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Summary In this paper, we discuss discrete-time tests for duration dependence. Two of our
test statistics are new to the econometrics literature, and we make an important distinction
between the discrete and continuous time frameworks. We then test for duration dependence in
business and stock market cycles, and compare our results for business cycles with those
of Diebold and Rudebusch (1990, 1991). Our null hypothesis is that once an expansion
or contraction has exceeded some minimum duration, the probability of a turning point is
independent of its age—a proposition that dates back to Fisher (1925) and McCulloch (1975).
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1. INTRODUCTION

Survival analysis has been applied to study events such as the length of unemployment spells,
wars, marriages, lifetimes of firms, birth intervals, time until the adoption of a new technological
innovation and business cycles. One of the main themes has been to examine the question of
whether the probability of exiting the state of interest depends upon how long one has spent in
it. If it does, we say that there is duration dependence. There is quite a bit of empirical work
on duration dependence in the business cycle, largely motivated by the question of whether it is
possible to predict the termination of a boom or a recession. Fisher (1925) was one of the first
investigators to consider this question, raising the issue of whether the probability of exiting any
phase of the cycle is just a constant, as might be expected to happen when the series underlying
the business cycle was not serially correlated.

Casual observation from the experience of the 1980s and 1990s might lead us to infer that
long expansions may be inclined to continue in that state, while long contractions are very likely
to terminate. Contrary evidence might be the long and frustrating Great Depression. One might
even hold to McCulloch’s (1975) view, as summarized by Niemira (1991), that, once an expansion
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or contraction has exceeded its historical minimum duration, the probability of a turning point
is indeed independent of its age. Thus findings, such as those by Diebold and Rudebusch (1990,
1991), that there is evidence of duration dependence in U.S. business cycles, have attracted quite
a bit of attention and are often cited.

Economic cycles are normally described by binary random variables taking the values of
unity and zero, with unity indicating a state of expansion (say) and zero as a state of contraction.
Hence this paper discusses tests for duration dependence that might be applied to the analysis
of such binary data, either in its original form or after some aggregation. We will refer to the
states distinguished by the binary outcomes for St as phases and the sample of data available
to us might be St, t = 1, . . . , T . Often, however, it comes in an aggregated form as the time
spent in each phase, i.e. as duration data. Thus, if we divide the T observations into n phases
the duration of time spent in the ith phase will be designated as Xi. We can then formally define
any duration dependence within a given phase in one of two ways. In the first we focus upon
the continuation probability Pr(St = j |St−1 = j) and ask if this probability provides a complete
description of the process within the phase. If so, the process will be first-order Markov and we
will have duration independence. When data are discrete, the time spent in the jth phase up to
t − 1 is just the sum of past St, so that it is clear that duration dependence is a statement that
Pr(St = j |St−1 = j) �= Pr(St = j |St−1 = j, St−2 = j, . . . , S0 = j). In the second approach the
implications of duration dependence for the density of the Xi are derived and then a comparison
would be made of the density of the data on Xi with that expected under duration independence.

In Section 2, we present three tests for duration dependence based on using either the St or the
Xi. In Section 3, we then apply the tests to the analysis of U.S. business and stock market cycles,
while in Section 4 we summarize our findings.

2. TESTING FOR DURATION DEPENDENCE

2.1. Some basic considerations

Consider a random sample of n observations (X1, X2, . . . , Xn) from a continuous distribution F,
such that F(a) = 0 for a < 0. We assume that the Xi are duration data and they represent the time
spent in one of two phases. An example of the latter would be an expansion or contraction of the
business cycle. Let the density function of the random variable underlying the duration data be
f (x). Then the hazard rate function is defined as

h(x) = f (x)/G(x), (1)

where h(x) is the hazard (or failure) rate and G(x) = P(X ≥ x) is known as the survival function.
For a small �, h(x)� is the probability that the expansion will terminate during the interval
(x, x + �) given it has lasted until time x. If there is to be no duration dependence, then the hazard
rate must be constant, regardless of the duration of time spent in the phase. Consequently, the
hazard rate does not depend on x, i.e.

H0 : h(x) = θ for some θ > 0 and all x > 0. (2)

For a continuous random variable there is only one density for f (x) that satisfies the constant-
hazard assumption in continuous time, namely, the Exponential density. Given this fact it is
possible to write an alternative null hypothesis, namely, H0 : F is Exponential, and this is the key
to many tests for duration dependence.

C© Royal Economic Society 2004



530 Jonathan Ohn et al.

However, the duration data that are available on economic cycles is invariably discrete since
statistics on economic variables are collected at discrete intervals of time, e.g. business cycle
duration data come at intervals that are no shorter than a month. Although stock market data are
potentially available at much shorter intervals than a month, the cycles that are of interest tend be
on a monthly frequency and so we will use such data in the analysis that follows.

With discretely measured duration data the density of Xi is a geometric density when there is
duration independence. For a geometric density P(X = x) = (1 − p)xp for 0 ≤ x < ∞. Define the
hazard function as

h(x) = P(X = x)/P(X ≥ s). (3)

It is clear that this becomes h(x) = p in the case of a geometric density, i.e. there is a constant
hazard. The first two moments of the geometric density are E(X) = (1 − p)/p and V (X ) = (1 −
p)/p2 and this leads to the equality V (X ) − [E(X )]2 − E(X ) = 0, a restriction that is in contrast
to the relation between the first and second moments that holds for an exponentially distributed
random variable, namely, V (X ) − E(X )2 = 0. It follows that one must exercise some care when
using moments for testing for duration dependence with discretely measured data. If one used the
moment relations that come with the exponential rather than those appropriate to the geometric
density, the test statistics would be incorrectly centred, although the error may be small if p is
either large or small.1

Another difference to the continuous time case is that, in discrete time, we can focus directly on
the probability that a phase terminates within a given hour, day, week, month or year—depending
on our unit of measurement.2 For the empirical examples that follow in Section 3, we will
measure the contractions and expansions in business and stock market cycles on a monthly basis.
We will say that expansions exhibit a constant hazard if the hazard rate remains constant from
month to month, making it independent of the duration of the expansion. As we have mentioned
above, there is only one distribution that satisfies the constant-hazard assumption in discrete time,
namely, the Geometric density. Therefore, we can alternatively write the null hypothesis as, H0 :
F is Geometric.

The first set of tests for duration dependence check whether the implied density is compatible
with the data, i.e. the question asked is whether the sample Xi is compatible with f (x) being of
a particular form. We might term these consistency tests, as they check to see if the data are
consistent with the null hypothesis. Exactly how one should check for consistency varies a good
deal. A weak-form test might involve checking if the relations between selected moments of the
random variable X implied by a geometric density are satisfied. A strong-form test would compare
some nonparametric estimate of a density from the data with the hypothesized parametric form,
e.g. the geometric. These would be direct tests of the hypothesis. Equivalent tests are available by
examining hypotheses that are derived from any one-to-one transformation of the density function.
Thus, in our context, it is natural to ask if the hazard function is a constant, rather than that the
density is geometric. These consistency tests can be very useful when it comes to a graphical
display of what the data says about duration dependence, e.g. a plot of a nonparametric estimate
of h(x) may indicate whether an assumption of constancy is a reasonable one. Moreover, they can

1When p is small or large the square of E(X) should be close to V(X).
2In continuous time, the probability that a phase terminates at a specific point in time is zero, while in discrete time

we can mass the probability at integer values. As such, in the discrete case the hazard function, h(x), is technically not a
‘rate’.
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Figure 1. Hazard functions for various life distributions.

be very informative about why a test statistic rejects the null hypothesis. The latter information
is useful in assessing the appropriate response to any rejection.

2.2. Alternative hypotheses

Most consistency tests are sensitive to specific directions of departure from the null hypothesis.
Indeed, we may employ selected tests to search for departures in a given direction. This leads one
to ask which types of duration dependence we might expect in phases and what the distributions
might look like for those alternatives. In most cases they are motivated by physical analogues
and are intended to suggest what functions of the data one might focus upon in the event that this
particular type of dependence was present. From the discussion in Hollander and Wolfe (1999),
the two foremost alternatives are:

(1) Increasing (Decreasing) Failure Rate: IFR (DFR);
(2) Increasing (Decreasing) Failure Rate Average: IFRA(DFRA).

To illustrate the various alternatives, Figure 1 provides examples of hazard functions from
IFR and IFRA life distributions.3 Because there is a one-to-one relationship between the hazard
function and the probability density function (PDF) a comparison of hazard rates is generally a
natural way of analyzing the nature of the probabilities of failure, more so than a comparison of
density functions. This is particularly true given the nature of the underlying null hypothesis.

In Figure 1, the constant hazard corresponds to the exponential density. In the constant hazard
case, expansions (say) are such that new ones are no more (or less) likely to terminate than mature
ones. In contrast, if expansions are IFR, then the hazard (or failure) rate is never decreasing, and our
illustrated IFR hazard function implies an ever more likely chance of termination (or mortality).
Yet, this is not the only type of hazard function that has a tendency to rise. While our depicted

3A so-called life distribution is one that places all of its probability on nonnegative values, and the term ‘life distribution’
is coined from the study of mortality, where many of these distributions were first employed.
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IFRA hazard function has periods of decline, it is clear that IFRA exhibits the same overall upward
trend as IFR. In particular, IFRA initially increases at a faster rate than IFR, whereas there are
periods where IFRA is lower than IFR. One example would be if the hazard rate for an IFRA
expansion fluctuates due to seasonal variation, even though it increases on average over the life of
the expansion. It might also be the case that a recession could initially have a decreasing hazard
rate for a short period, but then exhibit an increasing hazard rate over the majority of the phase
due to (say) federal intervention. Thus policy might be late to perceive the recession but, once
recognized, effective action is taken.

It is easy to see that any IFR distribution is also an IFRA distribution, although the converse
is not true. While the IFRA class is fundamentally like the IFR class, the former relaxes the strict
assumptions associated with IFR. A completely analogous situation holds for DFR and DFRA
distributions.

The geometric and exponential densities are central to the study of duration analysis. If we
find that durations do not follow the geometric density, then there must be some predictability in
the length of the durations and the timing of turning points. It is the presence or absence of such
predictability that defines duration independence. Positive duration dependence means that (say)
an expansion is more likely to end as its duration increases and so corresponds to the IFR and
IFRA classes of life distributions. The opposite pattern, negative duration dependence, means
that the given state (either a contraction or expansion) tends to persist, and so corresponds to the
DFR and DFRA classes of life distributions.

As mentioned earlier the geometric and exponential densities exhibit relations between the
first and second moments. Thus, for the exponential density V(X) = E(X)2. On the one hand,
when the average length of expansions is greater than the standard deviation, this is taken to be
evidence of positive duration. On the other hand, if the average length of expansions is less than
the standard deviation, this is evidence of negative duration dependence.

2.3. Weak-form tests in discrete time

The basic test employed under this heading is that coming from the moment condition implied
by the geometric density, i.e. V (X ) − [E(X )]2 − E(X ) −γ = 0. One can test if γ = 0 using the
GMM of γ from this moment condition. This was done by Mudambi and Taylor (1995). They
determined whether MT = [(1/T )

∑
(xi − x̄)2] − x̄2 − x̄ was significantly different from zero.

We expect MT to be especially sensitive to IFRA alternatives since it is completely analogous to the
continuous time test based on V (X ) − (E(X ))2 = 0 designed for such alternatives.4 While the MT
test statistic is asymptotically centred at zero and can be standardized so that it is asymptotically
N(0,1), Mudambi and Taylor (1995) found that its distribution is highly skewed in finite samples,
and thus it was necessary to use simulations to obtain finite-sample critical values.

In spite of the skewed distribution, a primary advantage of MT (once standardized) is that
it is asymptotically pivotal, i.e. asymptotically it does not depend on unknown parameters. For
asymptotically pivotal statistics, the bootstrapped critical values are generally more accurate than
those based on first-order asymptotic theory. Horowitz (2001) provides a highly readable account
of why it is generally desirable to use pivotal statistics when bootstrapping.

4See Lee et al. (1980) for more details on this.
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It is also possible to implement a simple regression-based test that is closely related to MT.5

We first define a state variable St that is assigned unity if the observed index is a month of
expansion, and zero for a contraction. For constant-hazard expansions and contractions, St is a
Markov process, and Hamilton (1989) shows that it can be written as an AR(1):

St = c0 + c1St−1 + ηt , (4)

where η t is a disturbance term for which E t−1(η t ) = 0. Moreover, c0 = p1|0 = 1 − p0|0 and c1

= p1|1 + p0|0 − 1, where pa|b is the conditional probability of moving to state ‘a’ from state ‘b’.
Consequently, duration dependence could be thought of as shifts in c0 and/or c1, with the shifts
being related to how long one has been in a given state.

Consider the regression equation:

St = c0 + c1St−1 + c2St−1dt−1 + error, (5)

where dt is the number of consecutive months (i.e. ‘duration’) spent in an expansion up and
through time t and the error term has a density such as to make realizations of St either zero or
unity. A simple variable-addition test of duration dependence in expansions is therefore available
by testing the null hypothesis H0 : c2 = 0.6 In general, we would expect the actual relation between
St and dt −1 to be a nonlinear one, as in the Durland and McCurdy (1994) logistic formulation.
However, since we are performing a diagnostic test for duration dependence rather than trying to
estimate its form, the linear model at (5) is a suitable vehicle for doing that, although the power
of the test might be affected.7

We term this the SB test to indicate that it is based upon the states St rather than durations.
In the Appendix, we show that the SB test based upon ĉ2 is effectively checking if V (X ) −
[E(X )]2 + E(X ) is zero. At first sight this seems to be inconsistent with the moment implications
of a geometric density given earlier, but the resolution of the difference comes from noting that,
by the definition of the binary indicator, the duration of any expansion or contraction must be at
least one period. Hence, it is not possible to get a duration of zero periods when using the St . This
suggests that we should check the relationship between the moments when the geometric density
is left-censored at unity. Now the censored probability function will be P(X = x) = (1 − p)x−1 p
for 1 ≤ x < ∞ and E(X ) = 1/p, V (X ) = (1 − p)/p2. Thus, in the censored geometric case, the
relation between moments is V (X ) − E(X )2 + E(X ) = 0, agreeing with what SB tests.

The SB test has a number of attractions. First, it focuses directly upon the conditional
probabilities and what influences them. Second, it involves a regression and so it is generally
easy to explain the outcome to nonspecialists. Third, it can be used to examine prediction issues.
Finally, since the parameters can be recursively estimated we can study how duration dependence
might have changed over time.

Some care, however, must be used in implementing the SB test. If one constructs the test
with a sample consisting of both contractions and expansions, the disturbance in the regression

5This material was originally presented as part of the third author’s Walras-Bowley Lecture ‘Bulls and Bears: A Tale of
Two States’, delivered to the Summer Meetings of the North American chapter of the Econometric Society in Montreal
in 1998.

6For contractions one replaces St by (1 − St) and dt will need to be the duration of contractions.
7Durland and McCurdy tested for duration dependence in a latent state process that was taken as driving the growth rate

in GDP. Designating these latent states by zt they test for variation in the transition probabilities. However, it is rarely the
case that zt = St . Thus even if there is no duration dependence in the zt process there can be in the St . In contrast, duration
dependence in the latent states would almost always imply duration dependence in St .
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at equations (4) or (5) is conditionally heteroskedastic. In fact, V (η t |St−1 = 0) = p1|0 (1 − p1|0)
and V (ηt |St−1 = 1) = p1|1(1 − p1|1). One then needs to account for that when forming the test,
and it is unclear whether the robust measures that are used in most regression packages will work
as well with the binary random variables in the SB regression. We can eliminate this problem by
operating separately on expansions and contractions since the disturbance is then homoskedastic.

As an example, consider the following string for St: 1,1,1,0,0,1,1,1,0,0,1,1,0. We are in a
period of expansion for observations 1–3, 6–8 and 11–12. The string for St −1 is as follows: ?,
1,1,1,0,0,1,1,1,0,0,1,1. Arranging St, St −1 and dt −1 in matrix form gives:

St St −1 dt −1

1 ? 0

1 1 1

1 1 2

0 1 3

0 0 0

1 0 0

1 1 1

1 1 2

0 1 3

0 0 0

1 0 0

1 1 1

0 1 2

For expansions only, our (half-cycle) data matrix is as follows:

St St −1 dt −1

1 1 1

1 1 2

0 1 3

1 1 1

1 1 2

0 1 3

1 1 1

0 1 2

It is clear that we will lose some expansion points. We ignore the first observation as well
as any observations that are part of incomplete (i.e. censored) spells. For business cycles, the
censored observations will invariably be those towards the end of the data matrix. Our resulting
econometric sample size is denoted as T , with T − n points for which St = 1 and ‘n’ turning
points for which St = 0.
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Having taken the subsample for which St −1 = 1, we thus employ the simplified regression
equation:

St = b0 + b1dt−1 + disturbance, (6)

where, again, dt is the number of consecutive months (i.e. ‘duration’) spent in an expansion up
and through time t. The test of duration dependence in expansions is obtained by testing the null
hypothesis H0 : b1 = 0. An important consideration is that the standard t-test from this regression
is asymptotically pivotal, and thus it is this test statistic that we wish to bootstrap.

It is also the case that the degree of censoring used in constructing the states can create
difficulties. It is well known that the NBER business cycle dates have a minimum phase restriction
of two quarters and it is equally clear that equivalent dates for other cycles almost always involve
some such constraint. There are two ways of dealing with this problem. First, if there is a two-
quarter minimum to the phase restriction, then it can be shown that the states must obey the
following model—see Harding and Pagan (2003):

St = c0 + c1St−1 + c2St−2 + c3St−1St−2 + disturbance, (7)

and so the duration dependence test would involve trying to add on St−1d t−1to this regression
rather than to the first-order one at (5). Alternatively we can subtract unity from each of the
observed durations and then implement the SB test. The two-quarter minimum phase is then
automatically satisfied and we can implement the test at (5). So, for example, if we observe a
phase lasting 8 quarters, we transform the observation to 7 quarters and likewise for the other
observations.

2.4. Strong-form density-based tests in discrete time

An obvious choice for testing if the empirical density of the Xi is a geometric density is the
chi-square goodness-of-fit test. The test statistic is χ2 = ∑K

j=1[(O j − E j )2/E j ], where Oj is the
observed number of elements in the jth bin and Ej is the expected number of elements in the
jth bin under the geometric density. Using simulated critical values based on 5,000 replications,
Diebold and Rudebusch (1991) used χ2 to shed some light on duration dependence in business
cycles. They varied the number of bins (K) from 2 to 5 in order to provide a sensitivity analysis.
As constructed, χ2 is asymptotically pivotal. Yet, while the size of χ2 is properly controlled,
construction of the test in this manner may result in low power. With this in mind, it is notable
that, except for pre-war expansions, Diebold and Rudebusch (1991) find only weak evidence of
duration dependence.

Our approach to bin selection is somewhat different. A well-known rule-of-thumb is that the
expected frequency (Ej) should be at least 5 (or perhaps 6) for all bins. To be on the safe side
we use 6 rather than 5.8 Since ideally the bootstrapped critical values provide a higher-order
approximation to the first-order asymptotic critical values, it appears reasonable to keep to this
rule. In keeping with the rule, it is also possible to use the asymptotic critical values for comparison.

As normally practiced, suppose that E 1, . . . , EK are ordered such that E1 corresponds to the
bin with the lowest values for the realizations of the random variable. EK then corresponds to the

8The rule-of-thumb concerning the chi-square test dates back many years and is discussed by Hoel (1954). He states
that experience and theoretical investigations indicate that the goodness-of-fit test based on the chi-square approximation
is satisfactory when the number of cells and expected frequency within each cell is at least 5. The expected frequency
should be somewhat larger than 5 when the number of cells is less than 5.
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Table 1. Business Cycle Summary Statistics.

Sample Mean duration Standard deviation Sample size

Expansions

Entire sample 34.6 21.8 31

Entire sample, excluding wars 28.9 15.3 26

Post-WWII 48.6 28.9 9

Post-WWII, excluding wars 40.9 22.3 7

Pre-WWII 26.5 10.7 21

Pre-WWII, excluding wars 24.5 9.2 19

Contractions

Entire sample 18.1 12.5 30

Post-WWII 10.7 3.4 9

Pre-WWII 21.2 13.6 21

bin with the highest values for the realizations. For example, E1 may correspond to the interval
‘[0, 3]’ which includes all values from 0 to 3, inclusive, while EK corresponds to the open interval
‘>15’. Due to the small sample sizes encountered in macroeconomic data, we take a conservative
approach and construct our intervals such that E 1, . . . , E K−1 approach the value 6 from the right.
If the residual bin has an expected frequency less than 5, EK < 5, we combine bins K and K − 1.
Simulated critical values are constructed in accordance with this rule. Of course, the construction
of the bins is dependent on the estimated hazard rate and thus our χ2 test is not truly pivotal. Still,
this way of constructing the test seems to work well in practice.

3. EMPIRICAL APPLICATIONS

3.1. Business cycles

To compare and contrast our procedures with earlier work, we replicate the studies of Diebold and
Rudebusch (1990, 1991) to determine whether there exist any major discrepancies. Diebold and
Rudebusch employ continuous time tests in their 1990 paper and the discrete-time chi-square test
in their 1991 paper. As stated above, in this paper we implement the chi-square test in a slightly
different manner.

As have others, we consider various so-called minimum phase durations, denoted as τ 0.
McCulloch (1975) set τ 0 to be the historical minimum duration, while Diebold and Rudebusch
(1990) and Mudambi and Taylor (1991, 1995) set τ 0 to be at most the historical minimum.
The argument here is that the uncertainty associated with the precise timing of turning points
(especially for macroeconomic time series) calls for the examination of various minimum phase
durations.9 But, of course, simply allowing the minimum phase to vary does not overcome the
stringent nature of the geometric density. We refer to imposing a minimum phase jointly with the
assumption of duration independence as the Markov hypothesis.

9Epstein (1960) defines the two-parameter Exponential p.d.f. as f(t; θ, τ0) = 1/θ exp(−(t − τ0)/θ ) for t ≥ τ0 ≥ 0, and
f(t; θ, τ0) = 0 elsewhere. Here, X is two-parameter Geometric with P(X = i) = (1 − p)τ0−1 p (i = τ0 + 1, . . .). To impose
a given minimum phase, τ 0, note that Y = X − τ0 also follows the geometric density. The SB test is designed for τ0 = 1,
and thus we only transform the data for τ0 > 1.
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Table 2. Tests for Constant-Hazard Contractions.

Statistic All (N = 30) Pre-war (N = 21) Post-war (N = 9)

SB (τ 0 = 4) 0.5778 0.3544 0.0402+
SB (τ 0 = 5) 0.8624 0.5172 0.1038

SB (τ 0 = 6) 0.7954 0.7286 0.2804

MT (τ 0 = 4) 0.6230 0.3940 0.0376+
MT (τ 0 = 5) 0.9004 0.5638 0.1080

MT (τ 0 = 6) 0.7850 0.7740 0.3188

The finite-sample two-tailed p-values are obtained through simulation. A
plus sign (+) indicates statistically significant positive duration dependence.

Table 3. Tests for Constant-Hazard Expansions.

Entire sample Post-WWII Pre-WWII

Entire sample no wars Post-WWII no wars Pre-WWII no wars

Statistic (N = 31) (N = 26) (N = 9) (N = 7) (N = 21) (N = 19)

SB (τ 0 = 8) 0.3224 0.1424 0.4148 0.3998 0.0104+ 0.0096+
SB (τ 0 = 9) 0.4378 0.2256 0.4628 0.4516 0.0180+ 0.0194+
SB (τ 0 = 10) 0.5822 0.3426 0.5166 0.5118 0.0332+ 0.0400+
MT (τ 0 = 8) 0.3474 0.2168 0.4798 0.5360 0.0108+ 0.0280+
MT (τ 0 = 9) 0.4672 0.3166 0.5318 0.6002 0.0196+ 0.0556+
MT (τ 0 = 10) 0.6042 0.4494 0.5938 0.6662 0.0408+ 0.1018

The finite-sample two-tailed p-values are obtained through simulation. A plus sign (+) indicates statistically significant
positive duration dependence.

Summary statistics for the business cycle data are taken from Diebold and Rudebusch (1990)
and replicated in Table 1, while our tests for duration dependence are found in Tables 2–5.
To construct the p-values, we generate 10,000 samples of size N from a geometric distribution
with the parametric parameter p fixed at the maximum likelihood estimator for an assumed
value of τ 0. The p-value for a given statistic is then obtained from the 10,000 ordered realized
values.10

Consider first the weak-form tests found in Tables 2 and 3. As expected from our theoretical
arguments, SB and MT yield similar conclusions. On the one hand we find some evidence that
post-war contractions and pre-war expansions fall into the IFRA class of alternatives. On the
other hand, there is no evidence of duration dependence in post-war expansions, though we note
that the extremely small post-war sample sizes are likely to result in tests with low power. Our
findings so far corroborate those of Diebold and Rudebusch (1990).

In contrast, the results based on the strong-form chi-square test presented in Tables 4 and 5
differ a bit from those of Diebold and Rudebusch (1991). Not only do we find strong evidence
for duration dependence in pre-war expansions, but there is also strong evidence that pre-war

10This parametric bootstrap approach for generating finite-sample critical values (i.e. conditioning on the estimated
value of p) was recommended by Sargan and Bhargava (1983) when they tested for a random walk in the errors from a
regression equation.
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Table 4. Chi-Square Tests for Constant-Hazard Contractions (One-Tailed p-Values Are Reported in
Parentheses).

Minimum phase

τ 0 = 4 τ 0 = 5 τ 0 = 6

Interval E O Interval E O Interval E O

Entire sample (N = 30)

[0, 3] 7.206 2 [0, 3] 7.663 6 [0, 2] 6.374 5

[4, 8] 6.625 8 [4, 8] 6.888 8 [3, 6] 6.444 5

[9, 15] 6.171 13 [9, 15] 6.229 9 [7, 12] 6.526 13

>15 9.998 7 >15 9.220 7 >12 10.656 7

χ2 (2) = 12.50 (0.0023) χ2 (2) = 3.34 (0.2411) χ2 (2) = 8.30 (0.0173)

Pre-WWII (N = 21)

[0, 5] 6.028 2 [0, 5] 6.328 3 [0, 5] 6.659 3

[6, 15] 6.453 12 [6, 14] 6.104 11 [6, 14] 6.248 11

>15 8.519 7 >15 8.568 7 >15 8.093 7

χ 2 (1) = 7.73 (0.0042) χ2 (1) = 5.97 (0.0155) χ2 (1) = 5.77 (0.0164)

Post-WWII (N = 9)

[0, 7] 6.058 7 [0, 6] 6.115 7 [0, 5] 6.007 7

>7 2.942 2 >6 2.885 2 >5 2.993 2

From the geometric distribution, E is the expected number of observations that lie in the stated interval. From the
sample, O is the observed number in the interval. The finite-sample one-tailed p-values are obtained through simulation.
The chi-square test is not applied to post-WWII contractions due to the small sample size. The 5% critical value for a
chi-square distribution with 2 (1) degree(s) of freedom is 5.99 (3.84).

contractions are duration dependent.11 The clustering effect of the observed frequencies suggests
positive duration dependence. As an example, consider pre-war contractions and a minimum phase
of 4. The observed frequency for the interval [6, 15] is 12 while the expected frequency is a mere
6.453. The observed frequency for the interval [0, 5] is only 2 while the expected frequency is
6.028. Thus, relative to a geometric density, there are fewer short-term contractions than expected
and more intermediate-term contractions than expected. Diebold and Rudebusch (1991) detected
only some evidence of duration dependence for contractions when they applied the chi-square
test by varying the number of bins from 2 to 5. Their results were strongest for the pre-war period,
but, overall, they concluded that the evidence was weak.

To further investigate the nature of the hazard functions, we plot them for pre- and post-war
contractions and expansions (including wars) in Figures 2 and 3. The nonparametric hazard rates
are computed by the life-table method of Cutler and Ederer (1958) using the computer package
LIMDEP 7.0. An approximate (but intuitive) explanation of the procedure is as follows. We first
place the contractions in ascending order, and then construct the hazard rate at time ‘t’ as the ratio
of the number of contractions terminating at month ‘t’ over the number of contractions lasting
for at least ‘t’ months. That is, we use the sample information to estimate P(X = t)/P(X ≥ t).
A contraction that terminates is said to exit the sample, while those contractions lasting at least

11Except for a minimum phase of 5 months, the full-sample results on contractions also indicate duration dependence.
A post-war analysis was not attempted since the expected frequency <5 in the last bin.
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Table 5. Chi-Square Tests for Constant-Hazard Expansions (One-Tailed p-Values Are Reported in
Parentheses).

Minimum phase

τ 0 = 8 τ 0 = 9 τ 0 = 10

Interval E O Interval E O Interval E O

Entire sample (N = 31)

[0, 5] 6.155 3 [0, 5] 6.365 3 [0, 5] 6.589 3

[6, 13] 6.349 6 [6, 13] 6.501 9 [6, 13] 6.660 9

[14, 24] 6.169 8 [14, 24] 6.235 6 [14, 24] 6.297 7

[25, 43] 6.211 10 [25, 43] 6.152 9 [25, 43] 6.080 8

>43 6.116 4 >43 5.747 4 >43 5.374 4

χ2 (3) = 5.22 (0.1653) χ2 (3) = 4.60 (0.2234) χ2 (3) = 3.81 (0.3067)

Entire sample, no wars (N = 26)

[0, 5] 6.352 3 [0, 5] 6.620 3 [0, 5] 6.911 3

[6, 13] 6.124 6 [6, 13] 6.282 9 [6, 13] 6.446 9

[14, 26] 6.153 10 [14, 26] 6.168 7 [14, 26] 6.170 9

[27, 63] 6.061 6 [27, 68] 6.044 6 [27, 77] 6.005 5

>63 6.310 1 >68 5.886 1 >78 5.468 0

χ 2 (3) = 8.65 (0.0132) χ2 (3) = 7.32 (0.0277) χ2 (3) = 10.16 (0.0057)

Post-WWII (N = 9)

[0, 45] 6.065 6 [0, 44] 6.074 6 [0, 42] 6.007 6

>45 2.935 3 >45 2.926 3 >42 2.993 3

Post-WWII, no wars (N = 7)

[0, 64] 6.002 6 [0, 62] 6.001 6 [0, 61] 6.030 6

>64 0.998 1 >63 0.999 1 >61 0.970 1

Pre-WWII (N = 21)

[0, 6] 6.480 2 [0, 6] 6.775 2 [0, 5] 6.254 2

[7, 17] 6.389 10 [7, 18] 6.071 10 [6, 14] 6.069 10

>17 8.131 9 >18 8.154 9 >14 8.677 9

χ 2 (1) = 5.23 (0.0252) χ2 (1) = 6.00 (0.0138) χ2 (1) = 5.45 (0.0231)

Pre-WWII, no wars (N = 19)

[0, 6] 6.406 2 [0, 6] 6.726 2 [0, 5] 6.257 2

[7, 18] 6.371 10 [7, 17] 6.097 10 [6, 15] 6.195 10

>18 6.224 7 >18 6.177 7 >16 6.548 7

χ 2 (1) = 5.19 (0.0284) χ2 (1) = 5.93 (0.0155) χ2 (1) = 5.27 (0.0257)

From the geometric distribution, E is the expected number of observations that lie in the stated interval. From the
sample, O is the observed number in the interval. The finite-sample one-tailed p-values are obtained through simulation.
The chi-square test is not applied to post-WWII expansions due to the small sample sizes. The 5% critical value for a
chi-square distribution with 3 (1) degree(s) of freedom is 7.81 (3.84).
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Figure 2. Contractions.

Figure 3. Expansions.

‘t’ months are said to be still at risk. Of course, the pool of contractions still at risk decreases
with ‘t’. This implies that the effective sample size for estimating the hazard rates for relatively
long contractions is less than for short contractions. While each of our empirical hazard functions
appear to increase (on average) in Figures 2 and 3, the formal statistical tests given in Tables 2–5
are necessary to avoid spurious conclusions from inspecting the graphs alone.

Yet, in conjunction with our statistical tests, the graphs are powerful in their message
concerning duration dependence for expansions and contractions. The hazard function for
post-war contractions clearly appears to fall within the IFR class of alternatives, never decreasing
with ‘t’. On the other hand, pre-war contractions appear to fall more within the IFRA class (but
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not the smaller IFR class) since the hazard function increases, but only on average. For either
of the pre- or post-war periods, new contractions appear less prone to terminate than mature
contractions, so that the mean residual lives of mature contractions are less than the mean residual
lives of young contractions. To summarize, from the information gleaned from Figure 2 it is not
surprising that our formal statistical tests reject duration independence, with stronger evidence
found for post-war contractions.

From Figure 3, our story for expansions is somewhat reversed. Pre-war expansions clearly
appear to fall within the IFRA class of alternatives, while the hazard rates for post-war expansions
are rather flat for the shorter durations.12 From the graph, one might conclude that post-war
expansions have a relatively flat hazard function, at least for the first 3 years or so. Moreover,
our graphical analysis concurs with our formal statistical analysis. There is strong evidence of
positive duration dependence for pre-war expansions, but very little in the post-war years.

For comparison, we also graph the parametric Weibull hazard rates. Sichel (1991) suggests
that using parametric methods to test for duration dependence will result in more powerful tests for
duration dependence, but yet it is clear from Figures 2 and 3 that the Weibull model is insufficient to
capture the richness of the IFRA pre-war contractions and expansions. Further, our nonparametric
discrete-time MT and SB tests are expected to be especially sensitive to IFRA alternatives, while
the chi-square test is expected to perform well provided that we observe the well-known rule of
thumb that each cell should have an expected frequency of about 6. It is thus hard to see why using
the continuous-time Weibull model would be superior in the context of a time series measured at
regular discrete intervals for which the hazard may be highly irregular. But business cycle data
have these characteristics.

Attempts to apply more flexible continuous-time methods have met with mixed success.
Diebold et al. (1993), for example, apply their nonlinear exponential linear model to business cycle
data that mostly duplicates the results from the Weibull model. Zuehlke (2003) then applies the
nonlinear model of Mudholkar et al. (1996) that nests the Weibull model.13 Yet, the hazard function
for the Mudholkar model allows only for hazards that are monotonically increasing, monotonically
decreasing, U-shaped or inverted U-shaped. None of these shapes adequately describes the hazard
functions for pre-war contractions and expansions. Using the Mudholkar model, however, Zuehlke
(2003) does find evidence of duration dependence in pre-war contractions just as we do. But yet the
Mudholkar model does not improve upon the Weibull model for post-war contractions, though
this is not so surprising given the life-table estimates from Figure 2. Finally, Zuehlke (2003)
only finds evidence of positive duration dependence in post-war expansions once the sample is
extended through 2001.

3.2. Stock market cycles

Based on the reference dates from Pagan and Sossounov (2002), we next examine the duration
dependence of U.S. bull and bear markets. The largest possible value of τ 0 is 4 for bull markets
since this is the smallest observed duration of a bull market. The largest possible value of τ 0 is 3
for bear markets since this is the smallest observed duration of a bear market.

12Recall that for the shorter durations, the effective sample sizes are larger for estimating the hazard rates.
13Zuehlke (2003) notes that Diebold et al. (1993) simply subtracts the minimum phase from each duration to account for

the censoring and then uses the unconditional density, whereas, Sichel (1991) uses the conditional density to correct for
censoring. Yet, these approaches are equivalent as is clear from examining Epstein’s (1960) two-parameter Exponential
PDF.
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Table 6. Bull and Bear Market Reference Dates and Durations.

Trough Peak Bear Bull Trough Peak Bear Bull

July 1837 Oct. 1838 NA 15 Dec. 1914 Nov. 1916 27 23

Dec. 1839 Nov. 1840 14 11 Dec. 1917 July 1919 13 19

Feb. 1843 Jan. 1846 27 35 Aug. 1921 Mar. 1923 25 19

Feb. 1847 Sept. 1847 13 7 Oct. 1923 Sept. 1929 7 71

Dec. 1848 Jan. 1853 15 49 June 1932 Feb. 1934 33 20

Feb. 1855 Aug. 1855 25 6 Mar. 1935 Feb. 1937 13 23

Nov. 1857 April 1858 27 5 April 1938 Oct. 1939 14 18

Aug. 1859 Nov. 1860 16 15 May 1942 May 1946 31 48

Aug. 1861 April 1864 9 32 Feb. 1948 June 1948 21 4

April 1865 Nov. 1866 12 19 June 1949 Dec. 1952 12 42

May 1867 April 1872 6 59 Aug. 1953 July 1956 8 35

Nov. 1873 April 1875 19 17 Dec. 1957 July 1959 17 19

June 1877 June 1881 26 48 Oct. 1960 Dec. 1961 15 14

Jan. 1885 May 1887 43 28 June 1962 Jan. 1966 6 43

June 1888 May 1890 13 23 Sept. 1966 Nov. 1968 8 26

Dec. 1890 Aug. 1892 7 20 June 1970 April 1971 19 10

Aug. 1893 April 1894 12 8 Nov. 1971 Dec. 1972 7 13

Mar. 1895 Sept. 1895 11 6 Sept. 1974 Dec. 1976 21 27

Aug. 1896 Sept. 1897 11 13 Feb. 1978 Nov. 1980 14 33

April 1898 April 1899 7 12 July 1982 June 1983 20 11

Sept. 1900 Sept. 1902 17 24 May 1984 Aug. 1987 11 39

Oct. 1903 Sept. 1906 13 35 Nov. 1987 May 1990 3 30

Nov. 1907 Dec. 1909 14 25 Oct. 1990 Jan. 1994 5 39

July 1910 Sept. 1912 7 26 June 1994 ? 5 NA

Bull and Bear phases during World War II are given in boldface.

Our reference period is July 1837–June 1994. Reference dates for the stock market data are
presented in Table 6, with summary statistics presented in Table 7. Observe that for all samples
the mean duration is greater than the standard deviation.

This suggests that both bull and bear phases display positive duration dependence. Consider,
for instance, the weak-form tests found in Tables 8 and 9. There is very strong statistical evidence
of positive duration dependence in bear markets regardless of the sample period. For bull markets,
we again reject in favour of positive duration dependence quite often, and every test rejects the
constant-hazard assumption for the full sample and post-war period. Positive duration dependence
implies that new bull phases are more robust to failure than more mature bull markets, and this
is also consistent with a clustering of the observed duration of bull markets. The clustering effect
will be revisited below.

There is less evidence of duration dependence in pre-war bull markets, and in fact, SB rejects
only when τ 0 = 2. While positive duration dependence may indeed be a feature of the pre-war
period bull markets, the evidence is rather inconclusive when based solely on the results in Table 9.
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Table 7. Stock Market Cycle Summary Statistics.

Sample Mean duration Standard deviation Sample size

Bull market

Entire sample 24.8 14.9 47

Post-WWII 25.7 13.0 15

Pre-WWII 23.8 15.8 30

Bear market

Entire sample 15.3 8.5 47

Post-WWII 12.0 6.3 16

Pre-WWII 16.5 8.8 30

Table 8. Tests for Constant-Hazard Bear Markets.

Statistic All (N = 47) Pre-war (N = 30) Post-war (N = 16)

SB (τ 0 = 1) 0.0002+ 0.0012+ 0.0096+
SB (τ 0 = 2) 0.0008+ 0.0032+ 0.0304+
SB (τ 0 = 3) 0.0026+ 0.0138+ 0.0822+
MT (τ 0 = 1) 0.0004+ 0.0022+ 0.0016+
MT (τ 0 = 2) 0.0024+ 0.0054+ 0.0112+
MT (τ 0 = 3) 0.0094+ 0.0194+ 0.0418+
The two-tailed p-values are obtained through simulation. A plus sign (+) indicates statistically
significant positive duration dependence.

Table 9. Tests for Constant-Hazard Bull Markets.

Statistic All (N = 47) Pre-war (N = 30) Post-war (N = 15)

SB (τ 0 = 2) 0.0020+ 0.0868+ 0.0096+
SB (τ 0 = 3) 0.0050+ 0.1456 0.0126+
SB (τ 0 = 4) 0.0140+ 0.2378 0.0224+
MT (τ 0 = 2) 0.0042+ 0.1084 0.0042+
MT (τ 0 = 3) 0.0108+ 0.1768 0.0074+
MT (τ 0 = 4) 0.0272+ 0.2704 0.0130+
The two-tailed p-values are obtained through simulation. A plus sign (+) indicates statistically
significant positive duration dependence.

To further investigate the nature of the hazard functions, we construct the chi-square goodness-
of-fit tests. The results are found in Tables 10 and 11.14 From Table 10, the evidence is
overwhelming that the full-sample and pre-war bear markets exhibit positive duration dependence.
The clustering effect of such dependence is very evident in both samples. For example, for the
full-sample period when τ 0 = 3, we have an expected frequency of 6.802 in the closed interval
[0, 1] and 6.753 in the closed interval [8, 11]. Yet, the respective observed frequencies are 1 and 15.

14An analysis of Post-WWII was not attempted since the expected frequency was less than 5 in the last bin.
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Table 10. Chi-Square Tests for Constant-Hazard Bear Markets (One-Tailed p-Values Are Reported in
Parentheses).

Minimum phase

τ 0 = 1 τ 0 = 2 τ 0 = 3

Interval E O Interval E O Interval E O

Entire sample (N = 47)

[0, 2] 8.626 1 [0, 1] 6.344 1 [0, 1] 6.802 1

[3, 5] 7.043 4 [2, 4] 7.947 4 [2, 4] 8.403 9

[6, 9] 7.422 8 [5, 7] 6.393 8 [5, 7] 6.646 3

[10, 14] 6.856 17 [8, 11] 6.624 11 [8, 11] 6.753 15

[15, 21] 6.428 8 [12, 17] 6.946 11 [12, 17] 6.887 8

>21 10.625 9 [18, 26] 6.108 9 [18, 27] 6.242 8

– – – >26 6.638 3 >27 5.267 3

χ2 (4) = 23.74 (0.0000) χ2 (5) = 15.48 (0.0086) χ2 (5) = 18.72 (0.0025)

Pre-WWII (N = 30)

[0, 3] 6.638 0 [0, 3] 7.024 0 [0, 3] 7.458 1

[4, 8] 6.272 6 [4, 8] 6.515 6 [4, 8] 6.772 7

[9, 15] 6.058 14 [9, 15] 6.140 15 [9, 15] 6.207 13

>15 11.032 10 >15 10.321 9 >15 9.563 9

χ 2 (2) = 17.16 (0.0003) χ2 (2) = 20.02 (0.0001) χ2 (2) = 13.07 (0.0016)

Post-WWII (N = 16)

[0, 5] 6.507 4 [0, 4] 6.065 4 [0, 4] 6.552 5

>5 9.493 12 >4 9.935 12 >4 9.448 11

From the geometric distribution, E is the expected number of observations that lie in the stated interval. From the
sample, O is the observed number in the interval. The finite-sample one-tailed p-values are obtained through simulation.
The chi-square test is not applied to post-WWII bear markets due to the small sample size. The 5% critical value for a
chi-square distribution with 5 degrees of freedom is 11.07, while the 5% critical value for a chi-square distribution with
4 (2) degrees of freedom is 9.49 (5.99).

Relative to the geometric density, there are too few short bear phases and too many intermediate
ones. This fact is also reflected in Table 7 where the mean duration of the bear markets is almost
twice the standard deviation.

For the bull markets, we reject the constant-hazard assumption in the pre-war period for
imposed minimum phases of either 3 or 4. This is most interesting since neither SB nor MT reject
the null geometric density for the pre-war period when τ 0 > 2. Coupling the results presented in
Table 9 with those from Table 11, there appears to be strong evidence that bull markets exhibit
positive duration dependence for both the pre- and post-WWII sample periods.

We also investigate the nature of the duration dependence by using graphs. Figures 4 and 5
plot the hazards for the pre- and post-war bear and bull markets. For the post-war period, bull
markets appear to fall within the strict IFR class of alternatives since the hazard function appears
to continuously rise, while bear markets fall into the IFRA class since the hazard function rises
but only on average. For the pre-war period, both bull and bear markets exhibit IFRA behaviour,
but again, the Weibull hazard fails to reveal the complexity of the IFRA case. Based upon either
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Table 11. Chi-Square Tests for Constant-Hazard Bull Markets (One-Tailed p-Values Are Reported in
Parentheses).

Minimum phase

τ 0 = 2 τ 0 = 3 τ 0 = 4

Interval E O Interval E O Interval E O

Entire sample (N = 47)

[0, 3] 7.415 2 [0, 3] 7.719 4 [0, 2] 6.176 4

[4, 7] 6.245 4 [4, 7] 6.451 3 [3, 6] 6.991 3

[8, 12] 6.440 7 [8, 12] 6.595 8 [7, 11] 7.080 8

[13, 18] 6.108 10 [13, 18] 6.190 8 [12, 17] 6.569 8

[19, 26] 6.043 9 [19, 26] 6.043 9 [18, 25] 6.321 9

[27, 39] 6.308 8 [27, 39] 6.186 9 [26, 38] 6.334 9

>39 8.441 7 >39 7.816 6 >38 7.529 6

χ 2 (5) = 9.44 (0.0918) χ2 (5) = 7.61 (0.1840) χ 2 (5) = 6.04 (0.3189)

Pre-WWII (N = 30)

[0, 4] 6.027 3 [0, 4] 6.278 4 [0, 4] 6.551 5

[5, 11] 6.460 5 [5, 11] 6.646 4 [5, 10] 6.002 3

[12, 21] 6.330 11 [12, 21] 6.399 12 [11, 19] 6.249 11

>21 11.183 11 >21 10.677 10 [20, 35] 6.108 7

– – – – – – >35 5.090 4

χ 2 (2) = 5.30 (0.1030) χ2 (2) = 6.82 (0.0449) χ 2 (3) = 5.84 (0.0765)

Post-WWII (N = 15)

[0, 12] 6.235 5 [0, 11] 6.058 5 [0, 11] 6.264 5

>12 8.765 10 >11 8.942 10 >11 8.736 10

From the geometric distribution, E is the expected number of observations that lie in the stated interval. From the
sample, O is the observed number in the interval. The finite-sample one-tailed p-values are obtained through simulation.
The chi-square test is not applied to post-WWII bull markets due to the small sample size. The 5% critical value for a
chi-square distribution with 5 degrees of freedom is 11.07, while the 5% critical value for a chi-square distribution with
3 (2) degrees of freedom is 7.81 (5.99).

the parametric or nonparametric graphical evidence, however, we conclude that there is positive
duration dependence for both bear and bull markets.

4. SUMMARY

We have discussed discrete-time tests for duration dependence that may be applied to the analysis
of many types of economic data. Our weak form tests concentrate on moment conditions, and
we examine two simple asymptotically pivotal test statistics whose finite-sample p-values are
obtained though bootstrapping. The first of these tests is derived within the generalized method of
moments framework and the second is based on regression analysis. Our strong-form chi-square
test directly tests against a geometric density. We pay special attention to the rule-of-thumb that
each bin should have an expected frequency of about 6, and we report results based on both
asymptotic theory and bootstrapping.
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Figure 4. Bear markets.

Figure 5. Bull markets.
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Our first empirical application was to revisit the work of Diebold and Rudebusch (1990,
1991) on business cycles. In addition to finding evidence of an increasing hazard in post-war
contractions (as did Diebold and Rudebusch (1990)), we also find some evidence of positive
duration dependence in pre-war contractions. Positive duration dependence implies that new
contractions are more robust to failure than more mature contractions.

Based on graphical analysis, the hazard function for post-war contractions clearly appears to
fall within the IFR class of alternatives, never decreasing with ‘t’. On the other hand, pre-war
contractions appear to fall more within the IFRA class (but not the smaller IFR class) since the
hazard function increases, but only on average. Pre-war expansions clearly appear to fall within
the IFRA class of alternatives, while the hazard rates for post-war expansions are rather flat for
the shorter durations. So, there is strong evidence of positive duration dependence for pre-war
expansions, but very little in the post-war years. In particular, we have no strong statistical evidence
to support the notion that post-war expansions are duration dependent, though this may be due to
our small sample size.

We next examined the duration dependence of U.S. bull and bear markets. From graphical
analysis and formal statistical reasoning, both bull and bear phases display positive duration
dependence. For the post-WWII period, bull markets appear to fall within the strict IFR class of
alternatives since the hazard function appears to rise continuously, while bear markets fall into
the IFRA class since the hazard function rises, but only on average. For the pre-war period, both
bull and bear markets appear to fall within the IFRA class.

Our work follows that of Diebold and Rudebusch (1990) in that we have tested a version of the
Markov hypothesis based upon the two-parameter geometric density. That hypothesis states that,
once an expansion or contraction has exceeded some minimum value, the probability of a turning
point is independent of its age. Suppose, for example, that it is correct to impose a minimum
phase of 6 months. If so, then the hazard function (or the hazard rate in discrete time) must be
identically zero for months 1–6 and some nonzero value, p, thereafter. In other words, the phase
cannot terminate in less than 6 months, but has a constant hazard rate thereafter. Only under this
Markov hypothesis is it appropriate to truncate durations at 6 months, since in using the filter we
transform the durations to follow the geometric density. Note, in particular, that it is not true that
we begin with durations that follow the geometric density, but rather we obtain the said density
only after we impose the minimum phase of 6 months.

To reiterate, we find that subtracting a minimum phase from the observed phases is typically
insufficient to eliminate the duration dependence in business and stock-market phases. This is not
so surprising. For business cycles the growth rate of Gross Domestic Product is a reasonable proxy
for the implicit series used by the NBER committee to date the phases. While it is necessary to
account for any censoring prior to conducting the duration analysis, the observed serial correlation
in GDP should result in duration dependence. Failure to reject the null hypothesis for (say) post-
war expansions may be due to the small sample size.
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APPENDIX: AN ANALYTICAL FORM FOR THE ESTIMATE
OF c2 IN THE SB TEST

Consider the SB regression equation:

St = c0 + c1 St−1 + c2 St−1dt−1 + disturbance, (A.1)

where St is the state variable assigned unity if the observed index is a month of expansion (and zero for a
contraction) and dt is the number of consecutive months (i.e. the ‘duration’) spent in an expansion up and
through time t. It is possible to find an analytic form for the estimate of c2. To do so, first recognize that the
intercept in (A.1) can be eliminated by mean correcting all the variables. Let the sample means of St −1 and
St−1d t−1 be S and SD, respectively.15 Then,

1

T

T∑
t=1

St−1 St = S − n

T
, (A.2)

where T is the econometric sample size and and ‘n’ is the number of expansions, and

SD = 1

T

T∑
t=1

St−1dt−1 = 1

T

n∑
i=1

(xi + 1)xi

2
, (A.3)

where xi is the length of the ith expansion. Finally,

1

T

T∑
t=1

St−1 St dt−1 = 1

T

n∑
i=1

(xi − 1)xi

2
= SD − S. (A.4)

Let the (2,1) element in the inverse of the cross product matrix of the regression of St − S on St−1 − S
and St−1dt−1 − SD (scaled by 1/T) be ‘a’ and the (2,2) element be ‘b’. Then,

ĉ2 = a

(
S(1 − S) − n

T

)
+ b(SD(1 − S) − S). (A.5)

We can determine that

a = −�−1 SD(1 − S), b = �−1 S(1 − S), (A.6)

where � is the determinant of the scaled cross product matrix.
Putting all these elements together we get,

ĉ2 = −�−1 SD(1 − S)
{

S(1 − S) − n
T

}
+ �−1 S(1 − S){SD(1 − S) − S}

= �−1 n
T (1 − S)

{
SD − T

n S
2
}

= �−1 n
T (1 − S)

{
1
T

n∑
i=1

(xi +1)xi
2 − T

n ( n
T x̄)2

}

= �−1 n
T (1 − S) n

2T {σ̂ 2 − x̄2 + x̄}. (A.7)

Since the factors of proportionality are irrelevant to the test statistic, the SB test based upon ĉ2 is therefore
effectively checking if V(X) − [E(X)]2 + E(X) is zero.

15The sample means of St and St −1 are not exactly the same but we will ignore such end effects.
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