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Abstract. An experimental study of caesium energy pooling collisions, Cs(6PJ ) + Cs(6PJ )
→ Cs(7PJ ′ ) + Cs(6S1/2), at thermal energies, has been carried out in a capillary cell using
diode laser excitation. Use of the capillary cell minimizes the effects of radiation trapping,
but nonetheless, such effects still play a significant role in the analysis. Consequently, a rate
equation model, which treats simultaneous effects of saturation, optical pumping, and radiation
trapping, has been developed and is used to determine the Cs(6PJ ) atom density under these
experimental conditions. The excited atom densities are combined with measured fluorescence
ratios to determine rate coefficients for the caesium energy pooling process. Our values for these
rate coefficients are in agreement, within combined error bars, with values we have recently
obtained under very different experimental conditions.

1. Introduction

Determination of rate coefficients for collisions involving two excited atoms is fraught with
difficulties. In particular, quantitative evaluation of the rate coefficient requires knowledge
of both the magnitude and the spatial distribution of the excited atom density. These
quantities can either be measured directly in the experiment [1], adding greatly to the
complexity and cost of the set-up, or they must be evaluated using a realistic (and thus
rather complicated) model, appropriate to the experiment. In addition, at atomic densities
which are sufficiently high that the effects of excited atom–excited atom collisions become
observable, the process of radiation trapping also becomes important. The quantitative
analysis of this effect depends strongly on the geometry of the specific experiment, the type
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of laser pumping (pulsed versus continuous wave, single mode versus broadband), the laser
power (saturation effects), and the atomic-level structure (including hyperfine structure).
As a result of these complications, which are not always properly taken into account,
measurements of rate coefficients for excited atom–excited atom collisions typically have
large error bars, and significant discrepancies exist between the results of different studies.

One purpose of this paper is to present a detailed model which can be used to determine
the density of caesium atoms in the excited 6PJ (J = 1

2,
3
2) levels, under continuous resonant

(6S1/2→ 6PJ ) excitation of caesium vapour by suitable diode lasers. The model is based on
rate equations that consider the combined effects of saturation, hyperfine optical pumping,
and radiation trapping. Specifically, we believe our iterative solution is the first attempt
to successfully treat the interconnected effects of optical pumping and radiation trapping.
Based on these results, it is apparent that measured rate coefficients will be plagued by
significant errors if the excited atom density is calculated using a model which is too simple
(i.e. a model which assumes that the effects of radiation trapping can be calculated without
consideration of the optical pumping problem).

The results of our present model have been applied to the analysis of data from an
experiment carried out at Pisa University, with the goal of determining the rate coefficients
k7PJ ′ (J ′ = 1

2,
3
2) for the energy pooling (EP) process
Cs(6PJ )+ Cs(6PJ )→ Cs(7PJ ′)+ Cs(6S1/2). (1)

Preliminary values ofk7PJ ′ for D2 line pumping, averaged over the range of temperatures
explored in this experiment, have already been reported in an earlier brief report [2]. Here,
we present the complete model used in that analysis. We also give results for the rate
coefficients at each temperature, as well as new data and results for D1 pumping. In
addition, we compare these results with those we obtained in a complementary, but very
different, experiment carried out concurrently at Lehigh University [1]. The two experiments
measure the same quantity, but with two very different approaches, each having some
advantages and some drawbacks. Specifically, the present experiment is carried out using
a cylindrical capillary cell similar to the cell used in [3] to reduce the problematic effects
of radiation trapping. Here, the entire diameter of the capillary cell is filled with the pump
laser beam. This has the advantage that the excited-atom-density spatial distribution can
be considered constant with radial distance. In addition, radiation-trapping corrections are
reduced since the photon escape distance is small. However, the low diode laser power,
combined with the high caesium density necessary to observe the EP collisions, results
in significant attenuation of the laser intensity along the cell axis, somewhat complicating
the radiation-trapping geometry. Moreover, the excited-atom density is not measured, but
rather is derived from the optical-pumping and radiation-trapping calculations which are
described here. The strength of the Lehigh experiment [1] is that the 6P density and
spatial distribution are directly measured. However, the cell diameter is so much larger
than the laser beam diameter that the trapping calculations (which are still necessary even
when the excited-atom density is known), require many higher-order escape modes (10
are used in [1]), thereby increasing the uncertainty of the results. Moreover, since the
laser fills only a small fraction of the cell diameter, the hyperfine populations are assumed
to be populated statistically outside the laser excitation volume. This is not completely
correct because the hyperfine level populations outside the laser beam are determined by
competition between diffusion of optically pumped atoms originating within the beam and
the thermalizing effects of radiation trapping and wall collisions. Comparison between
the two sets of experimental results shows that the measured EP rate coefficients are in
agreement (within rather large statistical plus systematic uncertainties). The present results
are important since they corroborate those obtained in a very different experiment, and
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Figure 1. Schematic diagram of the experimental set-up.

thus imply that the essential physics is contained in the assumptions and approximations
used in the radiation-trapping calculations of [1], and in the model results presented here.
Although these results still have large uncertainties, they can provide information on atom–
atom interactions at large interatomic distances, which are of particular interest in the new
field of cold collisions.

One additional motivation for this work is the opportunity to study fine-structure and
angular momentum effects in EP collisions. The large fine structure of the caesium 6PJ

levels makes the study of caesium EP particularly interesting (and different from earlier
studies of EP in sodium), since the combinations 6P3/2+6P3/2, 6P1/2+6P3/2 and 6P1/2+6P1/2

are more or less resonant with various highly excited states. Specifically, our results show
significant differences in the rate coefficientsk7PJ ′ for the entrance channels 6P3/2 + 6P3/2

and 6P1/2+ 6P1/2.
This paper is organized as follows. Section 2 describes the set-up of the EP experiment

for which the model has been developed. Section 3 recalls the rate equations for EP and
presents the rate-equation model to extract the 6PJ atom density, for given pump conditions.
Analysis and results are presented in section 4. In section 5 we present our conclusions.

2. The experiment

The set-up for the experiment is shown in figure 1. Pure caesium vapour was confined in
a capillary cell, 1.8 mm inner diameter and 6 cm long. The cell was sealed after baking
and evacuating with an ion pump. The cell was placed inside an oven with programmable
temperature settings. The temperatures of the reservoir and capillary tube were measured
with thermocouples. Caesium atomic densities were determined as a function of temperature
using the formula of Nesmeyanov [4]. Caesium atoms were excited either to the 6P3/2 level
using a commercial (STC) free-running single-mode laser diode, or to the 6P1/2 level using
a non-commercial single-mode laser diode†, both with linewidth of roughly 20 MHz. Each
laser was tuned to the transitions originating from theF = 4 ground-state hyperfine level
and typically a laser intensity, measured at the entrance window of the cell, of 15 and

† This laser diode was kindly provided by T Yabuzaki, Kyoto University.
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6 mW, respectively, was used. Because of Doppler broadening, several hyperfine levels
(F ′ = 5, 4, 3) of the 6P3/2 state were excited, while the 6P1/2 state hyperfine levels were
individually resolved. In this case we have selected theF = 4 → F ′ = 3 transition.
Both laser intensities were sufficient to saturate either the 6S1/2→ 6P3/2 or 6S1/2→ 6P1/2

transition. The laser beam propagated collinearly with the capillary tube and filled its
entire diameter at the entrance window. Fine tuning of the laser frequency was achieved by
variation of the diode laser current, and the resonance fluorescence signal was observed with
an infrared sensitive CCD camera. This camera also helped during the alignment of the laser
beam along the axis of the capillary tube, since the propagation of the laser beam through
the capillary was easily observed on the monitor, even at room temperature. Scattered light
could be minimized in this way. Changes in the spatial distribution of the 6PJ emission
were monitored as well. For example, at low atom densities (5×1012 cm−3) and maximum
laser power, the entire volume of the capillary tube fluoresced homogeneously. However,
if the laser power was decreased by means of a neutral density filter, the 6PJ emission
decreased sharply as a function of distance along the beam path.

Fluorescence from a small volume, selected by a slit-shaped mask of 500µm width
near the entrance window of the capillary cell, was imaged onto the entrance slit of a
1
4 m monochromator having typical slit widths of 450µm. This gave spectral resolution
sufficient to separate the 7P3/2 and 7P1/2 fine-structure components, responsible for the
455.7 nm (7P3/2→ 6S1/2) and 459.4 nm (7P1/2→ 6S1/2) emission, respectively. At atom
densities above 1013 cm−3, blue light from that region was easily seen by the naked eye.
Spatially, it appeared as a cone peaking in the propagation direction of the laser beam,
since the excited-atom density dropped off with distance along the cell at these high atom
densities. However, due to the slit-shaped mask described above, only the base of that cone,
corresponding to the region near the cell entrance window where the blue fluorescence filled
the full cell diameter, was imaged onto the monochromator entrance slit. Light was detected
with a photomultiplier (Hamamatsu R955). The diode laser beam was chopped and lock-in
detection was used. Signals were recorded with anX–Y recorder. Neutral density filters
were used in the fluorescence path since resonance and EP fluorescence intensities differed
by factors of 106–108 (see [2] figure 2). Therefore care was taken in the calibration of filters
at different wavelengths. The spectral response of the system was measured by means of a
calibrated tungsten ribbon lamp [5]. The apparatus was found to be much more sensitive
in the blue part of the spectrum (450 nm) than in the near infrared (850 nm). In addition,
from 852.3 nm (D2 line) towards 894.6 nm (D1 line) the sensitivity sharply decreased. This
prevented us from observing 6D→ 6P fluorescence (876.4 nm), at lower atom densities
where 7P→ 6S fluorescence could already be observed.

The procedure of the measurement was the following. First the monochromator
was set to the 6PJ → 6S transition and the laser was tuned to observe and record
the maximum signal from the photomultiplier. This laser frequency coincides with the
maximum absorption monitored by observing the attenuation over the entire length of the
cell. Then the monochromator was tuned to the 7PJ ′ → 6S transition and, in case of drift,
the laser frequency was again tuned to the maximum of the absorption coefficient. The
7PJ ′ → 6S fluorescence was then recorded. The same procedure was repeated at several
temperatures (and therefore different atom densities).

3. Theory

Figure 2 shows the processes considered in this work and the hyperfine levels relevant to
the 6PJ state excitation. The effective radiative rates are represented by downward straight
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Figure 2. Schematic diagram of caesium energy levels relevant to the present experiment. Full
downward arrows represent radiative transitions, broken arrows represent collisional processes.

arrows,k3/2→1/2 andk1/2→3/2 indicate 6P level fine-structure mixing,k′3/2→1/2 andk′1/2→3/2
indicate 7P level fine-structure mixing, andk7P1/2 andk7P3/2 represent EP rate coefficients.

3.1. Rate equations for EP

The complete rate equation for the population of the 7PJ ′ level reads:

dn7PJ ′

dt
= k(3/2)7PJ ′

n2
6P3/2

2
+ k(1/2,3/2)7PJ ′ n6P3/2n6P1/2 + k(1/2)7PJ ′

n2
6P1/2

2
+ k′J ′′→J ′n7PJ ′′n6S1/2

+
∑
n′′L′′

0eff
n′′L′′→7PJ ′nn

′′L′′ −
∑
n′′L′′

0eff
7PJ ′→n′′L′′n7PJ ′ − k′J ′→J ′′n7PJ ′n6S1/2. (2)

Here nnLJ is the density in the atomic levelnLJ , k(3/2)7PJ ′ , k(1/2,3/2)7PJ ′ , and k(1/2)7PJ ′ are EP rate
coefficients connected with the different entrance channels 6P3/2+ 6P3/2, 6P1/2+ 6P3/2 and
6P1/2+6P1/2, respectively,k′J ′→J ′′ andk′J ′′→J ′ are fine structure mixing rate coefficients for
the 7P levels, and0n′L′→nL is the radiative rate from leveln′L′ to levelnL. Due to radiation
trapping, these rates must often be expressed as effective radiative rates0eff. The first sum
over n′′L′′ represents cascade radiation contributions from higher-lying levels, while the
second corresponds to radiative decay to lower levels (5D3/2,5/2, 7S1/2, 6S1/2) which is the
dominant depletion process. In the absence of trapping,

∑
n′′L′′ 0

eff
7PJ ′→n′′L′′ is the sum of the

Einstein spontaneous emission rates for transitions to all lower states.
In this experiment, the laser only excites the 6P1/2 level or the 6P3/2 level, but not both.

In equation (2) we consider all three entrance channels 6P1/2 + 6P1/2, 6P1/2 + 6P3/2 and
6P3/2+ 6P3/2, since fine-structure changing collisions, such as

Cs(6P3/2)+ Cs(6S1/2)
 Cs(6P1/2)+ Cs(6S1/2), (3)
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can result in population of both levels. However, under the present experimental conditions,
fine-structure mixing is relatively weak, even at our highest densities (i.e. (k′3/2→1/2 =
3.86× 10−10 cm3 s−1 [6])× n6S1/2 � (07PJ ′ = 6.45× 106, 9.07× 106 s−1 [7]) for 7P and
(k3/2→1/2 = 1.12× 10−10 cm3 s−1[8]) × n6S1/2 � 0eff

6PJ
for 6P). Thus we can neglect the

6P1/2+ 6P1/2 and 6P1/2+ 6P3/2 entrance channels for laser pumping of the 6S1/2→ 6P3/2

(D2) transition (and similarly we can neglect the 6P3/2 + 6P3/2 and 6P1/2 + 6P3/2 channels
for 6S1/2→ 6P1/2 (D1) pumping), as long as the EP rate coefficients for the three channels
are not too different from each other. We can also safely neglect the terms involvingk′J ′→J ′′
andk′J ′′→J ′ in equation (2). Finally, we neglect the cascade terms0eff

n′′L′′→7PJ ′
in equation (2).

Later we will see that this last assumption is reasonable, except for the possible cascade
contribution from 8S in the case of D2 pumping. (We will return to the discussion of this
situation in section 4.) With these approximations, we can solve equation (2) in steady state
as

k
(J )
7PJ ′ = 2×

∑
n′′L′′ 0

eff
7PJ ′→n′′L′′n7PJ ′[
n6PJ

]2 . (4)

Measured fluorescence intensities are given by

I7PJ ′→6S1/2 = hν7PJ ′→6S1/2ε7PJ ′→6S1/2n7PJ ′0
eff
7PJ ′→6S1/2

V
�

4π
(5)

I6PJ→6S1/2 = hν6PJ→6S1/2ε6PJ →6S1/2n6PJ 0
eff
6PJ→6S1/2

V
�

4π
(6)

whereε is the spectral response of the detection system,ν is the emission frequency,�
is the collection solid angle, andV is the fluorescence volume. Extractingn7PJ ′ andn6PJ
from (5) and (6), and substituting into (4), we obtain for the rate coefficients

k
(J )
7PJ ′ = 2× (I7PJ ′→6S1/2/ε7PJ ′→6S1/2)

(I6PJ→6S1/2/ε6PJ→6S1/2)

λ7PJ ′→6S1/2

λ6PJ→6S1/2

∑
n′′L′′ 0

eff
7PJ ′→n′′L′′

0eff
7PJ ′→6S1/2

0eff
6PJ→6S1/2

n6PJ
. (7)

In order to determinek(J )7PJ ′ we measure the intensity ratio of EP and resonance fluorescence
versus atom density. We obtain the excited-atom densityn6PJ and effective radiative rates
of the 6PJ → 6S1/2 transitions by modelling the rate equations as described in the next
subsection. 0eff

7PJ ′→n′′L′′ values are calculated using radiation trapping theory [9, 10] and
natural radiative rates taken from the literature [7].

3.2. Modelling of the 6PJ atom density

As can be seen from either equation (4) or (7), the measurement of the rate coefficients
for caesium EP collisions requires precise knowledge of the density of atoms in the
6PJ states. In addition, values of the effective radiative rate for the 6PJ → 6S1/2

fluorescence must also be known. Thus relative populations in the hyperfine levels of
the ground state should be measured or calculated. Because additional probe lasers at
suitable wavelengths were not available, we rely on calculations of these populations
taking into account all relevant physical processes. We exploit the experimental fact
that the resonance fluorescence saturates as a function of laser intensity (at least near
the cell entrance window where the fluorescence is observed), so that the exact value
of laser intensity should not be critical for the determination of the 6P population. Our
model takes into account: (i) the fact that the laser linewidth (∼20 MHz) is much
smaller than the Doppler width (∼400 MHz), so that only a small fraction of the
velocity distribution is excited; (ii) wall collisions, which depopulate excited levels and
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thermalize the populations in the hyperfine levels of the ground state; (iii) hyperfine
optical pumping in the ground state during the atomic transit time (∼8 µs) across
the cell; (iv) the 6P3/2 state hyperfine structure, because optical pumping is different
for excitation of each 6P3/2 state hyperfine level; (v) radiation trapping, which is not
negligible for either the 6P1/2 or the 6P3/2 fluorescence (this last effect influences
optical pumping, which in turn affects trapping, so that the two effects must be handled
together).

To model optical pumping, we use the fact that the rate of wall collisions is much higher
than the interatomic collision rate, so we can neglect the latter for the purpose of calculating
the 6PJ density,n6PJ . This assumption is justified because the average atomic transit time
through the cell, in the transverse direction, is much shorter than the mean time between
collisions. (For a caesium atom of massM = 2.21× 10−25 kg, with RMS velocity in the
plane perpendicular to the cell axisvT =

√
2kT /M, the transit time across a cylindrical

cell of radiusR = 0.9 mm is∼8 µs atT = 400 K. The relaxation rate for wall collisions
is related to this, and is given by [11]

γw = 1.78
vT

πR
= 0.567

vT

R
. (8)

On the other hand, a typical mean time between interatomic collisions is given by
(σT nv)

−1 ∼ 40 µs, wheren ∼ 6.6× 1013 cm−3 at T = 400 K, v is the mean collision
velocity between two caesium atoms(v = √16kT /πM), and σT ∼ 10−14 cm2 is a
reasonable upper limit for the geometrical cross section. Thus, interatomic collisions are
only a minor perturbation in determining the atomic distribution over ground and excited
levels.)

The wall relaxation rate given in equation (8) must be modified when we also consider
collisions with the cell entrance window. Our observation zone is a cylinder of radius
R = 0.9 mm and lengthL = 0.5 mm. However, wall relaxation collisions only occur
at the entrance window and the side walls; the ‘back’ surface of the cylinder is open to
the cell interior. An extension of the model presented in [11] shows that the correct wall
relaxation rate for our geometry (i.e. including the contributions from collisions with the
entrance window) is given by

γw =
(

0.567

R
+ 0.282

L

)
vT . (9)

Another important assumption of the model is that the velocity distribution in the different
hyperfine levels is taken to be thermalized. This assumption is justified when radiation
trapping and the long-range velocity exchanging resonant process

6S1/2(v)+ 6PJ (v
′)
 6S1/2(v

′)+ 6PJ (v) (10)
cause complete thermalization, as recently studied experimentally [12]. Under these
assumptions we can write the rate equations for an ensemble of thermally populated states,
in a model similar to that of [13]. The main difference of the present analysis is the inclusion
of the hyperfine structure of the 6PJ levels and of radiation trapping.

Rate equations for the densities in the excited levels 6PJ (F
′), the ground-state hyperfine

level which primarily interacts with the laser(6S1/2(F = 4)), and the other ground-state
hyperfine level(6S1/2(F = 3)), which is only weakly coupled by the laser, are given by
the following:

ṅ6PJ (F ′) = −
∑
F

B6PJ (F ′)→6S1/2(F )IL

(
n6PJ (F ′) −

gF ′

gF
n6S1/2(F )

)
−
(∑

F

0eff
6PJ (F ′)→6S1/2(F )

+ γw
)
n6PJ (F ′) (11)
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ṅ6S1/2(F=4) =
∑
F ′
B6PJ (F ′)→6S1/2(F=4)IL

(
n6PJ (F ′) −

gF ′

gF=4
n6S1/2(F=4)

)
+
∑
F ′
0eff

6PJ (F ′)→6S1/2(F=4)n6PJ (F ′) + γw
(

ngF=4

gF=3+ gF=4
− n6S1/2(F=4)

)
(12)

ṅ6S1/2(F=3) =
∑
F ′
B6PJ (F ′)→6S1/2(F=3)IL

(
n6PJ (F ′) −

gF ′

gF=3
n6S1/2(F=3)

)
+
∑
F ′
0eff

6PJ (F ′)→6S1/2(F=3)n6PJ (F ′) + γw
(

ngF=3

gF=3+ gF=4
− n6S1/2(F=3)

)
. (13)

Here ṅnLJ (F ) is the time rate of change of thenLJ (F ) hyperfine level number density,n
is the total caesium atom density, andIL is the laser intensity. In addition,γw is given by
equation (9) andgF = (2F + 1) is the statistical weight of levelF . In order to simplify
the expression for the level populations we introduce the following definitions:

βF ′F ≡ gF ′

gF

B6PJ (F ′)→6S1/2(F )IL∑
F ′′ (B6PJ (F ′)→6S1/2(F ′′)IL + 0eff

6PJ (F ′)→6S1/2(F ′′))+ γw
(14)

Q ≡
∑
F ′
βF ′4

(
B6PJ (F ′)→6S1/2(F=3)IL + 0eff

6PJ (F ′)→6S1/2(F=3)

+ γwgF=3

gF=3+ gF=4

)
+ γwgF=3

gF=3+ gF=4
(15)

R ≡
∑
F ′
βF ′3

(
B6PJ (F ′)→6S1/2(F=4)IL + 0eff

6PJ (F ′)→6S1/2(F=4)

+ γwgF=4

gF=3+ gF=4

)
+ γwgF=4

gF=3+ gF=4
. (16)

(The physical significance of these terms is the following:βF ′F is just the ratio of population
in the excited sublevel 6PJ (F ′) to that in the ground-state sublevel 6S1/2(F ) that would
be obtained if we solved equation (11) in steady state using the assumption that the laser
couples to only one hyperfine level (F ) of the ground state. Substituting this ratio into
equations (12) and (13), we see thatQ andR represent effective transfer rates between
the ground state sublevels, including both hyperfine optical pumping and relaxation through
wall collisions.)

Taking into account the constraint that the total number of atoms is conserved, i.e.∑
F ′ n6PJ (F ′) + n6S1/2(F=4) + n6S1/2(F=3) = n, we may solve equations (11)–(13) in steady

state to yield

n6S1/2(F=4) = Rn

R(1+∑F ′ βF ′4)+Q(1+
∑

F ′ βF ′3)
(17)

n6S1/2(F=3) =
Qn6S1/2(F=4)

R
(18)

n6PJ (F ′) =
∑
F

βF ′Fn6S1/2(F ). (19)

For a laser frequencyωL, the stimulated emission rates are given by

B6PJ (F ′)→6S1/2(F )(ωL) =
λ3

8πhc

06PJ (F ′)→6S1/2(F )0

1
√
π

×
∫ +∞
−∞

exp[−(ω − ω6PJ (F ′)→6S1/2(F ))
2/12]

(ωL − ω)2+ (0/2)2 dω (20)
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where λ is the transition wavelength,h and c are Planck’s constant and the speed of
light, respectively,06PJ (F ′)→6S1/2(F ) is the natural radiative rate, andω6PJ (F ′)→6S1/2(F ) is

the line centre frequency of the hyperfine transition. Here1 = 2π
λ

√
2kT
M

is a measure
of the Doppler width, and0 = 06PJ→6S1/2 + 0L + 0SB is the Lorentzian line width
(FWHM). The three contributions to the Lorentzian width represent natural broadening
(06PJ→6S1/2 = 3.26× 107 s−1 and 2.89× 107 s−1 for the D2 and D1 lines, respectively [7]),
the laser linewidth (0L = 1.26× 108 s−1), and self-broadening (0SB = 9.48× 10−7n s−1

and 4.71× 10−7n s−1 for D2 [14] and D1 [15], respectively). Hyperfine transition rates
06PJ (F ′)→6S1/2(F ) are taken from [16].

In the presence of radiation trapping, the radiative rates must be considered as dependent
on the ground- and excited-state hyperfine level populations. The various spontaneous
emission coefficients are multiplied by the trapping factorsgTF lowering the transition
probability:

0eff
6PJ (F ′)→6S1/2(F )

= gTF06PJ (F ′)→6S1/2(F ). (21)

ThegTF trapping factors can be calculated using the standard theory of radiation trapping as
given by Holstein in the formulation developed by Molischet al [9, 10]. They depend on
F because the two sublevels of the ground state are sufficiently separated in frequency that
photons emitted on transitions toF = 3 are highly unlikely to be reabsorbed by atoms in
F = 4 and vice versa, at these temperatures.

In the above rate equations all radiative rates are effective rates. As a consequence, an
analytical solution of equations (17)–(19) is impossible. However, it is possible to solve
these equations using an iterative approach. In steady state, for a given distribution of atomic
population in the various hyperfine levels, and considering the populations independent of
the radial position in the cell, we can write the absorption coefficient for the transitions
6S1/2(F ) → 6PJ starting from the hyperfine levelF , as a superposition of unresolved
Doppler lines:

kF (ω) = h̄ω
∑
F ′
B6PJ (F ′)→6S1/2(F )(ω)

[
gF ′

gF
n6S1/2(F ) − n6PJ (F ′)

]
. (22)

To calculate the trapping factor, the maximum absorption coefficientkmax
F is calculated as in

[1]. From equations (17)–(19), we determine populations in the absence of trapping and use
them to calculate approximate trapping factors. The populations are then recalculated using
the new values of0eff in equations (17)–(19); this procedure is iterated until a variation of
less than 1% in the populations is obtained. When the process has converged, we calculate
trapping factors for the 7PJ ′ → 6S1/2(F ) transitions. The reductions in the 7P→ 6S
transition probabilities are less severe than those for 6P→ 6S, and the changes from the
natural radiative rates for the 7P→ 6S transitions range from less than 1% at the lowest
temperature to 60% at the highest temperature. Since the 6P3/2, 7P1/2 and 7P3/2 state
hyperfine structures are not resolved due to Doppler broadening, we use a single trapping
factor to describe emission from all hyperfine levels within each of those states to a given
ground-state hyperfine level 6S1/2(F ). Thus we suppose that emitted photons see the same
absorption coefficient regardless of the initial hyperfine level. For 6P1/2, the hyperfine levels
are sufficiently separated that individualF ′ → F trapping factors must be calculated. In the
following, we will always implicitly assume that D1 line trapping factors refer toF ′ = 3.

Because the laser beam fills the entire cell diameter, we only consider the lowest
mode for the trapping problem. (In [1], a 10-mode expansion was necessary because,
in that case, the laser beam diameter was much smaller than the cell diameter.) Generally,
trapping calculations of this type are based upon some ‘ideal’ geometry such as a sphere,
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an infinite cylinder, or an infinite slab. Such an approximation is required in the present
case since analytic formulae for the trapping factors are needed to keep the computation
time manageable in our iterative solution. Here we can calculategTF from the infinite
cylinder approximation [9], usingkmax

F R as the input parameter, withR = 0.9 mm being
the cell radius. However, the infinite cylinder is not a very good match to our geometry,
because we observe fluorescence from a region close to the cell entrance window where the
smallest photon escape distance is about half of the cell radius. Thus the infinite cylinder
approximation clearly overestimates the trapping since light can also escape from the cell
entrance window. In the opposite extreme, a sphere of radiusL/2, whereL = 0.5 mm
is the length of the observation zone, must represent a lower bound on the trapping since
all photon escape distances from the centre of the observation zone are at least as great
asL/2 [9]. Here we have chosen to model the trapping geometry as an infinite slab of
thickness equal toL, with the input parameter to the trapping calculations beingkmax

F L [10].
We believe the slab represents a good compromise for the geometry since the neglect of
escape out of the side walls is partially compensated in the slab calculations by inclusion
of escape out of the ‘back’ slab face into the cell interior (escape in that direction does
not occur effectively since photons leaving the observation zone through that ‘surface’ are
replaced by other photons entering through the same surface from further down the length
of the cell). The slab calculations yield trapping factorsgTF which are approximately a
factor of 2 smaller and a factor of 2 larger than those obtained from the sphere and infinite
cylinder formulae, respectively. We believe the uncertainty in thegTF factors is much less
than a factor of two, since the sphere and cylinder are unrealistic extreme cases. However,
the uncertainty in the trapping factors is certainly one of the most important sources of
uncertainty in the EP rate coefficients derived from our experimental data.

We note here that the calculation of the level populations using this model of optical
pumping and radiation trapping depends on the laser frequency. The latter was not measured
in our experiment, but rather it was set to maximize the 6PJ → 6S1/2 fluorescence.
Experimentally this frequency also maximizes the absorption. Thus our model calculations
were carried out as a function of laser frequency in order to determine the frequency that
maximizes these signals. It turns out from the model that fluorescence and absorption
are maximized at the same frequency (see figure 3(b)). Once this frequency was found, all
further calculations were based upon the assumption that this was the laser frequency actually
used in the experimental measurements ofI6PJ→6S1/2 and I7PJ ′→6S1/2. The laser frequency
dependence of the level populations, trapping factors and the absorption coefficient are
presented in the next section.

4. Results and discussion

For 6P3/2 excitation at different temperatures, we have calculated the various parameters
entering into the determination of the EP rate coefficients, i.e.

n6P3/2, 0eff
6P3/2→6S1/2(F )

and G7PJ ′ ≡
∑

n′′L′′ 0
eff
7PJ ′→n′′L′′

0eff
7PJ ′→6S1/2

/∑
n′′L′′ 07PJ ′→n′′L′′
07PJ ′→6S1/2

as a function of laser detuning. The effective transition probability for the 6PJ level is
calculated by averaging the effective hyperfine transition probabilities, weighted with the
populations of the hyperfine sublevels:

0eff
6PJ→6S1/2

=
∑

F,F ′ 0
eff
6PJ (F ′)→6S1/2(F )

n6PJ (F ′)

n6PJ
(23)
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Figure 3. Variables of the theoretical model versus laser detuning at temperatureT = 372 K
and laser intensityIL = 0.6 W cm−2 for 6S1/2 → 6P3/2 excitation. Laser detuning, in MHz,
is measured from the line centre of theF = 4 → F ′ = 3 transition. All populations are
normalized to the total density of atoms. (a) Populationsn6S1/2(F=3), n6S1/2(F=4) in the ground-
state hyperfine levels, and population of the upper staten6P3/2. (b) Absorption coefficient for
the 6S1/2→ 6P3/2 transition and the corresponding fluorescence intensity. (c) Trapping factors
gT3 and gT4 for the group of transitions terminating on the 6S1/2(F = 3) and 6S1/2(F = 4)
levels, respectively.

The laser intensity was taken to be 0.6 W cm−2, which was close to the experimental
value. Table 1 reports the values ofn6P3/2/n, gT6P3/2

≡ 0eff
6P3/2→6S1/2

/06P3/2→6S1/2, andG7PJ ′ ,
at the laser frequency of maximum 6P3/2 fluorescence. As the temperature increases from
354 K towards 392 K, the fraction of the populationn6P3/2/n increases by a factor of
2, whereas0eff

6P3/2→6S1/2
decreases by about 60%. The 7PJ ′ factorsG7PJ ′ increase with

temperature, the increase being slightly more pronounced on the 7P3/2→ 6S1/2 transition.
We report also in table 1 (b columns) the same quantities calculated under the assumption
that the distribution of population among the various hyperfine sublevels of the 6P3/2 state
is thermalized because of radiation trapping. Calculations labelled a are based upon the
opposite assumption that the 6P3/2 state hyperfine levels retain the population distribution
created by the laser pumping. In the thermalized version, the temperature behaviour of all
parameters is similar, although values forn6P3/2 andgT6P3/2

are lower. We have calculated the
frequency positions of the maxima of 6P3/2 fluorescence, 6P3/2 population (7PJ ′ fluorescence
maximum) and the absorption coefficient, with and without the assumption of thermalization
among the upper-state hyperfine levels. We find that the positions of these maxima do not
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Table 1. Fractions of population in the excited state and radiation-trapping factors (calculated
as the Molisch fundamental (lowest) mode decay rate—see [9, 10]) for different temperatures in
the case of 6P3/2 excitation. a, without thermalization; b, with thermalization assumed among
hyperfine sublevels of the excited state.

n6P3/2/n gT6P3/2
G7P1/2 G7P3/2

T (K) a b a b a b a b

354 0.147 0.0639 0.592 0.551 1.02 1.02 1.05 1.05
359 0.153 0.0823 0.548 0.504 1.02 1.02 1.06 1.06
363 0.163 0.0995 0.516 0.465 1.03 1.03 1.08 1.07
368 0.175 0.124 0.475 0.415 1.03 1.03 1.10 1.09
372 0.193 0.145 0.425 0.376 1.04 1.04 1.12 1.11
376 0.209 0.167 0.384 0.338 1.05 1.05 1.15 1.14
380 0.225 0.189 0.345 0.303 1.06 1.06 1.17 1.16
384 0.241 0.212 0.309 0.270 1.07 1.07 1.21 1.19
387 0.254 0.229 0.282 0.247 1.08 1.08 1.24 1.22
392 0.270 0.257 0.242 0.213 1.10 1.11 1.29 1.27

change much with temperature and laser intensity under the two assumptions.
Figure 3 reports populations, 6P3/2 → 6S1/2 resonance fluorescence, 6S1/2 → 6P3/2

absorption coefficient, and trapping factorsgTF for the 6P3/2 → 6S1/2 fluorescence versus
laser detuning (with respect to theF = 4→ F ′ = 3 transition, in MHz) at a temperature
T = 372 K and laser intensityIL = 0.6 W cm−2. The maximum of the excited state
population does not coincide with the maximum of absorption or fluorescence. Figure 4
shows the same quantities as a function of laser intensity near the frequency of maximum
fluorescence. It may be noted that the population in the excited state stays constant in the
range of laser intensities close to the experimental valueIL = 0.6 W cm−2 (for very large
intensities, the 6P3/2 state population starts to decrease because of optical pumping). This
is a confirmation that the measured values of rate constants should not depend critically on
the laser power, within the range used in this experiment. Both 6P3/2 → 6S fluorescence
and the absorption coefficient show a saturation behaviour as observed in the experiment
and as expected.

In the case of 6P1/2 excitation, the behaviour of all parameters versus temperature is
similar to that in the case of excitation of the 6P3/2 state. However, the range of temperatures
needed to produce useful EP signals was slightly higher when pumping the 6P1/2 state
(even though the EP rate coefficients are larger) because of the following factors: the lower
laser power available, the smaller oscillator strength of the 6S1/2 → 6P1/2 transition, the
greater importance of optical pumping due to the absence of cycling transitions, and shorter
effective lifetimes for atoms in the 6P1/2 state due to a lower radiation trapping probability.
In table 2 we give the maximum values ofn6P1/2/n, gT6P1/2

≡ 0eff
6P1/2→6S1/2

/06P1/2→6S1/2 and
G7PJ ′ , assuming no thermalization among the excited state hyperfine levels. In figure 5 we
show the same quantities as in figure 3 versus laser detuning, but for the case of 6P1/2

excitation, atT = 384 K and laser intensityIL = 0.25 W cm−2. In this case, the hyperfine
sublevels of the 6P1/2 state are Doppler resolved and there are no ‘closed’ transitions. Thus
the laser frequencies that maximize the absorption coefficient, the excited-state population
n6P1/2, and the resonance fluorescence always coincide near zero detuning. Laser intensities
available in this case are lower than for 6P3/2 excitation, but are still in the region where the
various parameters are not critically dependent on the intensity. Figure 6 shows the laser
intensity dependence of the various parameters for 6P1/2 excitation.
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Figure 4. Variables of the theoretical model versus laser intensity at temperatureT = 372 K
and laser frequency detuning of 400 MHz from the 6S1/2(F = 4)→ 6P3/2(F

′ = 3) transition.
(a) Excited-state population and fluorescence intensity. (b) Trapping factors and absorption
coefficient.

Table 2. Fractions of population in the excited state and radiation-trapping factors (calculated
as the Molisch fundamental (lowest) mode decay rate—see [9, 10]) for different temperatures
in the case of 6P1/2 excitation assuming no thermalization among hyperfine sublevels of the
excited state.

T (K) n6P1/2/n gT6P1/2
G7P1/2 G7P3/2

368 0.0491 0.233 1.04 1.11
376 0.0625 0.212 1.06 1.16
384 0.0783 0.197 1.09 1.24
392 0.0954 0.185 1.13 1.35
402 0.117 0.176 1.20 1.58
410 0.133 0.170 1.29 1.85

Experimental results for thek(3/2)7PJ ′ andk(1/2)7PJ ′ rate coefficients are summarized in table 3.
These values are obtained, from equation (7), using the measured fluorescence intensity
ratios. The rate coefficients show a slight dependence on the temperature. In the case
of 6P3/2 excitation, assuming no thermalization of excited hyperfine sublevels, the rate
coefficients increase slightly with temperature over the entire interval. When thermalization
is assumed, the rate coefficients decrease withT . Presented in [12] is an experimental
study of the thermalization of caesium 6P1/2 and 6P3/2 state velocity-selected populations
and hyperfine-level populations due to the combined processes of radiation trapping and
resonance exchange collisions. The experiments of [12] were carried out in a cell of
radius 1.05 cm which is much bigger than the capillary cell used in the present experiment.
Nevertheless, the results of [12] show that thermalization occurs whenever the probability
of reabsorption of resonance photons in the vapour is significant. Thus we believe that the
thermalization assumption is valid, for our case, above roughlyT = 370 K and we therefore
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Figure 5. Variables of the theoretical model versus laser detuning at temperatureT = 384 K
and laser intensityIL = 0.25 W cm−2 for 6S1/2 → 6P1/2 excitation. Laser detuning, in MHz,
is measured from the 6S1/2(F = 4) → 6P1/2(F

′ = 3) transition (see figure 3 caption for
description of the various curves).

average the thermalized values above this temperature with the unthermalized values below
to obtain our final reported rate coefficients. Our averaged values for the 7PJ ′ EP rate
coefficients are given in table 4 for 6P3/2 and 6P1/2 excitation.

We now discuss terms neglected in going from equation (2) to equation (4), and the other
sources of uncertainty in our final rate-coefficient values. In the sum representing cascade
emission we can have contributions to the 7PJ ′ population from the 6DJ and 8S1/2 levels.
We determine from our observations at higher atom densities, and from the results for the
relevant EP rates obtained in [1], that this contribution to the 7PJ ′ populations can amount
to as much as 10–15% and 40–80% for cascade from the 6D and 8S levels, respectively, for
D2 pumping, but less than 3% and 1% for D1 pumping. In the present experiment, a search
was made for 8S→ 6PJ fluorescence at 761.1 and 794.6 nm with D2 pumping, but this
could only be observed for temperatures above 410 K. Since the detection system sensitivity
is much greater for the blue 7PJ ′ → 6S fluorescence, this does not preclude a significant 8S
cascade contribution. However, it is also possible that the 8S fluorescence observed here
and in the experiment of [1] only at the highest temperatures, is due to sources other than
EP collisions. For example, 8S might be populated by recombination or excitation transfer
collisions involving electrons produced by associative ionization, Penning ionization, or
photoionization, but only at the highest temperatures of these experiments. (The absence of
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Figure 6. Variables of the theoretical model versus laser intensity at temperatureT = 384 K
and laser frequency resonant with the 6S1/2(F = 4)→ 6P1/2(F

′ = 3) transition.

fluorescence from other high-lying levels at all but the highest temperatures is evidence that
such ionization processes are not important over most of the range of temperatures studied
here.) Thus we cannot rule out a significant cascade contribution to our measured values of
k
(3/2)
7PJ ′ . In the case of 6P3/2 excitation, the neglect of 6P1/2+ 6P1/2 EP collisions introduces

negligible error in our rate coefficients, but the contribution from 6P1/2+6P3/2 collisions can
be significant, because the energy deficit is much smaller than for 6P3/2+ 6P3/2 collisions.
At present, we cannot estimate this contribution, but this question can be answered by a
two-laser experiment to investigate 6P1/2+6P3/2 EP collisions which may yield the biggest
cross sections. In the case of 6P1/2 excitation, the rate coefficients are much larger, and we
estimate that 6P1/2+6P3/2 and 6P3/2+6P3/2 collisions will not contribute significantly to the
uncertainties. Other sources of uncertainty include the approximate treatment of radiation
trapping and relaxation through wall collisions, and the laser detuning dependence of the
various model parameters since laser detuning was not carefully monitored. One final source
of uncertainty is related to the choice of which theoretical natural radiative rates to use in
order to calculate branching factors. These vary significantly between different theoretical
calculations found in the literature, [7, 17–30]. In [1] the values given by Warner [7] were
chosen because a self-consistent set for all relevant radiative rates was needed. Here we
have again chosen to use the values of Warner so that our results can be directly compared
with those of [1].

Values in table 4 reflect statistical errors only. We believe that in light of possible
systematic errors discussed above, the overall rate coefficients should be considered to be
accurate only to within a factor of 2 (excluding the possible systematic 8S contribution to
k
(3/2)
7PJ ′ mentioned above). The current values are also compared in table 4 with the values

we obtained in the very different experimental circumstances of [1]. It can be seen that the
two sets of results agree, but only to within the rather large combined error bars (systematic
as well as statistical) of the two experiments. The fact that this agreement is only marginal
is a reflection of the difficulties associated with measurements of this type. However, it
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Table 3. EP rate coefficients in the case of 6P3/2 and 6P1/2 excitation. a, without thermalization;
b, with thermalization assumed among hyperfine sublevels of the excited state. For 6P1/2

excitation we assume no thermalization takes place. Error bars for 6P3/2 excitation represent
statistical uncertainties as obtained from five independent measurements at eachT ; for 6P1/2

excitation only one measurement was made for eachT .

6P3/2 excitation

k
(3/2)
7P3/2

(10−12 cm3 s
−1

) k
(3/2)
7P1/2

(10−12 cm3 s
−1

)

T (K) a b a b

354 1.4± 0.2 2.9± 0.4 1.1± 0.2 2.4± 0.4
359 1.6± 0.2 2.7± 0.4 1.5± 0.3 2.6± 0.5
363 1.8± 0.3 2.6± 0.5 1.4± 0.2 2.1± 0.3
368 1.7± 0.4 2.1± 0.5 1.3± 0.2 1.6± 0.2
372 1.6± 0.2 1.9± 0.3 1.8± 0.3 2.1± 0.4
376 1.6± 0.1 1.8± 0.1 1.5± 0.1 1.7± 0.1
380 1.7± 0.1 1.8± 0.1 1.6± 0.1 1.7± 0.1
384 1.6± 0.4 1.6± 0.4 1.3± 0.3 1.3± 0.3
387 1.5± 0.3 1.5± 0.3 1.5± 0.2 1.4± 0.2
392 2.0± 0.3 1.9± 0.3 1.8± 0.3 1.7± 0.3

6P1/2 excitation

T (K) k
(1/2)
7P3/2

(10−11 cm3 s
−1
) k

(1/2)
7P1/2

(10−11 cm3 s
−1
)

368 1.4± 0.7 3.1± 0.9
376 1.7± 0.7 3.0± 0.9
384 1.5± 0.7 3.6± 0.9
392 1.7± 0.7 3.1± 0.9
402 2.0± 0.7 3.7± 0.9
410 3.2± 0.7 5.3± 0.9

Table 4. Averaged values of EP rate coefficients. a, average of unthermalized values. b,
average of unthermalized values fromT = 354 K to T = 368 K and thermalized values from
T = 372 K to T = 392 K. c, results of [1]. Errors represent statistical uncertainties only. In
light of possible systematic errors (see text) we believe the present rate coefficients are only
accurate to within a factor of 2, while those of [1] are accurate to approximately±50%.

6P3/2 excitation

k
(3/2)
7P3/2

(10−12 cm3 s
−1
) k

(3/2)
7P1/2

(10−12 cm3 s
−1
)

a b c a b c

1.72± 0.05 1.65± 0.05 6.1± 3.1 1.52± 0.05 1.60± 0.04 5.9± 3.1

6P1/2 excitation

k
(1/2)
7P3/2

(10−11 cm3 s
−1
) k

(1/2)
7P1/2

(10−11 cm3 s
−1
)

a c a c

1.9± 0.3 4.5± 1.4 3.6± 0.3 13.0± 6.0

also indicates that the overall quoted errors are reasonable.
Finally, we should comment on the experiment recently reported by Vadlaet al [31],

who used an original method to avoid radiation trapping. In that work, the dipole forbidden
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6S→ 5D transition of caesium at 685 nm was pumped with a cw dye laser and EP collisions
6P+ 6P→ 6D+ 6S, 6P+ 5D→ 7D+ 6S, and 5D+ 5D→ 7F+ 6S were observed. The
excited-atom density was measured directly using a probe laser as in [1]. In addition,
complicated radiation-trapping calculations (or equivalently calculations of transmission
factors as in [1]) were cleverly avoided by measuring the ratio of fluorescence from the
high-lying state produced through EP to fluorescence emitted in the optically thin line wing
of the self-broadened resonance line. The latter must be carefully calibrated, but this can
be done using theory. However, due to the pumping mechanism, fine-structure effects (i.e.
differences between rates for 6P3/2+6P3/2 vs 6P1/2+6P1/2 collisions) could not be studied
in [31]. The present work also differs from [31] in the product states under investigation
(7PJ ′ against 6D, 7D, and 7F). We note that due to the different temperature ranges of the
two experiments and the lack of fine-structure selection in [31], those results also cannot be
compared in detail with the 6PJ + 6PJ → 6DJ ′ + 6S1/2 rate coefficients of [1]. However,
the cross section for 6P+ 6P→ 6D+ 6S (9.5× 10−15 cm2) reported in [31] is certainly
consistent with the values 1.3 × 10−14, 8.0 × 10−15, 2.7 × 10−15, and 5.6 × 10−15 cm2

obtained in [1] for the process 6PJ + 6PJ → 6DJ ′ + 6S1/2 with (J = 1/2, J ′ = 3/2),
(J = 1/2, J ′ = 5/2) (J = 3/2, J ′ = 3/2) and (J = 3/2, J ′ = 5/2), respectively.

5. Conclusions

We have presented the results of an experimental study of Cs(6PJ )+Cs(6PJ )→ Cs(7PJ ′)+
Cs(6S1/2) EP collisions. The experiment was carried out in a capillary cell using diode
laser excitation, thus simplifying the analysis of the radiation-trapping problem. However,
because the excited-atom density could not be measured directly in this experiment, we
have also developed a model to estimate the population of Cs(6PJ ) atoms excited by a cw
single-mode laser under conditions of saturation, radiation trapping and hyperfine optical
pumping. The last two effects are particularly difficult to incorporate into the model since
each affects the other. Thus a self-consistent solution to the optical pumping/radiation
trapping problem was developed by iteration. We believe this is the first such model to
succesfully incorporate these simultaneous effects. The model results were combined with
measured fluorescence ratios to obtain the EP rate coefficients. The quantitative results are
in agreement with those obtained in very different experimental conditions [1], but only
within the combined large error bars of the two experiments (including systematic errors).
Nevertheless, we believe these results are useful since they corroborate the results of [1],
which is gratifying in this field where different measurements of the same rates sometimes
yield discrepancies of several orders of magnitude. Moreover, our theoretical model and its
application to the study of EP in caesium highlights the complications which arise in the
experimental study of excited atom–excited atom collisions, especially in a heavy system
such as caesium. In addition, we have been able to confirm that 6P1/2+6P1/2 collisions are
much more effective than 6P3/2+6P3/2 collisions at populating the 7PJ ′ levels. Our results
obtained with D1 pumping also demonstrate that 7P1/2 is about two times more likely to
be populated than 7P3/2, while the two 7PJ ′ levels are approximately equally populated
when D2 pumping is employed. This supports the idea that not only energy deficits but also
angular momentum can be important in some circumstances for EP processes. Additional
evidence could be obtained from an experiment designed to study mixed 6P3/2 + 6P1/2

collisions with simultaneous laser excitation of the 6P3/2 and 6P1/2 levels. Rate coefficients
for the 6P3/2 + 6P1/2 entrance channel are likely to be larger than those for either the
6P1/2+ 6P1/2 or 6P3/2+ 6P3/2 channels studied here and in [1].
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