
the shapes of the permutations v′

[i,j] and w′
[i,j] are related by sh(v′

[i,j]) � sh(w′
[i,j]).

Furthermore, by the minimality of v′′ and w′′ we now have that

sh(w[i,j]) = sh(w′
[i,j]) � sh(v′

[i,j]) = sh(v[i,j]) � λ.

Thus, C ′
w(1) belongs to W .

To see that WSn ⊂ W , choose v as before, let z ∈ Sn be arbitrary, and let w
be a permutation for which C ′

w(1) appears with nonzero coefficient in the Kazhdan-
Lusztig expansion of C ′

v(1)z. By the definition of the right preorder on Sn we thus
have w ≤R v. By Lemma 4.5, this implies that Q(v) EC Q(w). Now by Lemma 4.6
and the definition of the chain order, we have that

sh(w[i,j]) = sh(Q(w)[i,j]) � sh(Q(v)[i,j]) = sh(v[i,j]) � λ,

and again C ′
w(1) belongs to W . �

The bimodules {W (i, j, λ) | λ ⊢ j − i + 1} of C[Sn] expose a relationship between
column (or row) repetition in a matrix and the vanishing of dual canonical basis
elements. Given an n × n matrix A and a subinterval [i, j] of [n], we may consider
rows i, . . . , j of A to be a multiset of vectors having n components. Define the partition
µ[i,j](A) of j − i + 1 to be the decreasing sequence of multiplicities in this multiset.
Similarly, we may consider columns i, . . . , j of A to be a multiset and will define the
partition ν[i,j](A) to be the decreasing sequence of multiplicities in this multiset. For



BITABLEAUX AND ZERO SETS OF DUAL CANONICAL BASIS ELEMENTS 13

example, given the matrix

A =















1 1 0 1 1 1
2 1 1 2 1 1
1 1 0 1 1 1
2 1 3 2 1 1
1 1 0 1 1 1
1 1 0 1 1 1















and the intervals [6], [5], [2, 6], [3, 5], we have

µ[6](A) = 411, ν[6](A) = 321,

µ[5](A) = 311, ν[5](A) = 221,

µ[2,6](A) = 311, ν[2,6](A) = 311,

µ[3,5](A) = 21, ν[3,5](A) = 111.

We may now strengthen Proposition 4.3 by stating specific patterns of repetition
among rows and columns of a matrix which cause a dual canonical basis element to
vanish on that matrix.

Theorem 4.10. Fix a permutation w ∈ Sn and indices 1 ≤ i ≤ j ≤ n. Then for
each n × n matrix A satisfying sh(w[i,j]) � µ[i,j](A) or sh(w−1

[i,j]) � ν[i,j](A) we have

Immw(A) = 0.

Proof. Let S[i,j] permute rows of A and let H ⊂ S[i,j] be the stabilizer of A. Then H
is conjugate in S[i,j] to a Young subgroup H ′ ⊂ S[i,j] of Sn of the form

H ′ ∼= Si−1
1 × Sµ × Sn−j

1 ,

where µ = µ[i,j](A) is a partition of j − i + 1. Now consider the C[Sn] element

t =
∑

v∈Sn

a1,v1
· · ·an,vn

v,

which factors as

t =
(

∑

v∈H

v
)

g = y
(

∑

v∈H′

v
)

y−1g

for some y ∈ S[i,j] and g ∈ C[Sn]. Letting u be the longest element of H ′, we may
rewrite this factorization as yC ′

u(1)y−1g. Defining the subspace W = W (i, j, µ) of
C[Sn] as in Lemma 4.9, we see that t belongs to W .

On the other hand, we may use the inversion formula (3.2) to expand t in terms of
the Kazhdan-Lusztig basis as

t =
∑

v∈Sn

Immv(A)C ′
v(1).
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Since t belongs to W , we must have Immv(A) = 0 for each permutation v not satis-
fying sh(v[i,j]) � µ = µ[i,j](A).

Observing that ν[i,j](A) = µ[i,j](A
⊤) and applying the above argument to w−1 and

A⊤, we see that the condition sh(w−1
[i,j]) � ν[i,j](A) implies that Immw−1(A⊤) = 0. By

Proposition 3.1, this gives the desired result. �

Theorem 4.10 can be quite easy to apply in the case that i = 1 and j = n. For
example, consider the permutation and matrix

(4.2) w = 1324, A =









1 2 3 4
8 7 6 5
1 2 3 4
8 7 6 5









.

We have Imm1324(A) = 0, since

sh(1324) = 211 � µ[4](A) = 22.

Analogous to Theorem 4.10 is the following result for bitableaux.

Proposition 4.11. Fix a permutation w ∈ Sn and an index j ≤ n. Then for each
n×n matrix A satisfying sh(w[j]) � µ[j](A) or sh(w−1

[j] ) � ν[j](A), we have Rw(A) = 0.

Proof. Define λ = sh(w[j]), µ = µ[j](A) and assume that λ 6� µ. Create a tableau
T of shape µ by placing the indices 1, . . . , j so that each row i contains the indices
of µi equal rows of A. By Lemma 4.6, Q(w)[j] is a tableau of shape λ containing
1, . . . , j. We may therefore apply the well-known Dominance Lemma (see, e.g., [52,
Lem. 2.2.4]) to the tableaux T and Q(w)[j] to deduce that there exists a pair (k, ℓ) of
indices which appear together in some row of T and also in some column of Q(w)[j].
Since Q(w)[j] is a subtableau of Q(w), the indices also appear together in some column
of Q(w). Since this column of Q(w) corresponds to a minor which is a factor of Rw(x)
and since rows k and ℓ of A are equal, we have Rw(A) = 0.

As in the proof of the previous proposition, we use the fact that ν[j](A) = µ[j](A
⊤)

and apply the above argument to w−1 and A⊤. We then see that the condition
sh(w−1

[j] ) � ν[j](A) implies that Rw−1(A⊤) = 0. By Proposition 2.2, this gives the

desired result. �

Since Proposition 4.11 is completely analogous to the special case i = 1 of The-
orem 4.10, we may apply it to our example in (4.2) and deduce that R1324(A) = 0.
On the other hand, we remark that Proposition 4.11 lacks inequalities of the forms
sh(w[i,j]) � µ[i,j](A) and sh(w−1

[i,j]) � ν[i,j](A) for general i, which appear in Theo-

rem 4.10. Indeed, the corresponding generalization of Proposition 4.11 is false. For



BITABLEAUX AND ZERO SETS OF DUAL CANONICAL BASIS ELEMENTS 15

example, consider the permutation and matrix

w = 213, A =





1 0 0
0 1 1
0 1 1



 .

We have R213(A) = 1, in spite of the conditions

sh(213[2,3]) = sh(213−1
[2,3]) = 11 � µ[2,3](A) = ν[2,3](A) = 2

which imply that Imm213(A) = 0.

One more easy fact about the zero set of a standard bitableau is the following.

Proposition 4.12. If rank(A) < k and w has an increasing subsequence of length k,
then Rw(A) = 0.

Proof. If w has an increasing subsequence of length k, then P (w) has at least k rows.
It follows that Rw(x) has a factor which is a minor of size at least k×k. On the other
hand, if rank(A) < k, then every k × k (or larger) minor of A vanishes. �

In Corollary 6.3 we will state an analog of Proposition 4.12 for dual canonical basis
elements.

5. Triangularity of transition matrices

Our results in Section 4 show that standard bitableaux and dual canonical basis
elements have similar vanishing properties. It is therefore natural to hope that suit-
able orderings of the two bases leads to a transition matrix having a particularly nice
form. This hope seems even more natural if one considers the results in [22], [32], [33],
[40], which relate bases constructed from Kazhdan-Lusztig polynomials to others con-
structed from Young tableaux. Indeed we will show in Theorem 5.8 - Corollary 5.12
that the transition matrix relating the dual canonical basis and bitableau basis is an
infinite direct sum of unitriangular transition matrices, each of which corresponds to
a component AM,N of C[x].

Let us begin by considering the immanant space and coefficients {du,v | u, v ∈ Sn}
defined by

(5.1) Rv(x) =
∑

u∈Sn

du,vImmu(x).

Recall that each minor of x belongs to the dual canonical basis and therefore that
each bitableau is a product of dual canonical basis elements. By (3.4), the coefficients
in (5.1) are thus nonnegative integers. Furthermore, we have the following.

Lemma 5.1. The coefficients in Equation (5.1) satisfy du,v = du−1,v−1.
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Proof. Using (5.1) to expand Rv−1(x⊤) in terms of the Kazhdan-Lusztig immanants,
and applying Proposition 3.1, we have

Rv−1(x⊤) =
∑

u−1∈Sn

du−1,v−1Immu−1(x⊤) =
∑

u−1∈Sn

du−1,v−1Immu(x).

By Proposition 2.2 this expression is also equal to Rv(x). We may therefore compare
coefficients above to those in (5.1) to obtain the desired equality. �

To prove more facts about the coefficients in (5.1), we will use the vanishing prop-
erties stated in Section 4 and Greene’s results on decreasing subsequences in permuta-
tions. We will also consider a partial order on standard tableaux which we call iterated
dominance of tableaux (and which is sometimes called row dominance of tableaux in
the literature, e.g., in [9]). Given two standard tableaux T , U having n boxes, we
define T EI U if for j = 1, . . . , n we have

sh(T[j]) � sh(U[j]),

where T[j] and U[j] are the subtableaux of T and U consisting of all boxes holding en-
tries less than or equal to j. By considering the condition corresponding to j = n, we
see that T EI U implies sh(T ) � sh(U). By considering the conditions corresponding
to i = 1 in the definition of the chain order, we also see that T EC U implies T EI U .
Thus we have

(5.2) T EC U ⇒ T EI U ⇒ sh(T ) � sh(U).

Figure 5.2 shows the iterated dominance order on standard tableaux having four
boxes. Ehresmann [19] showed the iterated dominance order on standard tableaux of
a fixed shape to be equivalent to the Bruhat order on the column reading words of
those tableaux. (See also [39, Thm. 3.8].)

Among all standard tableaux of a fixed shape λ = (λ1, . . . , λℓ), there is a unique
maximal tableau and a unique minimal tableau with respect to iterated dominance.
In particular, define U(λ) to be the unique standard tableau of shape λ in which all
entries in row i are less than all entries in row i + 1, for i = 1, . . . , ℓ− 1. For example

(5.3) U(421) =
1 2 3 4
5 6 7
8

, U(3221) =

1 2 3
4 5
6 7
8

.

Observation 5.2. Fix a partition λ ⊢ n. Each standard tableau T of shape λ satisfies
U(λ⊤)⊤ EI T EI U(λ). Furthermore we have U(λ) EI U(µ) if and only if λ � µ.

The expansion of nonstandard bitableaux in the bitableau basis is sometimes de-
scribed by defining iterated dominance of bitableaux to be the componentwise iterated
dominance of tableaux. That is, we define (T :U)(x) EI (T ′:U ′)(x) if T EI T ′ and



BITABLEAUX AND ZERO SETS OF DUAL CANONICAL BASIS ELEMENTS 17

1234

123
4

124
3

13
24

134
2

12
34

12
3
4

13
2
4

14
2
3

1
2
3
4

Figure 5.1. The iterated dominance order on standard Young
tableaux having four boxes

U EI U ′. In particular, Clausen used iterated dominance of bitableaux to strengthen
results in [10, Thm. 2.1], [11, Thm. 5], [15, Thm. 3] as follows [8, Thm. 4.5].

Theorem 5.3. For any column-strict injective bitableau (T :U)(x), we have

(5.4) (T :U)(x) ∈ (T ′:U ′)(x) + spanZ{(P :Q)(x) | (P :Q)(x) ⊳I (T ′:U ′)(x)},

where T ′, U ′ are standard tableaux obtained from T , U by sorting entries within rows.

Combining the Robinson-Schensted column correspondence with iterated domi-
nance of bitableaux allows us to define a related poset on Sn by declaring u ≤I v if
(P (u):Q(u))(x) EI (P (v):Q(v))(x). We will refer to this poset as iterated dominance
of permutations. It is clear that we have u ≤I v if and only if u−1 ≤I v−1. By
Lemma 4.5 and Equation (5.2), we have

(w ≤R v and w ≤L v) ⇒ (P (v) EC P (w) and Q(v) EC Q(w)) ⇒ v ≤I w.

Figure 5.2 shows the iterated dominance order on S4.
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1324

3412

1432
2314

2413

2431

3124

3142

4132

1243

1234

14231342

2341 4123

43123421

2134

2143

4231

3241 4213

3214

4321

Figure 5.2. The iterated dominance order on S4

By Observation 5.2, it is clear that among all permutations of shape λ = (λ1, . . . , λℓ),
there is a unique maximal permutation and a unique minimal permutation in iterated
dominance. Specifically, these are the permutations w(λ) and u(λ) satisfying

(5.5) P (w(λ)) = Q(w(λ)) = U(λ), P (u(λ)) = Q(u(λ)) = U(λ⊤)⊤.

We remark that one may compute w(λ) by reading the entries of U(λ) from right to
left in rows 1, . . . , ℓ. For example if λ = 431, then we may use the tableau U(431) in
(5.3) to obtain w(λ) = 43217658.
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Observation 5.4. Fix a partition λ ⊢ n and define permutations u(λ) and w(λ) as
above. Then each permutation v of shape λ satisfies

u(λ) ≤I v ≤I w(λ).

Furthermore, each of the conditions u(λ) ≤I u(µ) and w(λ) ≤I w(µ) is equivalent to
λ � µ.

Proof. Apply Observation 5.2 to Equation (5.5). �

The iterated dominance order on Sn is closely related to decreasing subsequences
within the one-line notation of a permutation. Fix a permutation w = w1 · · ·wn in Sn.
Following Greene [24], call a subsequence σ = wi1wi2 · · ·wiq of w1 · · ·wn a p-decreasing
subsequence of w if, as a set, it can be partitioned as

σ = σ1 ⊎ · · · ⊎ σp

where each block σi corresponds to a decreasing subsequence of w. Greene related
p-decreasing subsequences and partitions as follows [24, Thm. 3.1].

Theorem 5.5. The length of the longest p-decreasing subsequence of w is equal to
the sum of the lengths of the first p rows of sh(w).

Let ηp,r(w) be the length of the longest p-decreasing subsequence of w1 · · ·wr. Then
we have

(5.6) ηp,r(w) = sh(w[r])1 + · · ·+ sh(w[r])p.

Since sh(w[r]) = sh(Q(w)[r]) by Lemma 4.6, it follows that ηp,r(w) also is equal to the
number of entries less than or equal to r in the first p rows of Q(w). Thus we may
restate the definition of iterated dominance in Sn as follows.

Proposition 5.6. Permutations u, v ∈ Sn satisfy u ≤I v if and only if we have
ηp,r(u) ≤ ηp,r(v) and ηp,r(u

−1) ≤ ηp,r(v
−1) for all indices p ≤ r ≤ n.

Proof. We have Q(u) EI Q(v) if and only if sh(Q(u)[r]) � sh(Q(v)[r]) for r = 1, . . . , n.
These conditions may be restated as

sh(Q(u)[r])1 + · · ·+ sh(Q(u)[r])p ≤ sh(Q(v)[r])1 + · · · + sh(Q(v)[r])p

for all p ≤ r ≤ n, or equivalently as ηp,r(u) ≤ ηp,r(v) for all p ≤ r ≤ n. Similarly, we
have P (u) EI P (v) if and only if ηp,r(u

−1) ≤ ηp,r(v
−1) for all p ≤ r ≤ n. �

Greene’s result on decreasing subsequences is also related to the vanishing prop-
erties described in Theorem 4.10 and Proposition 4.11. In particular, it aids in the
construction of matrices on which desired basis elements vanish. Such matrices can
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then be used to obtain information about coefficients appearing in expressions of the
forms

(5.7) Immf(x) =
∑

u

cuRu(x) =
∑

u

c′uImmu(x).

(See, e.g., [49, Cor. 3.5-3.6], [51, Prop. 2.3], [53, Thm. 4.4-4.5].)

We will use Theorem 5.5 to construct matrices as follows. Fix w = w1 · · ·wn in Sn

and suppose that for some indices p ≤ q ≤ r, the longest p-decreasing subsequence
σ = σ1 ⊎ · · · ⊎ σp of w1 · · ·wr has length q. Let I1, . . . , Ip be the (disjoint) sets of
indices corresponding to the positions in w of the p decreasing subsequences, and
let J1, . . . , Jp be the (disjoint) sets of components of these decreasing subsequences.
Let M be the permutation matrix of w (mi,j = 1 if wi = j) and construct a matrix
B = B(w, σ1, . . . , σp, I1, . . . , Ip) by replacing the submatrices MI1,J1

, . . . , MIp,Jp
with

matrices of all ones.

For example, consider the permutation w = 7135246 and numbers p = 2, r = 6.
A 2-decreasing subsequence of w1 · · ·w6 = 713524 has length at most q = 5, and one
such subsequence consists of the five letters 73524 in positions 13456. We therefore
define σ1 = 732, σ2 = 54, I1 = 135, I2 = 46, J1 = 237, J2 = 45. Letting M be
the permutation matrix of w, we construct the matrix B = B(w, σ1, σ2, I1, I2) by
replacing the (135, 237) and (46, 45) submatrices of M with matrices of ones:

M =



















0 0 0 0 0 0 1

1 0 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 1 0 0
0 1 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 1 0



















, B =



















0 1 1 0 0 0 1

1 0 0 0 0 0 0
0 1 1 0 0 0 1

0 0 0 1 1 0 0
0 1 1 0 0 0 1

0 0 0 1 1 0 0
0 0 0 0 0 1 0



















.

While the number q defined above does not play an important role in the definition
of the matrix B, it does play an important role in the description of certain basis
elements which vanish on B.

Lemma 5.7. Let w, p, q, r, σ1, . . . , σp, I1, . . . , Ip satisfy the conditions stated after
(5.7) and define B = B(w, σ1, . . . , σp, I1, . . . , Ip). Then we have

(1) If ηp,r(u) < q then Ru(B) = Immu(B) = 0.
(2) Immw(B) = 1.
(3) If u 6≤ w then Immu(B) = 0.

Proof. (1). Suppose that ηp,r(u) < q and let λ = sh(u[r]), µ = µ[r](B). By (5.6) we
have λ1 + · · ·+λp < q, and by the construction of B we have µ1 + · · ·+µp = q. Thus
λ � µ, and by Theorem 4.10 and Proposition 4.11, we have Immu(B) = Ru(B) = 0.
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(2) - (3). Recall the definition

Immu(B) =
∑

v≥u

(−1)ℓ(v)−ℓ(u)Qu,v(1)b1,v1
· · · bn,vn

.

Our use of the decreasing sequences σ1, . . . , σp in the construction of B ensures that
we have b1,v1

· · · bn,vn
= 0 for each permutation v 6≤ w. Thus if u 6≤ w, then each

permutation v appearing in the above sum also satisfies v � w and thus each term
in the sum is zero. On the other hand, if u = w, then exactly one term in the sum is
nonzero:

Immw(B) = (−1)0Qw,w(1)b1,w1
· · · bn,wn

= b1,w1
· · · bn,wn

= 1.

�

Now let us define the matrix D = (du,v) of coefficients from (5.1) by ordering the
dual canonical and bitableau bases of A[n],[n] according to an arbitrary linear extension
of the iterated dominance order on Sn. Using Lemma 5.7, we can now show that D
is triangular.

Theorem 5.8. We have du,v = 0 whenever u 6≤I v.

Proof. First we claim that du,v = 0 whenever Q(u) 6≤I Q(v). Assume the contrary.
Then by Proposition 5.6 there exist permutations u, v and numbers p, r satisfying
ηp,r(u) > ηp,r(v) and du,v > 0. Let q be the maximum index for which the set
{u | ηp,r(u) = q, du,v > 0} is nonempty, and let w be a Bruhat-minimal element of this
set. Thus dw,v > 0 and Q(w) 6≤I Q(v). Now write

(5.8) Rv(x) =
∑

u
ηp,r(u)<q

du,vImmu(x) + dw,vImmw(x) +
∑

u 6≤w
ηp,r(u)=q

du,vImmu(x).

Since ηp,r(w) = q, we can choose a p-decreasing subsequence σ = σ1 ⊎ · · · ⊎ σp

of w1 · · ·wr which has length q. Defining a matrix B = B(w, σ1, . . . , σp, I1, . . . , Ip)
as before Lemma 5.7 and substituting x = B into Equation (5.8), we may apply
Lemma 5.7 to obtain the contradiction

0 = 0 + dw,v · 1 + 0.

Now we claim that du,v = 0 whenever P (u) 6≤I P (v). Suppose that u satisfies
P (u) 6≤I P (v) and observe that P (u) = Q(u−1) and P (v) = Q(v−1). Thus Lemma 5.1
and the above argument imply that du,v = du−1,v−1 = 0. Since u 6≤I v if and only if
Q(u) 6≤I Q(v) or P (u) 6≤I P (v), it follows that du,v = 0 for all u 6≤I v. �

Thus Equation (5.1) becomes

(5.9) Rv(x) =
∑

u≤Iv

du,vImmu(x).
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Furthermore, the diagonal entries of D are equal to one.

Proposition 5.9. We have du,u = 1 for all u ∈ Sn.

Proof. Each Kazhdan-Lusztig immanant Immv(x) belongs to Z[x]. Thus by Theo-
rem 2.1 there exist integers {eu,v | u, v ∈ Sn} such that

Immv(x) =
∑

u∈Sn

eu,vRu(x)

for all v. The matrix E = (eu,v) of these coefficients is clearly inverse to D = (du,v),
and both matrices are triangular if we order rows and columns by any linear extension
of iterated dominance of Sn. Since det(D) and det(E) are both integers, they are both
±1.

Recalling that products of minors expand nonnegatively (3.4) in the dual canonical
basis, we see that D has nonnegative integer entries, and therefore that all diagonal
entries du,u are equal to 1, as are all diagonal entries eu,u = du,u of E. �

It would be interesting to characterize the pairs (u, v) for which du,v is strictly
positive. The following partial result addresses entries in certain columns of D.

Proposition 5.10. Fix a partition λ ⊢ n and define w = w(λ) as in Equation (5.5).
Then we have dv,w > 0 for all v ≤I w.

Proof. Choose a permutation v ≤I w. By [51, Lem. 4.1, Thm. 4.2], the immanant
Rw(x)−Rv(x) is equal to a nonnegative linear combination of immanants of the form

(5.10) (T :U)(x) · (det(xI,J) det(xI′,J ′) − det(xK,L) det(xK ′,L′)),

where the subsets I, I ′, . . . , L, L′ of [n] satisfy

I ∩ I ′ = J ∩ J ′ = K ∩ K ′ = L ∩ L′ = ∅,

I ∪ I ′ = K ∪ K ′, J ∪ J ′ = L ∪ L′,

and the tableaux T , U have entries in [n] r (I ∪ I ′) and [n] r (J ∪ J ′), respectively.
By [49, Cor. 4.6], each of the above differences of products of minors is equal to
a nonnegative linear combination of Kazhdan-Lusztig immanants of the submatrix
xI∪I′,J∪J ′. Thus each term (5.10) is a product of dual canonical basis elements and
therefore by (3.4) is equal to a nonnegative linear combination of Kazhdan-Lusztig
immanants of x, as is Rw(x) − Rv(x).

On the other hand, the coefficient of Immv(x) in Rw(x) − Rv(x) is dv,w − 1. Thus
we have dv,w > 0. �

Evaluating Equation 5.9 at matrices of the form xL,M and applying Theorem 5.8,
Proposition 5.9, and Equation (3.3), we see that for all pairs (L, M) of r-element
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multisets of [n], the bitableau and dual canonical bases of AL,M are related by uni-
triangular transition matrices.

Corollary 5.11. Fix a pair (L, M) of r-element multisets of [n] and define S ⊂ Sr to
be the set of all Bruhat-maximal elements of double cosets of the form Wι(L)wWι(M).
Then for each permutation v ∈ S we have

Rv(xL,M) = Immv(xL,M) +
∑

u∈S
u<Iv

dL,M
u,v Immu(xL,M),

where all coefficients {dL,M
u,v | u, v ∈ S} are nonnegative integers.

Since {Immv(xL,M) | v Bruhat maximal in Wι(L)vWι(M)} is a basis of AL,M , Corol-
lary 5.11 implies that {Rv(xL,M) | v Bruhat maximal in Wι(L)vWι(M)} is a basis as
well. In addition, we may use permutations of the form w(λ) defined in Equation (5.5)
to state the following sufficient conditions for positivity of the above coefficients.

Corollary 5.12. Fix a pair (L, M) of r-element multisets of [n] and define S as in
Corollary 5.11. If an element v ∈ S has the form v = w(λ) for some partition λ ⊢ r,
then for all u ∈ S satisfying u ≤I v we have dL,M

u,v > 0.

Proof. Specialize Equation (5.9) at xL,M and apply Proposition 5.10. �

6. Filtrations of the immanant space

It would be interesting to partition the bitableau basis or the dual canonical basis
into blocks according to various properties of the basis elements and to study the
subspaces spanned by each block. On the other hand, grouping basis elements by a
natural property often leads to nested subsets. For instance, while Maschke’s Theorem
guarantees that the Sn-module A[n],[n] defined by

(6.1) si ◦ Immf(x) =
def

Immf (six)

may be decomposed as a direct sum of irreducible Sn-modules, neither the dual canon-
ical basis nor the bitableau basis can be partitioned into blocks so that the subspace
spanned by each block is an Sn-submodule of A[n],[n]. Nevertheless, it is possible to
use either of these bases to form a filtration of nested Sn-submodules of A[n],[n], as
Clausen did in [9, Thm. 8.1 (a)]. Another particularly simple filtration, studied in
[51], is coarser than that of Clausen. Let Sn,k denote the subset of permutations
w ∈ Sn for which the one-line notation w1 · · ·wn contains no decreasing subsequence
of length k + 1. Equivalently, Sn,k consists of all permutations in Sn whose shapes
have k or fewer columns. Then we have the following [51, Thm. 2.4].

Theorem 6.1. We have

span{Immw(x) |w ∈ Sn,k} = span{Rw(x) |w ∈ Sn,k}.
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These subspaces, each of which is an Sn-module (see Corollary 6.5), form a filtration

(6.2) 0 ⊂ span{Immw(x) |w ∈ Sn,1} ⊂ span{Immw(x) |w ∈ Sn,2} ⊂ · · ·

⊂ span{Immw(x) |w ∈ Sn,n} = A[n],[n]

of A[n],[n]. Note that span{Immw(x) |w ∈ Sn,1} is just the one-dimensional space

span{det(x)}. The next space has dimension 1
n+1

(

2n
n

)

and was studied in [49], where
the elements {Immw(x) |w ∈ Sn,2} were related to the Temperley-Lieb algebra. For
progress on the description of basis elements of span{Immw(x) |w ∈ Sn,3}, see [46].

Strengthening the result in Theorem 6.1, we will consider other families of subspaces
which more finely decompose the immanant space A[n],[n]. We will characterize each
subspace as the span of certain bitableaux, the span of certain dual canonical ba-
sis elements, and the set of all immanants vanishing on certain matrices. Because
subspaces in each family are partially ordered by inclusion, we will call the families
partial filtrations.

One partial filtration of A[n],[n] consists of the subspaces {Uv | v ∈ Sn}, defined by

(6.3) Uv = Uv(x) = span{Ru(x) | u ≤I v}.

It is clear that we have Uv ⊂ Uw if and only if v ≤I w. Thus the partial ordering of
these spaces is isomorphic to the iterated dominance order on Sn. While it is not in
general true that Uv is an Sn-submodule of A[n],[n], the elements of this subspace have
certain common properties which make the definition of the subspace quite natural.
In particular, each subspace Uv may be characterized in terms of Kazhdan-Lusztig
immanants or vanishing properties as follows.

Theorem 6.2. Fix a permutatition v ∈ Sn and a function f : Sn → C. Then the
following are equivalent.

(1) Immf (x) belongs to Uv = span{Ru(x) | u ≤I v}.
(2) Immf (x) belongs to span{Immu(x) | u ≤I v}.
(3) Immf (A) = 0 for all matrices A in the set

V =
def

{A ∈ Matn×n(C) |µ[i](A) � sh(v[i]) or ν[i](A) � sh(v−1
[i] ) for some i}.

Proof. (1 ⇔ 2) Follows immediately from Theorem 5.8 and Proposition 5.9.

(1 ⇒ 3) Follows immediately from Theorem 4.10 and Proposition 4.11.

(3 ⇒ 1) Assume that Immf(A) = 0 for all matrices A ∈ V and that Immf (x) does
not belong to Uv. Writing

(6.4) Immf(x) =
∑

u∈Sn

cuImmu(x),

we therefore have that cu > 0 for some u 6≤I v, and there exist numbers p, r such
that ηp,r(u) > ηp,r(v) or ηp,r(u

−1) > ηp,r(v
−1).
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Suppose first that we have ηp,r(u) > ηp,r(v). Following the proof of Theorem 5.8,
let q > ηp,r(v) be the maximum index for which the set {u | cu > 0, ηp,r(u) = q} is
nonempty, let w be a Bruhat-minimal element of this set, and write

(6.5) Immf(x) =
∑

u
ηp,r(u)<q

cuImmu(x) + cwImmw(x) +
∑

u 6≤w
ηp,r(u)=q

cuImmu(x).

Now define a matrix B = B(w, σ1, . . . , σp, I1, . . . , Ip) as before Lemma 5.7. Since
the first p parts of µ[r](B) sum to q, which is greater than the sum ηp,r(v) of the
first p parts of sh(v[r]), we have µ[r](B) � sh(v[r]). Thus, B belongs to V and we
have Immf(B) = 0. Substituting x = B in Equation (6.5), we therefore may apply
Lemma 5.7 to obtain cw = 0.

Now suppose that we have ηp,r(u
−1) > ηp,r(v

−1). Let q > ηp,r(v
−1) be the maximum

index for which the set {u | cu > 0, ηp,r(u
−1) = q} is nonempty, let w be a Bruhat-

minimal element of this set, and use Proposition 3.1 to write the variation

(6.6) Immf (x) =
∑

u
ηp,r(u−1)<q

cuImmu−1(x⊤) + cwImmw−1(x⊤) +
∑

u
u−1 6≤w−1

ηp,r(u−1)=q

cuImmu−1(x⊤)

of (6.5). Now define a matrix B = B(w−1, σ1, . . . , σp, I1, . . . , Ip) as before Lemma 5.7.
Since the first p parts of µ[r](B) sum to q, which is greater than the sum ηp,r(v

−1) of
the first p parts of sh(v−1

[r] ), we have ν[r](B
⊤) � sh(v−1

[r] ). Thus, B⊤ belongs to V and

we have Immf (B
⊤) = 0. Substituting x = B⊤ in Equation (6.6), we may again apply

Lemma 5.7 to obtain the contradiction cw = 0. �

As a consequence, we see that dual canonical basis elements vanish on matrices of
sufficiently low rank.

Corollary 6.3. If rank(A) < k and w has an increasing subsequence of length k,
then Immw(A) = 0.

Proof. Suppose w has an increasing subsequence of length k. Then sh(w) has at
least k rows. By Theorem 6.2, Immw(x) is equal to a linear combination of standard
bitableaux Rv(x) satisfying v ≤I w and therefore sh(v) � sh(w). For each of these
basis elements, sh(v) has at least k rows, and Proposition 4.12 therefore implies that
we have Rv(A) = 0. �

For certain permutations v, the result of Theorem 6.2 can be simplified consider-
ably. In particular, for each partition λ ⊢ n, let w(λ) be the permutation defined in
Equation (5.5), and denote the space Uw(λ) by Uλ. These subspaces {Uλ | λ ⊢ n} thus
form a partial filtration of A[n],[n] which is coarser than that defined in (6.3). It is
clear that we have Uλ ⊂ Uµ if and only if λ � µ. Thus the partial ordering of these



26 BRENDON RHOADES AND MARK SKANDERA

spaces is isomorphic to the dominance order. By Theorem 5.3, it is clear that Uλ is
equal to the span of all injective bitableaux of shape dominated by or equal to λ. (See
also [9, Sec. 3], [10, Sec. 2], and references there.) The following result gives several
alternative characterizations of this space.

Theorem 6.4. Fix a partition λ ⊢ n and a function f : Sn → C. Then the following
are equivalent.

(1) Immf (x) belongs to Uλ.
(2) Immf (x) belongs to span{Rv(x) | sh(v) � λ}.
(3) Immf (x) belongs to span{Immv(x) | sh(v) � λ}.
(4) Immf (A) = 0 for all n × n matrices A satisfying µ[n](A) � λ or ν[n](A) � λ.

Proof. (1 ⇔ 2 ⇔ 3) Follows immediately from Observation 5.4 and Theorem 6.2.

(1 ⇒ 4) Follows immediately from Theorem 4.10 and Proposition 4.11.

(4 ⇒ 1) Assume that Immf(A) = 0 for all n × n matrices A satisfying µ[n](A) � λ
or ν[n](A) � λ and suppose that Immf(x) does not belong to Uλ. By Theorem 6.2,
there exists a matrix A and an index i such that Immf(A) 6= 0 and we have

µ[i](A) � sh(w[i]) or ν[i](A) � sh(w[i]) = sh(w−1
[i] ).

Suppose that µ[i](A) � sh(w[i]), and let j be the least index for which

k =
def

µ[i](A)1 + · · ·+ µ[i](A)j

is greater than sh(w[i])1 + · · ·+sh(w[i])j . Clearly we have µ[n](A)1 + · · ·+µ[n](A)j ≥ k.
On the other hand, all of the numbers k, . . . , n appear after row j in the tableau
U(λ). This implies that µ[n](A) � sh(w) = λ and therefore that Immf(A) = 0, a
contradiction.

We must therefore have ν[i](A) � sh(w[i]). Now redefine j and k so that j is the
least index for which

k =
def

ν[i](A)1 + · · ·+ ν[i](A)j > sh(w[i])1 + · · ·+ sh(w[i])j.

As before, we clearly have ν[n](A)1 + · · · + ν[n](A)j ≥ k, while the numbers k, . . . , n
appear after row j in the tableau U(λ). This implies that ν[n](A) � sh(w) = λ, and
again we have the contradiction Immf(A) = 0. �

Since the action (6.1) of Sn maps an injective bitableau to another injective bitableau
of the same shape, we may use Theorem 5.3 to see that each space Uλ is an Sn-module.
Furthermore, we see from Corollary 6.3 that for any partition λ having k parts, all
elements of Uλ vanish on matrices of rank less than or equal to k − 1. The converse
is not true. (See Proposition 6.6 and [44, p. 83].)
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Now we return to the filtration (6.2). The set Sn,k induces a subposet of the
iterated dominance order on Sn, and this subposet has a unique maximal element
w. Letting λ(n, k) be the unique partition of n having ⌊n

k
⌋ parts equal to k and at

most one part equal to the residue of n modulo k, we have that w is equal to the
permutation w(λ(n, k)) defined in Equation (5.5). Thus the filtration (6.2) is coarser
still than that defined immediately before Theorem 6.4, and does consist entirely of
Sn-modules. The following result follows easily from Theorems 6.2-6.4 and provides
a converse to [51, Prop. 2.2].

Corollary 6.5. Fix an index k ≤ n and a function f : Sn → C. Then the following
are equivalent.

(1) Immf (x) belongs to span{Rv(x) | v ∈ Sn,k} = span{Immv(x) | v ∈ Sn,k}.
(2) Immf (x) belongs to Uw(λ(n,k)) = Uλ(n,k).
(3) Immf (A) = 0 for all n× n matrices A having k + 1 equal rows or k + 1 equal

columns.

Again using Corollary 6.3, we have that all elements of Uλ(n,k) vanish on matrices
of rank less than ⌈n

k
⌉.

The characterizations of subspaces of immanants in Theorem 6.2-Corollary 6.5 can
aid in relating elements of A[n],[n] to the bitableau and dual canonical bases, and
in describing their zero sets. As an application, consider the irreducible character
immanants defined [34, p. 81] by

Immλ(x) =
def

∑

w∈Sn

χλ(w)x1,w1
· · ·xn,wn

,

where χλ : Sn → C is the irreducible Sn-character corresponding to λ. (See, e.g.,
[52].) Merris [44, Cor. 4] proved that Immλ(A) = 0 whenever λ = (λ1, . . . , λℓ) and A
has more than λ1 equal rows (or columns). We strengthen this result as follows.

Proposition 6.6. Fix λ ⊢ n and an n × n matrix A. If µ[n](A) � λ or ν[n](A) � λ,
then Immλ(A) = 0.

Proof. Let ǫλ : Sn → C be the Sn-character induced from the sign character of any
Young subgroup Sλ of Sn. (See, e.g., [52].) Merris and Watkins showed [45, Eq. (27)]
that Littlewood’s results [34, Sec. 6.5] imply the identity

Immǫµ(x) =
∑

T

(T :T )(x),

where the sum is over all column-strict injective tableaux T of shape µ⊤. Thus by
Theorem 5.3, Immǫµ(x) belongs to Uµ⊤ . Expressing irreducible characters in terms of
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the induced characters, we have

χλ =
∑

µ�λ⊤

K−1
µ,λ⊤

ǫµ, Immλ(x) =
∑

µ�λ⊤

K−1
µ,λ⊤

Immǫµ(x),

where {K−1
µ,λ⊤

| λ, µ ⊢ n} are the inverse Kostka numbers. (See [3].) Thus Immλ(x)

belongs to Uλ and the result now follows from Theorem 6.4. �

Since the inverse Kostka numbers satisfy K−1
λ,λ⊤

= 1, the proof of Proposition 6.6

implies that Immλ(x) belongs to Uµ only if λ � µ. We remark also that Merris
proved in [44, Cor. 5], [45, Thm. 8] that Immλ(A) = 0 whenever λ = (λ1, . . . , λℓ)
and rank(A) < ℓ. The second of these proofs is essentially the same as that of
Proposition 4.12.

The characterizations of subspaces of immanants in Theorem 6.2-Corollary 6.5 also
expose properties of the multigrading (2.1) of C[x]. Given subsets I, J , of [n], define
I = [n] r I and J = [n] r J . If |I| = |J | = k, then each of the rings C[xI,J ], C[xI,J ]
has an immanant space, and it is clear that multiplication in C[x] satisfies

A[k],[k](xI,J)A[n−k],[n−k](xI,J) ⊂ A[n],[n](x).

Furthermore, the dominance filtrations of these three immanant spaces enjoy a similar
relationship which generalizes the result in [51, Cor. 3.1]. Given partitions λ, µ, define
the partition λ + µ to be the componentwise sum (λ1 + µ1, λ2 + µ2, . . . ).

Proposition 6.7. Let I, J be k-element subsets of [n] and fix partitions λ ⊢ k,
µ ⊢ (n − k). Then we have

Uλ(xI,J)Uµ(xI,J) ⊂ Uλ+µ(x).

Proof. Observe that each element of Uλ(xI,J) is a linear combination of products
of minors whose sizes are given by a partition κ � λ⊤ of k, while each element of
Uµ(xI,J) is a linear combination of products of minors whose sizes are given by a

partition ν � µ⊤ of n−k. It follows that each element Immf(x) of Uλ(xI,J)Uµ(xI,J) is
a linear combination of products of minors whose sizes are a multiset union ρ = κ⋒ ν
for some κ, ν satisfying the above conditions. Since I ∩ I and J ∩ J are both empty,
each such product of minors is an injective bitableau.

Furthermore, the conditions κ � λ⊤ and ν � µ⊤ imply that each partition ρ occur-
ring above satisfies ρ � λ⊤ ⋒ µ⊤, or equivalently, ρ⊤ � λ + µ. Thus we have

Immf(x) ∈ span{(T :U)(x) | sh(T ) � λ + µ} = Uλ+µ(x).

�
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We remark that multiplication of elements in the above spaces sometimes yields a
factorization of the form

(6.7) Immu(xI,J)Immv(xI,J) = Immw(x).

These factorizations have been characterized in [51, Thm. 3.2].
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187–198.

[20] S. Fomin, W. Fulton, C. K. Li, and Y. Poon. Eigenvalues, singular values, and Littlewood-
Richardson coefficients. Amer. J. Math., 127, 1 (2005) pp. 101–127.

[21] W. Fulton. Young Tableaux; With Applications to Representation Theory and Geometry,
vol. 35 of London Mathematical Society Student Texts . Cambridge University Press, New York
(1997).

[22] A. M. Garsia and T. J. McLarnan. Relations between Young’s natural and the Kazhdan-
Lusztig representations of Sn. Adv. Math., 69 (1988) pp. 32–92.

[23] M. Geck. Relative Kazhdan–Lusztig cells. Representation Theory, 10 (2006) pp. 481–524.
[24] C. Greene. An extension of Schensted’s theorem. Adv. Math, 14 (1974) pp. 104–109.
[25] I. Grojnowski and G. Lusztig. On bases of irreducible representations of quantum GLn.

In Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), vol. 139 of Contemp. Math..
Amer. Math. Soc., Providence, RI (1992), pp. 167–174.

[26] M. Haiman. Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc., 6, 3
(1993) pp. 569–595.

[27] J. E. Humphreys. Reflection groups and Coxeter groups . Cambridge University Press (1990).
[28] M. Kashiwara. On crystal bases of the Q-analog of universal enveloping algebras. Duke Math.

J., 63 (1991) pp. 465–516.
[29] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent.

Math., 53 (1979) pp. 165–184.
[30] D. E. Knuth. The Art of Computer Programming, vol. 3. Addison–Wesley, Reading, MA

(1973).
[31] T. Lam, A. Postnikov, and P. Pylyavskyy. Schur positivity and Schur log-concavity.

Amer. J. Math., 129, 6 (2007) pp. 1611–1622.
[32] B. Leclerc and J.-Y. Thibon. The Robinson-Schensted correspondence, crystal bases, and

the quantum straightening at q = 0. Electron. J. Combin., 3, 2 (1996) pp. Research Paper 11,
approx. 24 pp. (electronic). The Foata Festschrift.

[33] B. Leclerc and P. Toffin. A simple algorithm for computing the global crystal basis of an
irreducible Uq(sln)-module. Internat. J. Algebra Comput., 10, 2 (2000) pp. 191–208.

[34] D. E. Littlewood. The Theory of Group Characters and Matrix Representations of Groups .
Oxford University Press, New York (1940).

[35] G. Lusztig. Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc.,
3 (1990) pp. 447–498.

[36] G. Lusztig. Introduction to Quantum Groups, vol. 110 of Progress in Mathematics . Birkhäuser
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