

Digital Video Player
Developer Guide
Roku Digital Video Player Version 2.4 12/9/09

Copyright (c) 2009 Roku Inc. All rights reserved. Use of this Roku SDK Documentation is limited
and expressly conditioned on consent to and compliance with the terms and conditions of the
Roku Channel Developer Agreement.
 http://www.roku.com/Libraries/Legal/Roku_Channel_Developer_Agreement.sflb.ashx

http://www.roku.com/Libraries/Legal/Roku_Channel_Developer_Agreement.sflb.ashx�

 12/17/2009 © 2009 Roku Inc. 2

Table of Contents

1.0 Introduction: The Roku Channel Developer Program 3
1.1 Welcome to the Roku DVP Developer Guide 3
1.2 Developing with the Roku SDK 3
1.3 What Do I Need to Get Started? 4

2.0 Development Environment Overview 5
2.1 Architectural Overview 5
2.2 User Interface Elements / Object Model 5
2.3 Display Modes (HD/SD) 6
2.4 Top-Level Menu 7
2.5 User Interaction / Events 7
2.6 Customization 7

3.0 Video Streaming 8
3.1 Supported Video Formats 8
3.2 Supported Image Formats 8
3.3 Trick Mode Support 9

4.0 Guided Setup and Registration 9
4.1 Guided Setup 9
4.2 Registration 9

5.0 Security Overview 10
5.1 System Security 10
5.2 Application Security 11
5.3 Protected Environment 11

6.0 Development Overview 11
6.1 Development and Deployment Process Overview 11

7.0 Loading and Running your Application Walkthrough 12
7.1 Enabling Development Mode on your box 12
7.2 Application Installer Page 12

8.0 Debugging your Application 15
8.1 Accessing the Debug Console 15
8.2 Script Output 15
8.3 The debugger 16

9.0 Top Development Tips for the Roku Platform 16

10.0 Before Publishing Checklist 18

3 Copyright (c) 2009 Roku Inc. All rights reserved.

1.0 Introduction: The Roku Channel Developer Program
Roku is offering content owners and publishers the ability to create their own channels on the
Roku player and to make those channels available to Roku users. The Roku SDK documentation
contains the necessary information for creating a Roku channel, including design tools and
sample applications. The terms of use of the Roku SDK are contained within the Roku Channel
Developer Agreement. After creating a channel application, content owners and publishers may
upload the application to the Roku Developer Site for distribution to Roku users. There are two
methods for distributing Roku channels through the Roku Developer Site after they have been
uploaded:

The Roku Channel Store

A channel may be submitted to Roku via the Roku Developer Site by selecting the Publish option
from within your Roku Developer account. If accepted by Roku, a channel will be made available
through the Channel Store to Roku users.

Roku Private Channels

A channel may be uploaded to the Roku Developer Site and made available to users through the
Private Channel mechanism. These channels are not published to the Channel Store, but instead
can be accessed by Roku users by means of a unique code provided to users.

Channels created for the Channel Store should be those intended for the widest possible
distribution, without restriction other than as required for business reasons, such as payment of a
monthly subscription. Channels intended for a very narrow audience, or carrying restrictions on
access such as membership in a group or organization are better suited for Private Channels.
Private Channels are also ideal for testing an application prior to submission to the Channel
Store.

1.1 Welcome to the Roku DVP Developer Guide
This Developer Guide is designed to help you quickly come up to speed on the Roku platform
architecture, Channel Store, and the basics of how to develop and deploy an application to the
box in development mode and to the Channel Store as a published application to end users.
Note: In this documentation we refer to the development of new channels on the Roku player as
“applications” since they consist of a set of scripts and related assets. Channels can access video
streams, music, photos, or perform other functions enabled by the SDK.

1.2 Developing with the Roku SDK
The Roku SDK consists of a set of documentation, design guidelines, and sample applications
that enable channels to be developed for the Roku Digital Video player (DVP). To understand
the Roku SDK, here are the key documents:

• The Developer Guide (RokuDVP-DeveloperGuide.pdf) covers the architecture,
programming language, development process, and channel deployment requirements.

• The BrightScript Reference Manual will bring you up to speed on the language and

serves as a reference for the core components. BrightScript is the programming
language used to develop channel applications on the Roku DVP. BrightScript is a
scripting language optimized to be the high level glue that ties together BrightScript
Components and the Internet.

4 Copyright (c) 2009 Roku Inc. All rights reserved.

• The Component Reference guide describes the DVP platform components that expose
APIs to BrightScript.

 The entire documentation set includes the following:

README Important information pertaining to this release of the Roku SDK

Developer Guide Introduction to developing for the Roku platform

BrightScript Reference Manual Reference for the BrightScript programming language.

Component Reference Manual Reference for the components exposed to BrightScript

Channel Packaging and Publishing Creating a package and uploading to the Developer Site

Design Guidelines User Experience guidelines and standard art dimensions

Mockup Tool (PowerPoint) Quickly create a mockup of your channel as ppt screens

Device Registration and Linking Linking the DVP channel to an account on your site

Trick Mode Specification

 1.3 What Do I Need to Get Started?

 How to support Trick Mode for your streams

In addition to the documentation, the SDK includes a set of sample apps that demonstrate some
of the BrightScript and Roku Platform programming techniques. You may reuse any of the code
found in these sample apps as a basis for your own development, subject to the terms of the
Roku Channel Developer Agreement. A brief description of these sample apps follows:

Simpleposter Very simple poster screen with a filter banner
Simplevideoplayer Use the roVideoScreen component to play video
Videoplayer Complete Video Channel using category based XML feeds
Audioapp Use the roAudioPlayer component to play audio
Monitorsetup Example use of the roSlideShow component
Deviantart Example use of the roSlideShow component and XML feeds
Register Rendezvous style registration and account linking
Flickr Slide show including registration, XML feeds, registry

Here’s a list of the things you’ll need to get started writing applications for the Roku Digital Video
Player:

1. Roku Digital Video Player with Software Release 2.4 or later
2. Roku SDK (Development Kit Documentation and Sample Applications)
3. Development Workstation with Text Editor and Terminal Application
4. Standard Web Browser (Firefox, Internet Explorer or equivalent)

5 Copyright (c) 2009 Roku Inc. All rights reserved.

2.0 Development Environment Overview

2.1 Architectural Overview

Diagram: Architecture Block Diagram
The diagram above provides a high-level overview of the main system components for the Roku
DVP platform. Developer applications are written using the BrightScript programming language.
These applications are designed to be standalone entities that can be deployed to a running
system with minimal impact.

BrightScript applications are dynamically loaded at runtime and run within a unique context within
the BrightScript virtual machine. They are “sand-boxed” and run protected from other areas of the
system. Scripts only have access to platform resources that are exposed to the scripting layer as
BrightScript components. Developers have a wide selection of built-in elements from the
BrightScript programming language, plus additional platform components to build their
applications. See the BrightScript 2 Reference and the BrightScript Component Reference for
additional information.

2.2 User Interface Elements / Object Model
The Roku SDK uses the BrightScript programming language for development and exposes a set
of interfaces to platform services through BrightScript Components. These platform SDK services
include capabilities such as networking, video playback, user interface, and data management.

Roku DVP Hardware Platform

Linux 2.6

Roku DVP Software Platform

BrightScript Engine

Roku
Application

Shell

 Application Plug-in

Application Plug-in

Application Plug-in

Application Plug-in

Application Plug-in

BrightScript Virtual Machine

BrightScript Components

6 Copyright (c) 2009 Roku Inc. All rights reserved.

The objects in the Roku SDK are divided into two primary areas:

• Core Objects – Fundamental objects that exist on all Roku platforms and are device
independent

• Platform Objects – Objects unique to a specific platform, such as the Roku Digital Video
Player

Developing an application for the Roku DVP consists of writing a BrightScript application,
packaging the application and associated resource files and deploying it to the platform. During
development packaging consists of a structured zip file. For final deployment, tools are provided
to create a signed, encrypted application package. At runtime, the DVP will enumerate the
installed applications and display them on the main menu. When the user selects the application,
the script(s) are loaded and control is passed to your application. When the user exits, the script
is halted and control is returned to the user interface “shell”.

User interface functionality available in the SDK includes:

• Top-Level Menu (Launch screen for applications with Logo art)
• Poster Screen (Horizontally scrolling list of shows with poster art)
• Springboard (Detail screen with options for displaying individual show)
• Video Player Screen (Video playback support with progress bar and trick mode support)
• PIN Entry Screen (User entry of PIN for purchase/rental verification)
• Message/Error Dialog (Dialog for display of errors and other user messages)
• Filter Widget (Selection widget for filtering content display by type)
• Rendezvous/Code Registration Screen (Display/validate registration code)
• Username/Password Registration Screen
• Text Screen (Display formatted text to the user and allow selection of options)
• Search Screen (Keyword based search with progressive disclosure of results)

Detailed information on all these screens can be found in the Component Reference
documentation.

2.3 Display Modes (HD/SD)
The user interface has been designed to support both High Definition (HD) and Standard
Definition (SD) displays. By default the DVP starts in SD mode, but allows the user the option to
specify their display preferences. Display preferences are handled globally for all applications by
selecting the “display type” option in “settings”.

There are three possible modes:

• 4:3 standard-definition (480i/p)
• 16:9 anamorphic widescreen (480i/p)
• HDTV (720p)

The SDK UI objects are SD/HD aware and will automatically display in the correct mode. In
some cases, the HD mode will allow the user to see more data on the screen. The SD UI is
rendered natively at 480p and the HD UI at 720p. As a developer, no special programming is
required to support these display modes. Any artwork used by the application (movie posters,
logos, etc.) should be provided in both HD and SD versions and included with the application or
downloaded dynamically at runtime. The screen objects will attempt to scale improperly sized
artwork, but this could result in a loss of quality or degrade performance. It is strongly
recommended that developers provide original artwork in both resolutions.

7 Copyright (c) 2009 Roku Inc. All rights reserved.

2.4 Top-Level Menu
The top-level menu provides a launch point for all applications. Applications must provide HD and
SD versions of the application icon artwork for display on the top-level menu. When an
application is selected from the top-level menu, the application is loaded and control is transferred
to the application. The user may return to the top level at any time by pressing the Home button.
Pressing the Home button will always exit the application and unconditionally return control back
to the UI application shell.

2.5 User Interaction / Events
Roku SDK UI objects provide an event oriented model for user interaction. Instead of receiving
and directly handling all of the IR events received by the application, the UI elements will handle
all navigation commands directly and send higher level events to the script as the focus changes
or the user makes a selection. Scrolling, trick modes and screen-to-screen navigation is handled
by the SDK UI objects and the script generally only needs to interact when there is a change in
context and the user highlights or selects new data elements. Refer to the Event Loops section
or the Class Interface sections for additional information.

2.6 Customization
The objects in the user interface framework expose a set of screen types which standardize user
interaction and make it easy for developers to quickly write and deploy applications. Screen
types enforce a user interaction model and ensure consistency between applications. They may
be customized to provide a unique, developer specific look-and-feel. Customization is currently
focused on “re-skinning” the application and supports the following types of changes:

• Add an application specific image to the top-level menu
• Change the text to be displayed on the main menu to identify the application
• Change the application logo to be displayed in the header area for the screen
• Change the artwork used on the “overhang” or header area for the screen
• Change the background color for the screen
• Change the colors used for font rendering on text, buttons, and screens

Within the application the developer is free to combine the available screen types and controls as
need to implement their application. The hierarchy of screens is unique for an application and
depends on the user experience desired. Some applications may be fairly “flat” while others may
have a deeper hierarchy.

8 Copyright (c) 2009 Roku Inc. All rights reserved.

3.0 Video Streaming

3.1 Supported Video Formats
The following is a summary of supported video formats that have been tested and/or are currently
in-use. Other formats or encoding may be supported, but should be evaluated on a case by case
basis.

 H.264 SD H.264 HD WMV9 SD VC-1 HD
Aspect Ratio1 4:3 16:9 4:3 16:9

Dimension Various to 720x480 Various to 1280x720
Various to
720x480 Various to 1280x720

Progressive/Interlaced Progressive Progressive Progressive Progressive

File Format
.mp4 (MPEG-4 Pt
14), .mov .m4v

.mp4 (MPEG-4 Pt
14), .mov .m4v ASF (.wmv) ASF (.wmv)

Frame Rate2
Fixed/Source
Dependent

Fixed/Source
Dependent

Fixed/Source
Dependent

Fixed/Source
Dependent

Color Space YUV YUV YUV YUV
Video Codec H.264/AVC H.264/AVC WMV9 VC-1 AP (WVC1)
Profile Main/High High Main Advanced
Level/Complexity 4.0 4.0 4.0 4.0
Video Mode Constrained VBR Constrained VBR Constrained VBR Constrained VBR
Average Video
Bitrate3 384Kbps - 1.6Mbps 1.6Kbps – 2.5Mbps 500Kbps-2.2Mbps 2.6Mbps - 3.8Mbps
Peak Video Bitrate 1.5x average 1.5x average 1.5x average 1.5x average
Key Frame Interval < 10s < 10s < 18s ~3s

DRM None None
WMDRM10
(Janus) WMDRM10 (Janus)

Audio Codec AAC LC (CBR), AC3 AAC LC (CBR), AC3 WMA 9.2 (CBR) WMA 9.2 (CBR)
Audio Bit Rate 128-256Kbps 32-256Kbps 64-128Kbps 64-256Kbps
Audio Sample Rate 44.1 Khz or 48Khz 44.1 Khz or 48 Khz 44.1 Khz or 48Khz 44.1 Khz or 48Khz
Audio Sample Size 16-Bit 16-Bit 16-bit 16-bit
Audio Channels 2-Ch Stereo 2-Ch Stereo 2-CH Stereo 2-CH Stereo

Notes:

1) The dimensions vary on a title-by-title basis depending on the source material and the
target aspect ratio for the encoding (e.g. 4:3 or 16:9). Content is always encoded at full
width and the height is adjusted. For example, a 1.66 aspect ratio source is encoded as
a 720x432 video and displayed as letterboxed for a 4:3 display.

2) The frame rate used for encoding dependent on the source material. Film content is
generally 23.976 fps, while video content is generally at 29.97.

3) For typical streaming video applications, we recommend a range of ~384Kbps to
3.8Mbps. This provides a good balance between quality and support for a wide number
of users. In some cases lower and higher bitrates have been used, but this frequently
results in poor quality or limits the % of the installed base that can view this encoding

3.2 Supported Image Formats
The following image formats are currently tested and in-use. Other formats or encoding may be
supported, but should be evaluated on a case by case basis. The use of .png is recommended
for UI graphics due to the use of alpha channel within the UI.

• JPG, JPEG

9 Copyright (c) 2009 Roku Inc. All rights reserved.

• PNG

3.3 Trick Mode Support
Two types of trick mode support (FF/REW/SEEK) are provided. For developers who generate
and publish image archives in Roku’s BIF (Base Index Frame) file format, scene based trick-
mode using index frames will be supported. A specification is available which details the BIF file
format and data required. If this data is published and available for a given title, scene based
trick-modes will be available. The content meta-data indicates the availability of this data on a per
title basis by providing URL’s for the HD and SD versions of these assets.

In cases where the BIF file is either not supported or unavailable, the system will present a time-
based method of supporting trick modes. The user will be presented with a progress bar showing
their location in the show and be allowed to seek using the normal trick play controls. Since
scene information is not available, the user will only have a visual timeline and numeric time
information to locate their desired position in the movie. Once the new location is selected, the
system will buffer a minimal amount of stream data and begin playback.

4.0 Guided Setup and Registration

4.1 Guided Setup
Guided Setup is done only during the initial setup process or when the device has been reset to
factory defaults. This process is designed to be developer independent and is performed one
time. If reconfiguration of these attributes is needed, it can be done through the Settings option on
the main menu. Guided Setup configures basic network services (wired or wireless) and performs
a series of tests to ensure the device can communicate properly.

Guided Setup then takes the user through a rendezvous style registration process to link the
Roku device to an account on roku.com. An account defines a unique channel line-up for a user
based on the channels they have selected. All devices linked to a specific account will receive the
same channel line-up.

4.2 Registration
Developer Applications may also wish to present a customized view to their individual users. The
standard way to support this on the Roku DVP is to provide a registration process that associates
the device with a user-specific account on the developer’s site. Each developer needing account
registration will be required to implement a registration UI as part of their application. This UI may
be called in one of two ways:

1) On first use of any service, the system may detect that a service has not yet been
configured and guide the user through the registration process for that developer. This
method makes it easy for new services to be added to the device over time and presents
a one-time configuration step on first use. The Netflix channel is a good example of this
type of registration

2) On first use of an account specific feature, the user may be prompted to register their
device and obtain access to these enhanced feature(s). An example of this approach
would be a service that may be used without an account to provide a base level of
functionality, but that requires account linking for advanced features such as
personalization, favorites or other similar features. The Amazon channel is a good
example of this type of registration. You can see it when entering “Your Video Library”.

The process of registration involves linking a device (identified by a unique electronic serial
number) with an account on a specific service. Account registration and device linking can be

10 Copyright (c) 2009 Roku Inc. All rights reserved.

accomplished in two ways. The preferred method is through the implementation of a code-based
“rendezvous” style registration system. An alternative username/password style of registration
may also be used.

A rendezvous registration system presents the user with a simple on-screen code on the device
during registration. The end user enters this code on the developer’s website to establish a link
between the device and the users account. This type of registration requires the third-party
developer to implement the following features:

1) A web services API for obtaining a registration code and specifying retry parameters.
2) A web services API for obtaining the registration result and associated user token.
3) Web pages to register/un-register a device on the developer’s site.

A username/password registration scheme may be desirable for some services. In these cases,
the user will enter the username and password for their account during setup. This info will be
used in subsequent calls to the third-party service to obtain the necessary credentials to make
web services requests. This method is provided solely for compatibility with a variety of services.
The rendezvous style registration is preferred both for its usability as well as the security benefits.

Any user account information or tokens exchanged during the registration process may be stored
in the application specific portion of the registry as persistent data. This data may be accessed
again at any time by the application when making web services calls to the developer’s back-end
service.

It is important not to keep any permanent device association stored on your server. Roku wants
to give users the ability to do a “Factory Reset” and have any personally identifiable information
wiped from the device. This includes removing any association with server side accounts.
Account tokens stored in the device registry meet this requirement nicely as the device registry is
removed with a “Factory Reset”.

Details and a walkthrough of implementing device/account linking and registration can be found in
the Device Linking and Registration Guide.

5.0 Security Overview

5.1 System Security
The Roku DVP is designed to play a variety of streaming content directly from the Internet. We
understand that this content is valuable to the content owners and must be protected from
unauthorized access to prevent both casual and professional copying and distribution. Multiple
types of security provisions are available if needed.

The system has been designed to be hardened against unauthorized attack. This process starts
at the factory as each system is individualized and uniquely keyed as a foundation for robust
security. The platform supports a secure key store and hardware encryption engine. The core set
of system software has been encrypted and is protected by a secure boot process and the use of
signed binaries.

SSL is the primary method provided for developers to implement content and/or communications
security for their application. The device supports both client and server authentication via SSL to
provide a secure communications channel between trusted end-points.

11 Copyright (c) 2009 Roku Inc. All rights reserved.

5.2 Application Security
Applications which run on the player must be encrypted and signed using the developer’s unique
developer specific set of keys generated by the Roku DVP in developer mode. Code signing is
done automatically as part of generating a package and ensures the integrity of code. Application
packages are also encrypted to ensure confidentiality of the source code. Packaging tools are
available on the Developer web page of Roku DVPs. By default, the developer page is not
enabled. You must enter the remote code Home 3x, Up 2x, Right, Left, Right, Left, Right to
enable it. A walkthrough of the packaging process is detailed later in this document.

The packaging process is designed to be lightweight and focuses on ensuring that an application
originates from a known source and is protected against tampering. It is the responsibility of the
developer to ensure that the application is properly tested, high quality, and provides a good user
experience.

5.3 Protected Environment
BrightScript applications are run within a unique context in the BrightScript Virtual Machine.
Applications are “sand-boxed” and run protected from other areas of the system. Scripts have
limited access to platform resources and can only access functionality specifically exposed
through the scripting layer as BrightScript components. This ensures the overall integrity of the
platform and prevents unauthorized access to the Operating System or any 3rd Party content.
Applications are restricted from interacting with other applications on the system or accessing
their private data. Applications store their data separately and securely in a unique area of the
system registry. Suites of applications can share registry data by creating each application’s
package with the same developer id set of keys.

6.0 Development Overview

6.1 Development and Deployment Process Overview
New applications or channels are written using the BrightScript programming language.
BrightScript exposes platform functionality through BrightScript Components, which may be used
by developers to create their application. These applications are designed to be standalone
entities that can be deployed to a running system with minimal impact, no major software
upgrades, and no downtime.

Applications consist of a set of BrightScript program files (text), resources such as images (jpeg,
png) and optionally, data unique to a specific application. Since BrightScript files are text,
developers can use their Text Editor or IDE of choice for writing code. When the application is
ready to be tested, web and command line based tools are available to make the process of
packaging the application and deploying it to a development system fast and easy. Development
builds are designed to be deployed to individual or small groups of systems where the developer
has physical access. Wider deployment for beta and/or production releases can utilize the Roku
developer website to upload channels for private or public access.

A walkthrough of installing to a local development enabled Roku DVP can be found later in this
document. A walkthrough of packaging your application and deploying privately to users who
know your channel code or publicly to all users via publishing in the channel store is available in
the Channel Packaging and Publishing Guide. Details on developing with Roku Components and
the API’s available can be found in the Roku Digital Video Player Component Reference.

12 Copyright (c) 2009 Roku Inc. All rights reserved.

7.0 Loading and Running your Application Walkthrough

7.1 Enabling Development Mode on your box
Before you are able to load a development application to your box, you must enable development
mode on your Roku DVP. When you enter the special remote control sequence:

 Home 3x, Up 2x, Right, Left, Right, Left, Right

You will be presented with the Developer Settings page where you can enable developer mode
on the box. When developer mode is enabled, you can access the Application Installer page as
specified in the next section.

If you would like to subsequently disable development mode on your box, simply enter the special
remote code sequence again and select the “disable installer” option on screen.

7.2 Application Installer Page
Development applications are loaded onto the device using a standard web browser. When
enabled for development mode the device hosts a web page for installing your application. To
access the installer page, do the following:

1. From your Roku DVP, navigate to “Roku Player Settings”, “player info” to find the IP
address of your box.

2. From your development workstation, open a standard web browser and type the following
URL:

a. http://<dvp-ip-address> for example: http://192.168.1.100
3. You should see a page like the one displayed in Figure 1 (Application Install Page)

below.
4. Click the “Browse” button and navigate to the location of the application zip file on your

development machine as shown in Figure 2 (Application File Browser). The full path to
the application .zip file should appear in the text field.

5. Finally, click the “Install” button to deploy the application to the box. The application
should install and begin running immediately. You will see a message on the web page
indicating it was successfully loaded as shown in Figure 3 (Application Installer page –
Installation Complete)

6. Run the application with the application debug console open. When you telnet to the
Roku DVP on port 8085 (see section 8.1) you will see the debug console from your
application. If there are any errors in your code, they will show up on this console. There
is even a debugger attached to this port that will give you source file and line number
information for script errors.

The Application Installer page only accepts applications using the zip file format. It does not allow
installation of signed (.pkg) applications package files. The .pkg file must be distributed through
the channel store mechanism as either a published or private application. This process is often
referred to as “side-loading” your application.

http://192.168.1.100/�

13 Copyright (c) 2009 Roku Inc. All rights reserved.

The following image shows the Development Application Installer web page. At this point, there is
no developer application on the device. If an application were present, it would be shown as
installed when the page is initially opened. Applications will continue to persist on the device until
you delete them by using the “Delete” button shown below.

Figure 1: Application Installer Page

The following image shows the standard windows file browser. Your development environment
may be on Windows, Linux or Mac, since all you need are text editing tools, a web browser and
the ability to generate .zip files containing your application. Select your application zip file and you
are ready to install.

14 Copyright (c) 2009 Roku Inc. All rights reserved.

Figure 2: Application File Browser
The following image shows the Development Application Installer web page after you’ve
successfully installed your application. If you attempt to reinstall an identical version of an
application that is already installed on the box, you will receive an error. You can always delete
and re-install any application at any time.

Applications are limited to a maximum of 2MB in size, due the the limited amount of flash storage
available. In general, since these are internet enabled applications, they tend to be much smaller
and are typically < 300KB in size. Most of the space is consumed by artwork and the code size is
minimal. If you find that your application is too large to install, look at removing some of the
artwork from your application package and placing it on the web where it is easier to modify and it
can be downloaded dynamically at runtime.

Figure 3: Application Installer Page (Installation Complete)

15 Copyright (c) 2009 Roku Inc. All rights reserved.

8.0 Debugging your Application

8.1 Accessing the Debug Console
Using a standard shell program and a telnet client application, you can connect to the console for
your application. The console provides you a window into the runtime environment for your
application. By default, all console output from your application goes to the shell. You can learn a
lot about your application just from the debug output. To access the console for your application:

1. Open up a terminal shell application
a. Command.com or other terminal on Windows (All Programs -> Accessories ->

Command Prompt)
b. Gnome or other terminal on Linux
c. Terminal on Mac

2. Type the command:
a. telnet <dvp-ip-address> 8085

e.g. telnet 192.168.1.100 8085
3. You should see the contents of the current application output buffer. Make sure your

application is running, because you must run a development app to see output in this
console. The console will not allow access to the output of other applications on the
system. It will only allow debug access to your development application.

Figure 4: Connecting to the application debug console

8.2 Script Output
The console shows you the output of your script during run time. If your application crashes, the
debugger will display the line number of the error, as well as the contents of various variables at
the time of the crash. If there is a syntax error in your code it will also be described here. You
should have the developer console open whenever you install a new application to catch any
startup errors.

16 Copyright (c) 2009 Roku Inc. All rights reserved.

8.3 The debugger
In addition to displaying console output, the shell can also be used as an interactive debugger.
When your application is running, simply press CTRL-C to break the application and enter debug
mode. You will see the BrightScript Debugger prompt where you can type in commands. You
can also force your application to break at a specific location by placing the “stop” command
anywhere in your script.

You can resume you application again by typing “c” or “cont”. For a full list of options, type “help”
in the debugger. You’ll see options for inspecting variables, stepping through your code and
looking at the backtrace of the current call stack.

Figure 6: Application Console Output

9.0 Top Development Tips for the Roku Platform
• Make sure you capture all of the events sent by the roVideoScreen or you may miss

important playability information.
• Know the Remote Control Codes for special screens:

o Dump Core: Home 5x, Up, Rewind 2x
o Debug Info on screen: Home 5x, Rew 3x, FF 2x
o Channel Version Info: Home 3x, Up 2x, Left, Right, Left, Right, Left
o Developer Settings Page: Home 3x, Up 2x, Right, Left, Right, Left, Right

• The Developer Settings Page is necessary for enabling developer mode on your box
• All file paths are prefixed by the device (currently pkg or tmp) and using the naming

convention: pkg:/filename.txt. Even file URLs must use this convention:
file://pkg:/filename.txt

• Always use a screen facade object when launching your application so that it appears to
the user that your channel launches immediately and avoids screen flicker when exiting.
(See the simplevideoplayer sample application for a commented implementation of the
technique)

• You can use the theme attributes of roApplicationManager (see Component Reference)
to create a new UI skin to your channel.

17 Copyright (c) 2009 Roku Inc. All rights reserved.

• When using rendezvous style registration and account linking, be sure to store the linking
information in the device registry and not on your servers. We require that users are able
to do a “Factory Reset” and be confident that no personally identifiable information is
associated with the device. This is not possible if you have saved permanent serial
number information on your servers.

• We are limited in the types of video content supported on the device. We currently
support .mp4, .mov, and .m4v files with H.264/AAC encoding as well as unencrypted
WMV.

• We only support .wma and .mp3 audio files in the audio player.
• For live content support, we currently do not have a general solution. However, the Open,

IETF proposed, Apple HTTP Live Streaming support is a direction we are heading.
• Be sure to use a unique key for each application you publish and reuse this key each

time you update your application using the “rekey” option. This ensures that all versions
of your application will have access to the same registry data and avoid causing users to
re-link after an update.

• When using the slide show component, sometimes a high resolution image may take a
while to download. A good trick to provide quick feedback to the user is to put an image
in your package (so it’s not downloading) that may have your logo, etc… but informs the
user that the slideshow is playing it’s just “Retrieving…”. This slide could be the first slide
in your slideshow so that feedback to the user is instant and the slideshow never appears
“hung”.

• We require that your web servers support range requests. If they do not, you may run into
content that is not playable, or large images that do not display. The data will appear as a
corrupted file format to our components, as the first block may be resent by the web
server when we expect data at a particular range or offset.

• The screens are displayed in a LIFO (stack) order. If this behavior is causing your screen
to flicker (perhaps you wanted to pop two screens after you are done with the current
one) there is a Close() method in the screen interface of all the screen and dialog
components that deletes the screen out of the display stack. An example might be
coming out of a Registration or Search page to a Springboard screen. From the
Springboard screen, you might want to exit to your main screen, not the registration
screen or search screen.

Example:
searchScreen = CreateObject(“roSearchScreen”)
REM in a real app, you would setup this search screen…
searchScreen.show()

REM screensToPop is a set of screens that will be popped
screensToPop = CreateObject(“roArray”, 1, true)
screensToPop.push(searchScreen)

REM real app code processes the searchScreen here
REM and eventually decides it’s time to jump to a
REM springboard.

scr = CreateObject(“roSpringBoardScreen”)

REM in a real app your code to
REM process your Feed and setup scr goes here

REM before calling show() on your scr, close the
REM previous screens on the display stack
if screensToPop <> invalid
 for each screen in screensToPop
 screen.close()

 end for

18 Copyright (c) 2009 Roku Inc. All rights reserved.

 screensToPop = invalid
 end if

 scr.show()

10.0 Before Publishing Checklist
• Refer to the Design Guidelines document and implement your application consistent with

these best practices. Users will appreciate the ease-of-use and consistency provided
when all applications behave in a consistent manner.

• Make sure all your art is the correct size (see the Design Guidelines document).
Sometimes bad overhang art sizes can negatively impact the layout of screens.

• Increment the version number and/or build number in the manifest for each new build of
your application. This allows you to easily tell which version of the application is running
in the field by accessing the channel info screen.

• Be sure to safely store the keys and password used in packaging your application and
sign any new revisions of your app with the same keys (see the Channel Packaging
Publishing Guide).

• Always call Flush()after modifying the registry with either a write, delete, or a series of
writes. Flush is transactional and all writes between calls to Flush are atomic. Without a
Flush, there is no guarantee that the changes have made it to non-volatile storage.

• Thoroughly test every code path of your app, and check that there are no BrightScript
crashes.

• When using rendezvous style registration and account linking, be sure to store the linking
information in the device registry and not on your servers. We require that users are able
to do a “Factory Reset” and be confident that no personally identifiable information is
associated with the device. This is not possible if you have saved permanent serial
number information on your servers.

• Always use the screen façade technique in your application initialization routine so that it
appears to the user that your channel launches immediately and avoids screen flicker
when displaying dialogs or exiting. Please see the simplevideoplayer sample application
for a commented example of the technique.

	1.0 Introduction: The Roku Channel Developer Program
	1.1 Welcome to the Roku DVP Developer Guide
	1.2 Developing with the Roku SDK
	1.3 What Do I Need to Get Started?

	2.0 Development Environment Overview
	2.1 Architectural Overview
	Diagram: Architecture Block Diagram

	2.2 User Interface Elements / Object Model
	2.3 Display Modes (HD/SD)
	2.4 Top-Level Menu
	2.5 User Interaction / Events
	2.6 Customization

	3.0 Video Streaming
	3.1 Supported Video Formats
	3.2 Supported Image Formats
	3.3 Trick Mode Support

	4.0 Guided Setup and Registration
	4.1 Guided Setup
	4.2 Registration

	5.0 Security Overview
	5.1 System Security
	5.2 Application Security
	5.3 Protected Environment

	6.0 Development Overview
	6.1 Development and Deployment Process Overview

	7.0 Loading and Running your Application Walkthrough
	7.1 Enabling Development Mode on your box
	7.2 Application Installer Page
	Figure 1: Application Installer Page
	Figure 2: Application File Browser
	Figure 3: Application Installer Page (Installation Complete)

	8.0 Debugging your Application
	8.1 Accessing the Debug Console
	Figure 4: Connecting to the application debug console

	8.2 Script Output
	8.3 The debugger
	Figure 6: Application Console Output

	9.0 Top Development Tips for the Roku Platform
	10.0 Before Publishing Checklist

