Mathematics 205: Linear Methods

Professor Linghai Zhang. Office: Christmas-Saucon Hall 236.
Office Hours: Monday, Wednesday, Friday, 2:10PM-3:00PM.
Telephone: 610-758-4116. Email: lizb@lehigh.edu

Textbook: Differential Equations and Linear Algebra.

Fourth Edition. Authors: Stephen W. Goode and Scott A. Annin.
Prerequisite: Math 22.

Examination One: 100 points. Monday, July 17, 2017.
Examination Two: 100 points. Monday, July 31, 2017.

Final Examination: 200 points. August 2017.

Quizzes: 100 points.

Total score: 500 points.

Grading policy: A: 471-500,

A-: 451-470,

B+: 435-450,

B: 417-434,

B-: 401-416,

C+: 385-400,

C: 367-384,

C-: 351-360,

D: 301-350,

F: 0-300. Homework is assigned every week and it will be collected
in the following week (Monday, if the professor teaches on Monday;,
Wednesday and Friday; Tuesday, if the professor teaches on Tues-
day and Thursday). No late homework is accepted. Homework
problems should be turned in before class, not after class. Home-
work turned in after a class is considered to be late. The lowest
two homework will be dropped.



While in Math 205 classroom, no cellphones, laptop computers,
calculators or any other electronic devices are allowed to use. No
calculators are allowed to use in the midterm exams and final exam,
Graphing calculators, or those capable of symbolic manipulations,
are absolutely not allowed to use. Attendance is strongly required
on every meeting day. If a student is absent from a midterm exam
or the final exam without any reason, then that student will receive
a zero in the midterm exam or the final exam. If a student is absent
for three or more times without any reason, then the professor may
have a Section three report for that student.

Students are expected to spend at least six hours every week to
get familiar with the materials and to do the homework problems.
The homework is an important part of the course: no one can
learn mathematics passively and as learning the material is your
responsibility, you should try to solve all problems assigned as soon
as possible. I strongly recommend doing the homework problems
right after the material has been covered in class - preferably on
the same day. You will benefit far more from the lectures if you
familiarize yourself with the material to be covered before class and
come to prepared to ask questions. It is important that students
keep up with both the homework and the lectures as the material
rapidly builds upon itself. If this becomes a problem, please ask
the professor for help as soon as possible.

Accommodations for students with disabilities: If somebody has
disability for which that student may be requesting accommoda-
tions, please contact both your mathematics professor and the Of-
fice of Academic Supporting Services, University Center 212 (Tele-
phone: 610-758-4152) as early as possible. You must have doc-
umentation from the Academic Supporting Services Office before
accommodations can be granted.
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Lehigh University endorses “The Principles of Our Equitable
Community” (http://www4.lehigh.edu/diversity /principles). We
expect each member of this class to acknowledge and practice these
Principles. Respect for each other and for differing viewpoints is a
vital component of the learning environment inside and outside the
classroom.

Schedule for Mathematics 205 in 2016:

Week 1 (August 29 - September 4, 2016) Chapter 1: First
Order Differential Equations (separable differential equations, first
order linear differential equations) 1.1, 1.2, 1.3, 1.4, 1.5

Week 2 (September 5 - September 11, 2016) 1.6, 1.7
Chapter 2: Matrices and Systems of Linear Equations (matrix op-
erations, elementary row operations, reduced row echelon form of
matrix, the method of Gauss elimination, inverse matrix,, solutions
of system of equations) 2.1, 2.2, 2.3, 2.4

Week 3 (September 12 - September 18, 2016) 2.5, 2.6
Week 4 (September 19 - September 25, 2016) Chapter
3: Determinants (definition of determinants, properties of determi-
nants, adjoin matrix, Crammer’s rule) 3.1, 3.2, 3.3

Week 5 (September 26 - October 2, 2016) 3.4 Chapter 4:
Vector Spaces (definition of vector spaces, subspaces, spanning set,
linear dependence and linear independence, bases and dimension,
null space, row space, column space) 4.1, 4.2

Week 6 (October 3 - October 9, 2016) 4.3, 4.4

Week 7 (October 10 - October 16, 2016) 4.5, 4.6, 4.8
Week 8 (October 17 - October 23, 2016), 4.9, Chapter 6:
Linear Transformations (definition of linear transformations, prop-
erties of linear transformation, one-to-one transformations, onto
transformations) 6.1, 6.2, 6.3, 6.4, 6.5

Week 9 (October 24 - October 30, 2016) Chapter 7: Eigen-
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values and Eigenvectors (eigenvalues, eigenvectors and eigenspaces,
diagonalization) 7.1
Week 10 (October 31 - November 6, 2016) 7.2, 7.3
Week 11 (November 7 - November 13, 2016) Chapter 8:
Linear Differential Equations of Order n (second order and higher
order differential equations, complementary solutions, particular so-
lutions, general solutions, annihilators, applications of differential
equations)
Week 12 (November 14 - November 20, 2016) 8.1, 8.2,
8.3, 8.5
Week 13 (November 21 - November 27, 2016) 8.6, 8.7
Week 14 (November 28 - December 4, 2016) Chapter 9:
Systems of Differential Equations (first order system of differential
equations, the method of variation of parameters, the method of
undetermined coefficients), 9.1, 9.2, 9.3, 9.4
Week 15 (December 5 - December 11, 2016) 9.6, Review
for the Final Exam
Week 16 (December - December , 2016) Final Exam
Week 17 (December - December , 2016)
Week 18 Christmas

Mathematics 205 Practice problems
1.4: 8,10,12. 1.5: 9,10, 14. 1.6: 4,6, 13,23. 1.7 1, 4.
2.1: 21-26, 2.2: 12, 15. 2.3: 9-11. 2.4: 22, 24, 26. 2.5: 25, 26, 40.
2.6: 9, 15, 18, 20, 25.
3.1: 20, 30, 40. 3.2: 5,9, 18, 22, 25. 3.3: 15, 20, 23, 30. 3.4: 6, 10,
21, 27.
4.1:9,10. 4.2: 11, 13, 20, 21, 28, 29. 4.3: 11, 14, 20, 22. 4.4: 10,
13, 16, 20, 33. 4.5: 8,12, 14, 18, 26, 35, 43, 44. 4.6: 22, 23, 30, 36,
40, 44, 46, 48, 54. 4.8: 9, 14. 4.9: 8, 10, 12.



6.1: 4, 8,12, 18. 6.3: 4, 12, 14, 16, 18. 6.4: 17, 20, 22. 6.5: 4.
7.1: 20, 28, 32. 7.2: 14,16, 21. 7.3: 8, 12, 16.
8.1: 23, 29, 38. 8.2: 9, 19, 21, 36. 8.3: 11, 12, 25, 29, 35. 8.5: 1, 4,
8, 12. 8.6: 6,8. 87: 1,3, 12, 18. 9.1: §, 10, 14, 19. 9.2: 1, 6, 9.
9.3: 3,6, 7. 9.4: 9,10, 13, 14. 9.6: 5, 6, 8, 9. Note: Sections 4.7
and 5.5 may be covered, but we will keep it light.

Mathematics 205 - Differential Equations and Linear
Algebra

Chapter One: First Order Differential Equations

Section 1.1 Differential Equations Everywhere

Section 1.2 Basic Ideas and Terminology

Section 1.3 The Geotry of First Order Differential
Equations

Section 1.4 Separable Differential Equations

Solve the following separable differential equation

dy  exp(3w) cos(4w)

dz  exp(5y) cos(12y)’

Solution:

1
T exp(5y)[5 cos(12y) + 12sin(12y)]

— %exp(i%x)[:g cos(4x) + 4sin(4z)] + C.

Section 1.5 Some Simple Population Models

Section 1.6 First order 1Linear dDifferential eEqua-
tions

Let p = p(z) and ¢ = q(x) be given real functions. Consider the
following differential equation

du

1r + p(z)u = q(x).
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The integrating factor is defined by

o) = | [ plajas]

Multiplying the given differential equation by the integrating factor
p(x), we find

% {exp [ / p(x)da:] u(a:)} - 4(z) exp [ / p(x)d,x] |

Solving this equation, we obtain the general solution

exp [ / p(x)dx] ul(z) = / {q(x) exp [ / p(x)dx]}dx.

Chapter Two: Matrices and Systems of Linear Equa-
tions
Section 2.1: Matrices: Definitions and Notations

An m X n matrix is represented by A = (@jj)mxn, Or more
explicitly by
aiplr a2 a3 - Ain \
Q21 A2 Q23 -+ Qa2n
A= aszy asz azz -+ a3
K Am1 Am2 Am3 - Qmp )

There are m rows and n columns in the matrix.

The matrix
(6611 a1 aszp - - Cbm1\
a2 Qo2 a3z *-- Am2
T
A = a1z G233 agzz - Gm3

Kaln Aon QA3p - - amn)



is called the transposed matrix of A.
If m = n, then the matrix

(an a2 diz -+ aln\
ao1 Q22 Q23 +-- QA2p
as; a2 azz - A3z

Kanl Ap2 Ap3 - ann)

is called a square matrix.

(an 0 0 0 )
0 a99 o --- 0
0 0 ass - -- 0

is called the main diagonal of the matrix A.

The matrix
{ A 00 0 \
0 Xo O --- 0
0 0 A3 0

EE

is a diagonal matrix.

The matrix
100 ---0
010 ---0
001---0
000 --- 1



is called an identity matrix.

The matrix
( aip a2 diz -+ dip \
a2 Q22 G23 --- AaA2p
a3 Gg3 azz -+ dA3n
Kaln azn A3p * ann/
is called a symmetric matrix. Note that AT = A.
The matrix
( 0  ap agz - aln\
—aip 0 axy -+ ag
—a13 —azz 0 - ag,
\_aln —Aa2n —A3p - 0 )
is called a skew-symmetric matrix. Note that A" = —A.
The matrix
( aip diz Aaiz - Qip \
0 ax as -+ a,
0 0 ag -+ asy

is called an upper triangular matrix.

The matrix
(an 0 0 0 )
as; azp 0 0
azy asy as3 0
Kanl Ap2 QApz - - ann)



is called a lower triangular matrix.

Section 2.2 Matrix algebra

Definition Let A = (aj)mxn and B = (bij)mxn be matrices.
Let o be a real constant. Define

A+ B = (az’j + bz’j)mxn, A—DB= (az'j - bz‘j)mxn, aA = (Oéaz'j)mxn-
More explicitly

(an 12 a1z - afln\ (511 bz biz --- bln\
a2

1 G2 Aag3 --- dop 521 522 523 b2n
asy asy asz -+ as, |+ | 031 b3 b3z -+ b3,

\aml am2 Am3 - amn) \bml me bm3 bmn)

( ajp +011 app+bio aiz+biz - ap+ b, \
ao1 + b1 aga 4+ boo  ags+bag -+ ag, + by
= | a31+b31 asp+by asz+bs3 - az,+b3, |,
K am1 + bml am?2 + bm2 am3 + bm?) s Umn + bmn )
and
( aap aarp a0 g \
aao21 Qasr Aoy -+ Aoy
aA = aa3; Qasy as3 - sy,
\ Ay Oy Q3 -+ Ol )

Let A = (a;j)mxn and B = (b;j),x, be matrices. Define

n

AB = (Cz'j)mxpa Cij = Zaikbkj-
k=1



The properties

(AB)C = A(BO),
(A+ B)C = AC + BC,
AB+C) = AB+ AC,

(AT = A,
(A+ B = AT + BT,
(AB)!' = BTAT.

If A= (a;;) and B = (b;;) are n X n square matrices, show that in
general

(A+ B)* # A* + 2AB + B*.

Show, however, that the equality always holds if AB = BA.
Solution: Let

12 0 1
() ()
Then AB # BA, so
(A+ B)* # A* + 2AB + B*.

Section 2.3 Terminology for Systems of Linear Equa-
tions
Consider the following m x n system of linear equations

11T + appry + aj3xs + - - -+ apr, = by,
9171 + Q20X + Ao3T3 + « -+ + a2, = bo,
a31T1 + aseTo + as3rs + - - - + aspx, = b,

Am1T1 + Qpa®s + Ap3T3 + -+ + App Ty = bma
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( aijp a2 ais
a21 Q22 0423
A= as;y asz2 ass

( aip a2 ais
a21 Q22 0A23
A# = asy dasz2 A33

Kaml Am2 Am3 -

\aml Am2 Am3 * -

where a;; and b; are given real constants. The matrix

A1n \

A2n
a3n

Amn )

is called the coefficient matrix of the system Ax = b. The matrix

ai, b \
as, by
as, b3
o b

is called the augmented matrix of the system Ax = b.

Definition. If there exists a solution, then the system Ax = b
is called consistent. If there exists no solution, then the system
Ax = b is call inconsistent.

Section 2.4 Elementary Row Operations and Row
Echelon Matrices

Definition. The elementary row operations include:

(1) Interchange two rows.

(2) Multiply a row by a nonzero constant.

(3) Multiply a row by a real constant and add the result to
another row.

Definition. An m x n matrix A = (a;;) is called a row-echelon
matrix if it satisfies the following three conditions.

(1) If there are any rows consisting entirely of zeros, they are
grouped together at the bottom of the matrix.

(2) The first nonzero element in any nonzero row is a leading 1.
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(3) The leading 1 of any row below the first row is to the right
of the leading 1 of the row above it.

Definition. An m x n matrix A = (a;;) is called a reduced
row-echelon matrix if it is a row-echelon matrix and it satisfies the
additional condition:

(4) Any column that contains a leading 1 has zeros everywhere else.

Definition. The number of nonzero rows in the reduced row
echelon matrix is called the rank of the matrix.

Examples:
1000 1000 1 000
0100]),101001},1010°0
0010 0001 0000
Find the reduced row echelon form and the rank of all matrix
32 =52
11 -111,
1 0 -3 4
3 —1 4 2
1 -1 2 3
7 —180

Section 2.5 Gaussian Elimination
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Theorem. Let A = (aj;j)mxn. Consider the m x n system of
linear equations Ax = b.
Let A7 represent the augmented matrix of the system.
If rank(A) =rank(A#) = n, then the system has a unique solution.
If rank(A) <rank(A®), then the system has no solution.
If rank(A) =rank(A#) = r < n, then the system has infinitely
many solutions, with n — r free variables.

Section 2.6 The Inverse Matrix of a Square Matrix

Definition Let A = (a;;)nxn. If there exists another matrix
B = (bij)nxn, such that

AB=BA=1,

then we say that the inverse matrix of A exists and A~ = B.
Some properties of inverse matrix:

(A1) = A,
(AB) ' =B"1A1,
(A= (AThH".
If there exists a matrix B, such that AB = I or BA = I, then
the inverse matrix A~! exists and B = A~
The inverse matrix A~! exists if and only if the rank of A is
equal to n, if and only if there exists a unique solution to Ax = b,
for any vector b.
There exists a unique solution £ = A~'b to the system Ax = b,
if the inverse matrix A~! exists.
Example. Let A be a real square matrix with A = 7. Find
A~ Solution:
A=A
Example. Let A be a matrix, satisfying the equation

aA® — A =1,
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where o # 0, (§ is a constant and [ is the identity matrix. Find the
inverse matrix A~! of A. Solution:

Al = A —BI.

Example 1.
Example. Find the inverse matrix

—1 -1

1
2 =3
I -1

— W DO
I
|
'—l
}_l

1 0 -1

3\, /1 161
2 ——| -6 10 2
—1 M3 o

w o
(5 =

Solution: Performing elementary row operations to the augmented
matrix (A, I'), we have Example. Use elementary row operations
to find the inverse matrix of

0 -1 3
I =1 1
I 0 -1

Example 3. (I) Let A% =0. Find (I —2A)™! = I +2A+4A°
(I1) Given that A*> = 5A + 2I. Find the inverse matrix of A.

Solution:
A—1 3
AI_A"( 2 A—4)’

det(A\ — A) = A\ — 5\ —2,

At = Yz,
2
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Solve the system of equations

r+y+3z = 2,
y+2z = 1,
3x+5y —z = 4.

Example. Let o, 5, v, 6 be real numbers, such that ad — 3y #
0. Then the inverse matrix of

(30

1 1 o —p
4 _045—67<—7 04>°

Example. Let x € R and define the matrix
1 =2z 227
2v 1 —2z% —2z

27? 2x 1

1S

B 1
1+ 222

Show that the inverse matrix A~! = AT,
Section 2.7 Elementary Matrices and the LU Factor-

ization
1 2
(21)
is real symmetric.
Section 2.8 The Inverse Matrix Theorem I
Section 2.9 Chapter review

Chapter 3 Determinants
Section 3.1 The definition of the determinant

a b
det(c d) = ad — be.
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ail a2 ais
det o1 A929 A923
as; azz Aass

= 111022033 + (21032013 + A12A23031

— 31022013 — Q32023011 — A21A12G33.

Let A = (ai;)nxn- Let Cj; represent the cofactor of a;;.

Section 3.3 Cofactor expansions

Let A = (a;j)nxn. The element a;; is in row ¢ and in column 7.
Let us cross out row ¢ and column 7 in A.

( ai; a2 aiz - ay; - Aip \
a1 Q22 A23 -+ Q25 -+ A2p
asy asz asz --- Aaz; - A3
;1 A2 A3 0 Qi ot Qi

K Qp1 Ap2 Ap3 -+ Qpj -~ dpp )

The cofactor Cj; of a;; is the determinant of the reduced matrix
times (—1)"*.

Definition. Define the determinant by using row expansion

n
det A = Z a;;Cir, = anCi1 + ai2Cia + a;3Ci3 + - -+ + @i Cin,
k=1

where 2 =1,2,3,--- ,n.
Define the determinant by using column expansion

n
det A = Z aijkj = alelj + CLQJ'CQ]' + a?,jCBj + - anjcnja
k=1
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where 7 =1,2,3,--- ,n.

Section 3.2 The Properties of Determinants

Let A = (aj)nxn and B = (b;j)nxn be square matrices.

If every element in one row of A is zero, then det A = 0.

If two rows of A are identical, then det A = 0.

If one row is equal to another row multiplied by a constant «,
then det A = 0.

If Aisann x n upper or lower triangular matrix, then det A =
a11a922433 * * * App- More explicitly

[N 00 0 )
0 X O 0
det 0 0 )\3 0 = )\1)\2)\3 s >\n
\ 0 0 0 A, )
[an 0 0 0 \
az a0 0
det | as; aso ass -+ O = 11022033 * * * Qpp,
\ An1 QAp2 QAp3 -+ App )
(0611 a2 apz --- aln\
0 ax a3 --- ag,
det 0 0 as3 -+ as, | =aj1axa33- - an,.

\ 0 0 0 o ag )
If the matrix B is obtained by interchanging two rows of the
matrix A, then

det(B) = — det(A).
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If the matrix B is obtained by multiplying a row of the matrix A
by a scalar «, then

det(B) = acdet(A).

[f the matrix B is obtained by multiplying a row by a scalar and
giving the result to another row of the matrix A, then

det(B) = det(A).
det AT = det A.

det(AB) = det(A) det(B)

Let A be an invertible n x n matrix. Then

1 1
det(A )_detA'
Examples.
Let
2 2 2
A=12 2 2
2 2 2

Find the determinant of the matrix A\ — A.
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Solutions:

A—2 =2 =2

M—A = —2 A—2 =2
-2 =2 A=2
A—2 —2 =2
— A A 0 :
~A 0 A
A—2 —2 =2
det(A — A) = XNdet| -1 1 0
-1 0 1
A—600
= Mdet| —1 10 |=XA\-06).
-1 01

Let

AN

I
RIS
SRS
NN
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Find the determinant of the matrix A\ — A.

A—4 =2 =2
M —A = —2 A—4 =2
-2 =2 A—4
A—4 =2 =2
- | 2=A2Ax=2 0 ,
2—X 0 A—2
A—4 =2 =2
det( M —A) = A=2)*det [ -1 1 0
-1 0 1
A—800
= A=2%det | —1 10 ] =(\=272*N=23).
—1 01

Let
1 1 —1
A= -1 3 —1
—11 1

Find the determinant of A\I — A. Performing elementary row oper-
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ations to the matrix AI — A, we have

A—1 —1 1

M—-—A = I Ax=3 1
1 -1 A—-1

A—1 -1 1

— 2—AA—=2 0
2—X 0 A=2

A—1 —11
det(A —A) = (A—=2)*det | —1 1 0
-1 0 1
A—100
= (A=2%det | -1 10)
~1 01
= A=D1\ =2

Evaluate the determinants of the matrices Show that

0 = vy =z
—x 0 1 —1 o 2
det 410 1 =(x+y+2)°

—z 1 =1 0

21



Solution:

det

T 2
— —1
= det ’ !
—1 —1 1
\—:U—y—z 0 0
Ty 2
= (x+y+z)det| 0 1 —1
-1 0 1
r Yy r+y+=z
= (x4+y+z)det| 0 1 0
-1 0 0
= (r+y+2)°
If a row vector of A is the sum of two row vectors, r; = ri + 17,
then
det A = det[ry, -+ ,rl, - ]+ detfry, -+ rl oo m).

Let A = (a;;) be an n x n matrix and let Cj; be the cofactor cor-

responding to a;;, for all ¢ = 1,2,3,--- ;nand 5 =1,2,3,--- ,n.
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Then

det(A) = Z aikCZ-k = Z aij’kj,
k=1 k=1
Z a;rCjr = 0, where rows ¢ # 7,

k=1

n
Z ay;iCr; = 0, where columns ¢ # j.

k=1
Therefore
(011 @12 @iz - aln\ (011 Cor Cs1 - Cm\
a21 Q22 Q23 --+ dAp 012 022 032 Cn2
asy asz ass --- Aazp 013 023 033 Cn3

\afnl Ap2 Ap3 - - afnn) \Cln OQn C?m Onn)

(detA 0 0 0 \
0 detA 0 --- 0
— 0 0 detA --- 0
Lo 0 0 a4
[1 0 0 0\
0 1 0 0
= det A 0 1 0

E

Therefore, if det A # 0, then the inverse matrix may be represented
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as

-1

(au a2 aiz --- aln\ (011 Coy Csp - Cm\
o1 Q22 A23 -+ Q2p 1 Cha Cy 032 On2
8asz; aszy asz --- agy = 9o A Cig Coz C33 --- Oy

\ an1 Aap2 Qp3z - - ann) \Cln C2n 0377, Cnn)

Theorem.

det(A) # 0 if and only if the inverse matrix A~ exists.

Example. Let a and b be given real constants. Solve the equation
for all solutions

1 1 1
det | a b =z = 0.
a® b 2

Solutions: Performing elementary row operations and use proper-
ties of determinants yield

1 1 1 1 1 1
det| a b =z =det| 0 b—a x—a
a? b 2 0 b2 —a? z%2— a?

b—a x—a 1 1
B dem(bz—a2 x2—a2> (b—a)(x—a)det(IH_a :U—i—a)

Lo ):(b—a)(x—a)(x—b).

0 z—a
The solutions of the equation are x = a and x = b.
Let a, b, ¢ be distinct real constants. Use cofactor method to
find the inverse matrix of

= det(b — a)(z — a)det (

1 1 1
a b c
2 b2
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Solution. First of all, the determinant of the matrix is

1 1 1
det | a b c
a’ b
1 1 1
= det| O b— c—a
0 b>— a2 ? — a’

b — c—a
= det b2 — a2 2 — a?

:(a—b)(c—a)det( - )

—a—b c+a
= (a—0b)(b—c)(c—a)#N0.

Second, the transposed matrix of the cofactor matrix is

—be(b—c) (b—c)(b+c¢c) —(b—c)
—ca(c—a) (c—a)lc+a) —(c—a)
—abla —b) (a—"Db)(a+0b) —(a—b)

The inverse matrix is given by

(a—b)(b—c)(c—a)

—be(b—c¢) (b—c)(b+c¢) —(b—c)
—ca(c—a) (c—a)(c+a) —(c—a)
(a=1b) (a—=b)(a+b) —(a—b)

Let a, B, v be real distinct constants. Solve the following equa-
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tion for all solutions

1 1 1 1

a [ v x
det = ().
€ o B 4% 2

od B AP a8

Solutions: Performing elementary row operations and applying prop-
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erties of determinants, we have

(1 1 1 1
a B v «x
det
¢ o B2 4% 1
o BB o

= det X N

1 1 1
det a+x B+ v+
a2+aaz+az2 6%+ Bx + 2% V? 4 yx + 22
= —(a—x) — )
1 1
( S—n 0
oz—v+oz—”/)x B =7+ (B =z 0
= —(a— — )
B—n
4 (02 e 3 (5 )

- (a-) x)(a—w)(@—wdet( 1 1

= —(z—a)(z =)z —7)(a=B)B -7 —a)
Therefore, the solutions are x = a, x = 3, x = 7.
Crammer’s rule: Let A = [cy,co,- -, c,] be an nxn matrix,

27
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where each ¢; is a column vector of A, let b be another column
vector. Suppose that det A = 0. Then the solution of the algebraic
system Ax = b is given by x = A7!b, namely

LTi = "7 Ai:a7'”7ai—7b7ai y Ty Ap).
det(A) ( 1 1 +1 )
Solve the system of equations

ar +by = r,

cr+dy = s,

where ad — be # 0.

The solution is given by

r b
det
e(S d) dr — bs
gj: —_—
ot a b ad — bc’
¢ c d
det(a T)
B cs/) as—rc
4 (a b>_ad—bc'
det
c d

Let A = (a;j)nxn be a matrix and let b be a vector in R”. The
algebraic system Ax = b has a unique solution if det A # 0.

Section 3.4 Summary of determinants

Section 3.5 Chapter review

Chapter 4. Vector Spaces

Section 4.1 Vectors in R”

Section 4.2 Definition of a Vector Space

Section 4.3 Subspaces
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Let V = R3 and let

1 4 14
W = span S|, -1 1], 3
2 3 13
1
Is it true that W = R3? Is it also true that [ —10 | € W? Show
-3

all work to support your answer.
Solutions: Since

14 1 4
3 | =2-13]|+3-| —-11,
13 2 3
14
the vector | 3 | is spanned by the first two vectors. Therefore,
13
W # R?. Since
1 4 1
—10 | =1 —-11]-3 :
—3 3 2

we know that

Let V = R? and let

1 2 § D
W = span 2 |, 1 11,16 ], 4
3 1 § 3

29



Is it true that W = R3? Show all work to support your answer.
Select three vectors from the given five vectors to form a basis of
R3. Verify why this is a basis.

Section 4.4 Spanning Sets

Definition. Let V be a vector space and let vy, v9, v3, -+ -+ - :
v, be vectors in V. If every vector v in V may be written as a linear
combination of vy, vg, v3, -+ -+ - . Up, that is, v = aqv1 + avvy +
a3v3 + - -+ + a, vy, then we say that V is spanned or generated by
V1, Ug, Vg, =+ ==+ - , U We call the set of vectors {vy, vy, vg, -+ - - :
v, } a spanning set of the vector space V.

Theorem. Let vy, v9, v3, ---, v, be vectors in R". Then
{v1, va, v3, -+, v,} spans R" if and only if the determinant
det(vy, v, v3, - -+ ,v,) # 0, if and only if the system Ax = b has a
unique solution for any vector b € R”, where A = (vq, v, 3, - -+ , Up).

Example. Show that

1 2
2 |, 3, 1
3 1

is a spanning set of the vector space R3.
a

Solution: For any real vector [ b | € R?, let us sce if there exists

c
a solution («, 3,7) to the system of equations

a 1 2 3
b l=al2|+8 3]+ 1
c 3 1 2
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That 1s

123 Q a
2 31 o l=121
31 2 vy &

If the determinant of the coefficient matrix is not zero, then there
exists a unique solution to the system. By using properties of de-
terminants, we may calculate the determinant

123 6 6 6
det| 2 31 | =det| 2 31
312 31 2
111 1 1 1
6det<231 =06det| 1 2 0
31 2 1 —10

Hence, there exists a unique solution | S | to the system. There-

y
1 2 3
fore 21,1 31,11 is a spanning set of R
3 1 2
Theorem. Let vy, vy, v3, -- -, v, be vectors in a vector space
V. Then the subset W spanned by these vectors vy, vo, v3, -+, v,

is a subspace of V., where

n
W = { g QUL - O, Qig, O3, - -+, (i, are real numbers} :
k=1
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Determine whether the vectors

1 —2 4
vi=| —1 |,vo= 1 ,va=| —3 |,
4 D
span R?.
If V =1R3and
1 0
Vi = 0 , Vo = 1 , V3 =

1 1 —1

Determine the subspace of R? spanned by v; and vs. Does v lie
in this subspace?

Find a spanning set for the vector space V' consisting of all 3 x 3
skew-symmetric matrices.

Solution: For all real numbers a9, ai3, ass, there holds

ap; aiz a13 0 ap a3

asy a asz | = —aiz 0 as

asy azy ass —ai13 —azz 0

0 10 0 01 0 0 O

= a12 —1 0 0 + a3 0 00 + Q93 0 0 1

0 00 —1 00 0 —10

Therefore

0 10 0 01 0 0 O
“100|.l oool.lo o1
0 00 —1 00 0 —10

Is a spanning set.
Consider the vector space P». Let

f(x) =2 —4, glx) =2* —x +3, h(z) =22° — 2 + 2.
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[s it true that

h € span{f,g}?

Let a and b be real numbers, such that

af(z) +bg(z) = a(r —4) + b(x* — z + 3)
= bx? + (a — b)x + (—4a + 3b) = 20° — x + 2.

We find that @ = 1 and b = 2. Therefore, h €span{ f, g}.
Section 4.5 Linear Dependence and Linear

Independence
Definition. Let V be a vector space and let vy, v9, v3, - -+, v,
be vectors in V. If the only solution of the equation

1V + QU9 + asgvs + - - - + a,v, = 0,

is the zero solution a1 =0, ap =0, a3 =0, ---, a,, = 0, then we
say v, Vo, U3, -+ -, U, are linearly independent.

Definition. Let V be a vector space and let vy, v9, v3, - -+, v,
be vectors in V. If there are scalars o, a9, ag, -+, «, not all

equal to zero, such that
a1V + vy + asgvs + - - - + a,v, = 0,

then we say {vy, vy, v3, -+ -, v, } are linearly dependent.
Find three nonzero real numbers a, b and ¢, such that

1 —1 0 0
al 2 |+0| -2 | +c| O0O]=1|20
3 —3 0 0
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Let

™~ O
W — O N

Determine all values of the constant k for which the vectors is
linearly independent in R*,

Let
1 3 —1 —2
vi=| 2 |,vo=| 3 |,vy= 1 =1 —4
3 2 4 —06

Determine a linearly independent subset of these vectors that span
the same vector subspace of R? as span{vy, vo, v3, v4}.
Let

1 3 2 —2
V| = 4 Vo = = V3 = -1 V4 = 3

1|’ 2 ’ 0 ’ 1

7 3 9 0

Determine whether these vectors are linearly independent.

Definition. The set of functions {f1, fo, f3, -+, fu} is lin-
early independent on an interval I if and only if the solution of the
equation

arfi(z) + o folx) + asfs(x) + -+ ay, fu(z) = 0,

sa; =0, a0=0,a3=0, -+, a, = 0.
Definition. The set of functions fi, fo, f3, -, fn is linearly
dependent on an interval I, if and only if there exists at least one
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non-trivial solution (aq, a9, as, -+, a,) # (0,0,0,---,0) to the
equation

ar fi(z) + agfolx) + asfs(x) + - - + ay fu(x) = 0.

Show that 1,z, 2%, 23, 2*, 2°, 0 are linearly dependent. Solution:
r are re numbers (o), such that 01 +0-2+0-2*+0-2°+0-2* +
0-2°+1-0=0. Thus they are.

Show that the 1, cos® z, sin® z, cos 2z and sin 2z are linearly de-

+

pendent by finding five real numbers and as such that -1-cos? - sin™ a4 cos 25-

sin 2 = 0 for all real numbers 2. Do not use Wronskian idea. Solu-
tion: There are non-zero real numbers, such that

1-1+(—1)-(cosz)*+ (—1)(sinz)* 4 0 - cos(2z) + 0 - sin(2x) = 0,
for all x € R. There are also non-zero real numbers, such that
0-1+4(=1)-(cosz)*+1-(sinx)* 4+ 1 - cos(2x) + 0 - sin(2x) = 0,

for all x € R. Thus these functions are linearly dependent on R.
Definition. Let fi, fo, f3, -+ -, f, be smooth functions defined

on the interval I. The Wronskian of fi, fo, f3, -+, fnisthen xn
determinant

f@) b B ) )
file)  fBl@) A e fila)
det | Hl@)  fla)  H

3(x) - fi(@)

n—1 n—1 n—1 n—1
\ AV B @) @) e 1))
Theorem. If the Wronskian of the functions fi, fo, f3, -- -,
fn is not equal to zero, then the functions fi, fo, f3, ---, f, are

linearly independent. (Note: The converse of the Wronskian test is
not necessarily correct.)
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Show that cosx and sinz are linearly independent. Solution:

The Wronskian
det( cqs:c sinaz) _
—sinx CosSxT

Prove that 1, z, 2%, 23, 2* are linearly independent.

Solution: The Wronskian

(1 A S \
0 1 2¢ 322 423
det | 0 0 2 6x 122°2 | =288 > 0.
00 0 6 24x

\00 0 0 24 |

Let ri < ro < rg be real numbers. Define the following functions

fi(z) = exp(riz), folz) = exp(roz), f3(x) = exp(rsz).

Show that they are linearly independent.
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Solution: Let us calculate the Wronskian W ( f1, fa, f3)(x):

hlx) folz) falx)
det [ fi(z) fi(z) fi(x)
) f@) Fla)
exp(rz)  exp(rox)  exp(r3r)
= det | 7 exp(ﬁx) TgeXp(TQCU) "“3GXP("°3517)

r? exp(rix) 15 exp(rox) 7"3 eXp(’rga:)

r2 1 r2

1 1 1

= expl(ri +ro+r3)x|det | 0 ro—ry r3—1

D(
1
= expl(ry +ro+r3)x]det | 1 1o 73

) )
07“2 r{ T3 —T]

—1 1
= (r — - + 7y + )] det
(r1 — 19)(r3 — 1) exp|(ry + ro + r3)x] de ( 7y 7ot )
= (r1 —r9)(ry — r3)(rs — 1) exp[(r1 + r9 + 7r3)2].

Therefore, the functions exp(riz), exp(rox) and exp(rsz) are lin-
carly independent on R.
Prove that cos x, sin z, cos(2x), sin(2z) are linearly independent.
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Solution: The Wronskian

COS X

Wi(zx) = det oo

— COS T
SIn &

COS T
—sinx
0

\ 0

COS T

= det

—sinx

0

\ 0

= det

sinx  cos(2x) sin(2x)

cosx —2sin(2z) 2cos(2x)
—sinx —4cos(2x) —4sin(2x)
—cosx  8sin(2r) —8cos(2x)
sinx  cos(2x) sin(2x)
cosx —2sin(2x) 2cos(2x)

0 —3cos(2xr) —3sin(27)

0  6sin(2z) —6cos(2x) )
SN T 0 0 \
COS T 0 0

0 —3cos(2xr) —3sin(27)
0 6sin(2r) —Geos(2x) )

— 18 £ 0.

Therefore, the functions cosx, sinx, cos(2x) and sin(2z) are lin-

early dependent on R.

(A) Let 71 < 79 < r3 be real numbers. Show that are linearly

independent.
Prove that

are linearly independent.

l,z,sinz, cosx

Solution: If there are numbers «, 3, v, ¢ such that

a+ Br+ysinx 4+ dcosx =0,

for all x, then differentiating the equation about x yields

B+~cosx —dsinx = 0.

Calculating the derivative again gives vysinx + dcosx = 0. By
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using the Wronskian of sin x and cos x:

W (sinx, cosz) = det ( S e ) = —1,

COST —SsInx

we see sin x and cos x are linearly independent, so that v = 0,90 = 0.
Hence we have a + bx = 0, for all x. It is easy to get « = 0, 5 = 0.
Therefore 1, z, sin z, cos z are linearly independent.

Solution: There are real numbers 0, 0, 0, 0, 1, one of them is nonzero,
such that

0-cosz+0-sinz+0-cos(2z) 4+ 0-sin(2x) +1-0=0.
Thus they are linearly dependent.

Given m vectors vy, v9, U3, - -+, Uy in R”, how to determine if
they are linearly independent or linear dependent? How to deter-
mine if vy, v9, v3, -+, v, span the entire space R"? Or how to
determine if another vector v is in span{vy, ve, vs, -+, vy }7 If
the number m of vectors is equal to the dimension n, then com-
pute the determinant of the square matrix (v, vo, v, -+ ,v,). If
the determinant is not equal to zero, then vy, vo, v3, ---, v, are

linearly independent and they span the whole space R"™. If the
determinant is equal to zero, then vy, vo, v3, - -+, v, are linearly
dependent and they do not span the whole space R". If the num-
ber of vectors is not equal to the dimension n, then also there is a
powerful idea: performing elementary row operations to the matrix
(v1,v9,v3, -+, Uy,) or to the augmented matrix (vy, v9, v3, -+ , U, b),
check the reduced row echelon form to make the corresponding de-

cision.

Section 4.6 Bases and Dimension

Definition. A set of vectors {vy, v9, v3, --+, v,} In a vec-
tor space V is called a basis if (1) vy, v9, v3, -+, v, are linearly
independent and (2) vy, vg, v3, -+ -, v, span the whole space V.
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Theorem. If a finite-dimensional vector space has a basis {v1,
Vg, U3, -+, Uy} consisting of n vectors, then any set of more than
n vectors is linearly dependent.

Theorem. All bases in a finite-dimensional vector space V
contain the same number of vectors.

Theorem. If a finite-dimensional vector space V has a basis
consisting of n vectors {vy, vo, v3, - -+, v, }, then any spanning set
must contain at least n vectors.

Definition. The dimension of a finite-dimensional vecrtor space,
written dim V, is the number of vectors in any basis {vy, v, v3,

-+, v, } for V. If Vs the trivial space {0}, then we define its
dimension to be zero.

Theorem. If dim V = n, then any set of n linearly independent
vectors {vy, Vo, V3, - -+, v, } in V is a basis for V.

Theorem. If dim V = n, then any set of n vectors {vy, vo, v3,
-+, v} in V that spans V is a basis for V.{vy, v9, v3, -+, v, }

Theorem. If dimV = n and W = {v, vy, v3, --+, v,} is a
set of vectors in V, then the following statements are equivalent:

(1) {wy, va, v3, -+, v, } is a basis for V.,

(2) {1, vg, v3, -+ -, v, } is linearly independent.

(3) {wv1, vg, v3, -+, v, } spans V.

Find a basis for the linear vector space

V = { ( CCL Z ) . where a, b, ¢, d are complex numbers} :

Solution: The following set

10 01 0 0 0 0
00/7\00 10/)°\01
is a basis for the space V.
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Theorem. Let W be a subspace of a finite-dimensional vector
space V. It dimV = n, then dimW < n. If dimW = dimV,
then W = V.

Theorem. Let W be a subspace of a finite-dimensional vector
space V. Any basis of W is part of a basis of V.

Is the vector space V.= C(R) = {f: f is a continuous func-
tion defined on R} finite-dimensional or infinite-dimensional? Show
work and give a possible basis.

Solution: It is an infinite-dimensional vector space. For any integer
n > 1, the vectors

2 3 n
1,.’17,55 y Loy, T

are always linearly independent. A basis is:

La, a2, ",
or
1, cos x, sin x, cos(2x), sin(2x), cos(3x), sin(3x), - - - , cos(nx), sin(nx), - - -
Let A = (ajj)mxn = (v1,v2,--,v,) be a matrix. Define the

null space of A by
NS(A)={x e R": Az = 0}.

The null space is a subspace of R".
Define the column space by

CS(A) = {a1v1 + agug + v + -+ - + vy, - Qp, g, (g, -+ -,y are real con

The column space is a subspace of R".
Define the row space by

RS(A) = {Bir1 + Parg + Bars + - -+ + Brm : B1, B2, B3, -, B are real consta

The row space is a subspace of R".
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Theorem. Let A = (ajj)mxn be a matrix. Then
rank(A) + dim NS(A) = n.

Theorem. Let A = (a;j)mxn be a matrix. If rank(A) = n,
then Az = 0 only has the trivial solution = 0 and the null space
NS(A) = {0}. If rank(A) < n, then Az = 0 has infinitely many
solutions. All of them may be represented as

T = QT1] + 0T+ + Qp—yp Ty,

where {x1, x9, -+ ,x,_,} is a linerly independent set of n — r so-
lutions to Az = 0.

Theorem. Let A = (a;;)mxn be a matrix. Consider the system
Ax = b. If b is not in the column space C'S(A), then the system
has no solution.

If b is in the column space C'S(A), then the system has a unique
solution if dim(C'S(A)) = n and the system has infinitely many
solutions if dim(C'S(A)) < n.

Theorem. Let A = (a;j)mxn be a matrix. If rank(A) =7 <n
and b is in the column space C'S(A), then Ax = b has infinitely
many solutions. They may be represented as

T =T + Qo + - + QT + Tp,

Section 4.7 Change of Basis

Section 4.8 Row Space and Column Space

Section 4.9 The Rank Nullity Theorem

Section 4.10 The Invertible Matrix Theorem II

Section 4.11 Inner Product Spaces

Section 4.12 Orthogonal Sets of Vectors and the Gram
Schmidt Process

Section 4.13 Chapter Review
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