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Abstract. The intensity dependent absorption was measured on the D1 line (6S1/2 → 6P1/2

transition) in atomic cesium. The magnetic field applied to the vapour and the spatial cross
section of the laser beam were controlled and varied during data collection. A three-level
rate equation model is presented in an attempt to explain the results. We show that this well
known approach does not sucessfully model the data obtained in the absence of a magnetic
field. Hence, a more complex and complete model that explicitly includes all of the hyperfine
magnetic sublevels (a multilevel model) is presented. This approach accurately models all
of the data collected. The good agreement betweeen this model and the data allows the
determination of the transit relaxation rate (due to atomic time of flight through the laser beam),
0t = (1.13± 0.20)vrms/D, wherevrms is the two-dimensional root-mean-squared speed of the
atom andD is the FWHM of the Gaussian laser beam spatial profile.

1. Introduction

The basis for many nonlinear optical phenomena is the nonlinear response produced by
the saturation of atomic transitions. This saturation is commonly described in terms of an
intensity dependent absorption coefficientα and quantified by a saturation intensityIsat.
Theoretical models of these phenomena include derivations of equations describing the
intensity dependent absorption for both homogeneously and inhomogeneously broadened
optical transitions, as well as the saturation intensity of two-level atoms [1–4]. It is also
well known that three-level systems may display greatly reduced saturation intensities [2].
A number of measurements of saturation intensity have been carried out in atomic vapours,
usually for the purpose of applying the values obtained to saturation spectroscopy studies
[5, 6]. However, to the best of our knowledge, the literature contains no detailed comparison
of absolute theoretical and experimental intensity dependent absorption. Here, we present
data showing intensity dependent absorption on the cesium D1 line. We compare these data
with a three-level model for the absorption that includes Doppler broadening of the transition,
the Gaussian transverse spatial profile of the laser beam, and beam attenuation over the
length of the cesium cell. We demonstrate the effect of transit relaxation on the three-level
saturation intensity by varying this transit time through changes in the size of the beam
cross section. Also, by manipulating the magnetic field, we show that the three-level model
often is inadequate. Thus, we present a more complete model that explicitly includes all of
the hyperfine magnetic sublevels (a multilevel model) and explains all of the experimental
data. The good agreement between model and measurements in all cases supports our use
and calculation of an effective transit relaxation rate and provides a measured uncertainty
for this rate. We compare this calculation and measured uncertainty with several other
theoretical estimates of effective transit relaxation rate coefficients.
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2. Experiment

The experiment was performed using a sealed cylindrical Pyrex cell of lengthL = 6.9 cm
and diameter 2.1 cm containing pure cesium with no buffer gas. The cell temperatureT

(room temperature) was monitored with a thermocouple and kept constant to within 0.5◦C
throughout the experiment. The cell was located at the centre of three pairs of Helmholtz
coils with coil radii rx = 12.1 cm, ry = 14.6 cm, andrz = 9.5 cm. The magnetic field at
the centre of these coils was measured using a transverse Hall effect probe and Gaussmeter
(Bell model 640).

Figure 1. Transmitted signal against laser frequency. The transmitted laser powerPL was
collected using a photomultiplier tube, as the laser (with a beam spatial profile FWHM of
D = 0.55±0.05 mm) was scanned across the cesium 6S1/2 → 6P1/2 transition. The laser beam
was blocked at the beginning of each scan to determine a baseline. The discontinuity in the
middle of each scan results from the reset of the laser’s Brewster plate after scanning a 10 GHz
segment. The four absorption dips visible in each spectrum result from the hyperfine structure.
We label each transition asF → F ′, whereF andF ′ are the quantum numbers of the ground-
and excited-state hyperfine levels coupled by the laser. Incident intensities are (a) P0 = 2.1 nW,
(b) P0 = 22 µW, and (c) P0 = 166 µW. Note the decrease in transmittance with increasing
incident intensity as the transitions saturate.

An argon-ion laser pumped, single-mode, tunable titanium-sapphire laser (coherent
model 899-29) was used to study the intensity dependent absorption of the cesium
6S1/2 → 6P1/2 transition (D1 line). This laser beam was directed through the length of
the cell (in theŷ direction) and was linearly polarized in theẑ direction. The laser beam
spatial profile was recorded using a two-dimensional diode array (Spectra Source Instruments
model LYNXX PC), hence allowing the accurate determination of the beam’s Gaussian full
width at half maximum (FWHM),D. This FWHM at the cell position was adjusted by
placing different lenses in the beam path. The incident laser power (for powers greater than
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1 µW) was measured with the laser tuned off resonance using an Ophir (model PD2-A)
power meter placed after the cell. This reading was corrected for the attenuation caused
by the Pyrex exit window. The incident power was varied using a variable neutral density
filter and two polarizing cubes. The second cube was set to pass light linearly polarized in
the ẑ direction and then never adjusted over the course of the experiment, thus preserving
the laser polarization for all incident powers. The frequency dependent transmitted laser
power was measured using a chilled photomultiplier (Hamamatsu R636) with output sent
to a lock-in amplifier (Stanford Research Systems model SR510) and then to a computer
running the coherent autoscan laser frequency scanning software. The amplitude of the
off-resonance photomultiplier signal was used to calibrate incident powers below the 1µW
reading threshold of the power meter.

Figure 2. Effective line centre optical depth
ln(P0/PL) against incident powerP0. Each
of the four 6S1/2(F ) → 6P1/2(F

′) hyperfine
transitions (labelled asF → F ′) were analysed
using data collected in set no 4. The magnetic
field transverse to the laser polarization axis
was Bx = (1.10 ± 0.02) G. The experimental
data appear as circles, while the results of
the three-level model presented in section 3.1
of the paper appear as full curves. The
multilevel model results of sections 3.2 and 3.3
(including magnetic field mixing) are identical
with the three-level model results. Note the
good agreement between experiment and theory
in all four cases. Results from data set no 3 are
comparable in all respects.

Absorption data were collected under four different sets of conditions, listed in table 1.
Each data set consists of approximately 35 absorption scans across the cesium D1 resonance
line. Each scan within a given set was collected under the same conditions, except for the
incident power, which was varied from a few mW to a few nW. The magnetic fieldsBy

and Bz were set toBy = (0 ± 5) mG andBz = (0 ± 10) mG using the Helmholtz coils.
Sample scans demonstrating the saturation of the four hyperfine transitions are shown in
figure 1. Each of the four transitions was analysed independently. For a given transition,
each scan was analysed to find ln(P0/PL), whereP0/PL is the ratio of incident power to
that transmitted through a lengthL of vapour at line centre. The transmitted signal is simply
the signal minimum for the transition, while the incident signal is found by interpolating
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the off resonance signals to the frequency of the signal minimum. These data were plotted
versus the measured incident laser powerP0 and are shown in figures 2 and 3 for two of
the data sets.

Table 1. Conditions under which the four experimental data sets were obtained.

T D (mm) Bx

Set no (±0.5◦C) (±10%) (mG)

1 24.0 1.10 0± 5
2 24.0 0.55 0± 5
3 25.5 0.45 1100± 20
4 25.5 1.30 1100± 20

3. Theoretical results and comparison to experiment

3.1. Three-level model

A simple prediction of the intensity dependent absorption can be made by considering
either a three-level rate equation or density matrix model. The density matrix approach
properly accounts for coherence effects, but does not easily allow incorporation of degenerate
magnetic sublevels. However, both the rate equation and density matrix approaches yield
the same intensity dependent absorption in cases where each level is considered to be non-
degenerate and where only two-levels are coupled by the laser at any given time. Due to
the presence of degenerate sublevels in this experiment, we choose to use the rate equation
approach for our analysis.

Figure 4 shows the levels and rates considered. Levelsa and b represent lower and
upper state hyperfine levels coupled by a monochromatic laser, while levelc is a trap level
coupled radiatively to levelb, but not to levela. In the absence of collisions, levelsa
and c effectively exchange population via transit relaxation. In cesium,a and c are the
F = 3 andF = 4 (or F = 4 andF = 3, depending on which level is coupled by the laser)
ground-state hyperfine levels, respectively. For homogeneously broadened transitions, we
can write the following steady state rate equations:

ṅa = BbaIr,y

(
nb − gb

ga

na

)
− 0acna + 0banb + 0canc = 0 (1)

ṅb = −BbaIr,y

(
nb − gb

ga

na

)
− (0ba + 0bc)nb = 0 (2)

ṅc = 0acna + 0bcnb − 0canc = 0 (3)

na + nb + nc = n. (4)

Here,n is the total cesium atom density,ni and ṅi are the density of theith level and its
time rate of change, respectively (note that in steady stateṅi = 0), 0ij is the population
decay rate from leveli to level j , andgi is the degeneracy of theith level. Also,BbaIr,y

is the stimulated emission rate, whereBba is the Einstein coefficient andIr,y is the laser
intensity incident upon position(r, y) in the cylindrical cell (wherer ≡ √

x2 + z2 is the
radial distance from the laser beam axis andy is the position along the axis). When pumping
a homogeneously broadened transition at line centre, the net absorption coefficientαhom is
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Figure 3. Effective line centre optical depth
ln(P0/PL) against incident powerP0. Each of the
four 6S1/2(F ) → 6P1/2(F

′) hyperfine transitions
(labelled asF → F ′) were analysed using data
collected in set no 2. The magnetic field transverse
to the laser polarization direction wasBx = (0 ±
5) mG. The experimental data appear as circles,
while the results of the three-level model presented
in section 3.1 of the paper appear as full curves.
Note the lack of agreement between experiment
and theory in some of the cases. Results of the
multilevel theory presented in section 3.3 (broken
curves) are in good agreement with experiment in
all four cases. Results from data set no 1 are
comparable in all respects.

defined as

αhom = hc

λ

(
gb

ga

na − nb

)
Bba

= λ20ba

4πδ

(
gb

ga

na − nb

)
. (5)

Here, h is Planck’s constant,c is the speed of light,λ = 894.6 nm is the transition
wavelength, andδ is the homogeneous linewidth (HWHM). By solving the rate equations
in steady state and substituting into equation (5), we find

αhom = α′
0

1 + Ir,y/Isat
(6)

whereα′
0 is a constant obtained by settingna = (nga/(ga + gc) andnb = 0 in equation (5)

and

Isat = 4πhcδ0b0t

λ30ba[0t + (gb/ga)(0ca + 0bc)]
. (7)

Here, the total transit relaxation rate is defined as0t = 0ca +0ac and the fluorescence decay
rate of levelb (assumed to be much larger than the transit relaxation rate of the excited
state) is defined as0b = 0ba + 0bc. Neglecting collisional broadening and quenching,
δ = 0b/2 and0b = 2.86× 107 s−1 [7]. The rates0ba and0bc are calculated by summing
and reducing magnetic sublevel transition matrix elements [8].

The transit relaxation rates are found by assuming that, under our experimental
conditions, the cesium atoms do not interact with one another or with impurity atoms.
Hence, the average atom passes through the laser beam in a straight line path without
colliding with any other atoms. The transit relaxation rate is defined as0t = v̄/d̄, where
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Figure 4. Population changing processes among the low lying cesium energy levels. Levelsa

andb represent the lower- and upper-state hyperfine levels coupled by a monochromatic laser,
while levelc is the remaining uncoupled ground-state hyperfine level for this excitation scheme.
0ij ni is the number of atoms (per cm3) moving from level i to level j per unit time and
BbaIr,y((gb/ga)na − nb) is the net number of atoms (per cm3) pumped from levela to level b
per unit time (absorption minus stimulated emission).

v̄ is the average atomic speed in two dimenions andd̄ is the average path length across the
beam cross section. Assuming a two-dimensional Boltzmann distribution of velocities and
a circular beam cross section (of diameterD), we find v̄ = √

πkT/2m and d̄ = πD/4 so
that

0t =
√

8kT /πm

D
= 1.13

vrms

D
(8)

wherem is the cesium atomic mass,k is the Boltzmann constant, andvrms = √
2kT /m is the

two-dimensional root-mean-squared velocity. The derivation of equation (8) and discussion
of the transit relaxation problem can be found in section 4.2. We also assume that atoms
entering the beam are in a statistical mixture of the two ground-state hyperfine levels since,
in this collision free model, such an atom last interacted with the cell walls. Hence, when
an atom leaves the beam, this statistical population determines the probability that it is
replaced by an atom in the other hyperfine level (a transit relaxation decay) or whether it
is replaced by an atom in the same hyperfine level (no transit relaxation). Using this, the
transit relaxation rates are

0ca = gc

ga + gc

0t 0ac = ga

ga + gc

0t. (9)

Since the observed absorption lines are Doppler broadened, the effect of Doppler
broadening on the theoretical absorption coefficientαhom must be included in this model. A
set of velocity dependent rate equations (similar to those in equations (1)–(3)) must be used
to study the saturation of inhomogeneously (Doppler) broadened transitions [3, 4]. Under
these conditions, the absorption coefficient becomes

αDop = α0√
1 + Ir,y/Isat

(10)

with [9]

α0 =
√

m

128π3kT
λ30ba

gb

ga + gc

n. (11)

Note that equations (10) and (11) are based upon an analysis that treats independently each
velocity class within the Doppler broadened transition. At our vapour density, velocity-
changing collisions, resonance exchange collisions, and radiation trapping are all sufficiently
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infrequent that mixing among velocity classes within a single level can be considered
negligible [10]. However, even atT = 60–70◦C, these effects become important.

The experiment discussed in section 2 measured the power of a Gaussian beam incident
on the cesium cell,P0, and the power of this same beam after transmission through a
length L of cesium vapour,PL. The ratio of transmitted to incident intensity due to a
vapour slab of thickness1y, given by

Ir,y+1y

Ir,y

= e−αDop1y (12)

is intensity dependent due to the nonlinear absorption coefficientαDop. Since this intensity
varies with both radiusr (due to the Gaussian shape of the incident laser beam) andy

(due to the attenuation of the beam power over the length of the cell), we must numerically
calculate the transmitted powerPL. To do this, we divide the vapour into rings of radiusr

and thickness1r. These rings have an incident intensity

Ir,0 = I0,0 e−4 ln 2(r/D)2
(13)

where

I0,0 = 4 ln 2

πD2
P0. (14)

Then, this intensity is stepped through the vapour fromy = 0 to y = L (in 200 steps)
using equation (12), thus yielding the transmitted intensity of this ringIr,L. This process is
repeated for rings (of thickness1r = D/100) ranging fromr = 0 to r = 2D, which are
then summed using

PL = 2π

∫ ∞

0
Ir,Lr dr ≈ 2π

200∑
j=1

(Ij1r,L)j (1r)2 (15)

to find the output power. The ratio ln(P0/PL) is calculated for many values ofP0 and then
plotted as the full curves in figures 2 and 3. These plots are generated using no adjustable
or fitted parameters (other than a slight adjustment of the total cesium densityn, which is
discussed in section 4.1). Note that this model agrees well with the data in all cases in
figure 2, whereBx = 1.1 G, but that it is in poor agreement with the data for three of the
four transitions in figure 3, whereBx = 0 G.

3.2. Multilevel model

The three-level model presented above is based upon a simple rate equation model which
provides useful, and, in some cases, accurate predictions for the intensity dependent
absorption of the D1 line of cesium. However, it represents an oversimplification of the
actual cesium atom. Hence, we also present a multilevel model which treats the 2F + 1
distinct magnetic sublevels of each hyperfine level. As a result, neglected effects such as
magnetic field mixing and population alignment are included.

Figure 5 shows the 32 magnetic sublevels that constitute the 6S1/2 and 6P1/2 states
of cesium. Within each hyperfine level, the sublevels are considered to be distinct but
degenerate in energy. A multilevel rate equation model, similar to the three-level model of
the preceeding section, is used. The multilevel model includes several effects that are not
present in the three-level model. From equation (5), one can see that the pumping rate is
proportional to the spontaneous emission rate between the two sublevels coupled by the laser.
Since this pumping rate is different for each pair of coupled sublevels, a population alignment
is generated across the sublevels of each hyperfine level. In addition, some sublevels of
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level a are not coupled by the linearly polarized laser and therefore can trap population
just like the sublevels of statec. This trapping further augments the population alignment
within this state. These population aligning and trapping effects are offset somewhat by the
population redistributing effects of transit relaxation. In this multilevel model, the transit
relaxation rate is0t/16 between each pair of sublevels within the 6S1/2 (F = 3, 4) states.
Sublevel pumping and fluorescence decay rates are calculated using sublevel transition
matrix elements from [8].

Figure 5. Magnetic sublevel and hyperfine structure of the cesium 6S1/2 and 6P1/2 states. Also
shown are the sublevels coupled by a linearly polarized laser tuned to the 6S1/2(F = 4) →
6P1/2(F

′ = 3) transition.

As in the three-level model, we set up a system of rate equations. However, there
are now 23 or 25 coupled equations (depending on which pair of hyperfine levels are
coupled by the laser). The coefficients of these equations were entered in numerical form
(with the exception of incident intensityIr,y , which was left as an unknown) into a matrix
representing the coupled equations. This matrix then was diagonalized using Maple V.
Steady state solutions for the populations of all sublevels were found by the Maple program
in terms ofIr,y . Since all of the sublevel couplings within a transition occur simultaneously,
an overall absorption coefficient is defined by summing up the individual sublevel absorption
coefficients. Using equation (5), the total absorption coefficient is

αhom = λ2

4πδ

F<∑
mF =−F<

0ba,mF
(na,mF

− nb,mF
) (16)

whereF< is the lesser ofFa andFb, 0ba,mF
is the fluorescence decay rate between the two

sublevels coupled by the laser, andni,mF
is the density of the sublevelmF in state i.

By proceeding analogously to the three-level model presented previously, the Doppler
broadened line centre absorption coefficient is defined to be

αDop ≡ α0

√
αhom

α′
0

. (17)

As before, the Gaussian transverse spatial profile of the laser beam and beam attenuation
over the length of the cesium cell are included in this multilevel model using equations (12)–
(15). Calculated values of this mutilevel ln(P0/PL) are plotted as the broken curves against
P0 in figure 3. As before, these plots are generated using no adjustable parameters other
than a slight adjustment of the total cesium number densityn. Note the improved and
excellent agreement with the data in all cases in figure 3.
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It is important to note the physical source of the differences between the three-level and
multilevel models. The primary failing of the three-level model is its inability to account
properly for population trapped in statea sublevels. Hence, it overestimates the value of
ln(P0/PL). TheF = 3 → F ′ = 4 excitation (figure 3(d)) has no such additional trap levels,
so the three-level and multilevel model predictions are practically identical. The 4→ 4
(figure 3(b)) and 3→ 3 (figure 3(c)) excitations each have one unpumped statea sublevel
(the mF = 0 sublevel), leading to a discrepency between the two theories. The 4→ 3
(figure 3(a)) excitation has two additional statea trap levels (F = 4, mF = ±4), which
produces even a larger difference between the three-level and multilevel model results.

3.3. Magnetic field effects

The multilevel model is used to predict the intensity dependent absorption for the data taken
with a nonzero transverse magnetic field as well. To do this, the effects of magnetic field
mixing must be included in the multilevel rate equation matrices. The magnetic field, applied
perpendicular to both the laser propagation and polarization directions, causes a precession
of the axis of atomic polarization̂z about the direction of the applied field̂x. This magnetic
field induced depolarization is known as the Hanle effect [11] when detected by observing
the polarization of spontaneously emitted fluorescence. In theẑ basis, the population of a
magnetic sublevel is redistributed among all of the magnetic sublevels within the hyperfine
level by the transverse magnetic fieldBx . Like transit relaxation, this population mixing
within a hyperfine structure level offsets somewhat the population aligning and trapping
effects discussed previously. However, at these low magnetic fields, it does not affect the
overall rate of population transfer between ground-state hyperfine levels represented by0t.
If the magnetic mixing rate is large enough, it can effectively eliminate population alignment
and trapping in statea sublevels. Hence, the atom should behave like a three-level atom.
This observation suggests that the transverse magnetic field applied in data sets no 3 and
no 4 was large enough to create a vapour effectively composed of three-level atoms.

For the cesium 6S1/2 and 6P1/2 states (or any state whereJ = 1/2), the rate of precession
of the laser polarization axis (or Larmor angular frequency) is given by [11]

ωL = gJ µBBx

h̄(2I + 1)
(18)

wheregJ is the Land́e g-factor,µB is the Bohr magneton, andI = 7/2 is the nuclear spin
quantum number for cesium. Based on this precession rate, we have set the rate of decay
of population between a pair of magnetic sublevels due to magnetic mixing to be

0m = gJ µBBx

h̄
. (19)

This rate was inserted into the multilevel rate equation matrices.
If this magnetic mixing rate is going to generate effective three-level atoms, then it must

be comparable to or larger than the fluorescence decay rates that generate the population
alignment. These fluorescence rates are some fraction (as low as 1/48th) of the total
6P1/2 → 6S1/2 transition fluorescence decay rate0b = 2.86× 107 s−1. UsingBx = 1.1 G,
we find 0m = 1.93 × 107 s−1. This rate appears to be large enough to sufficiently mix
the population. By solving the multilevel rate equation matrices and plotting ln(P0/PL)

versusP0, we generate results almost identical to those found by solving the three-level rate
equations.

Also, the matrices were solved using a magnetic mixing rate of0m = 8.8 × 104 s−1.
This corresponds to a transverse magnetic field of 5 mG, the maximum allowed at the cell
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position by the experimental uncertainties in the zero field cases. To have a negligible
effect upon the zero field results, this mixing rate should be much smaller than the transit
relaxation rate, which was always greater than0t = 1.67× 105 s−1 under our experimental
conditions. As expected, this small magnetic mixing rate had no significant effect on the
theoretical results obtained previously with no magnetic field.

4. Discussion

4.1. Assumptions and approximations

A sizable number of assumptions and approximations have been made in the theoretical
analysis given above. Here, we will attempt to explain and justify them.

The cesium number densityn is required for the calculation ofα0 in equation (11). This
density is easily calculated using the cell temperature and the Nesmayanov vapour pressure
formula [12]. However, due to the inaccuracy of our temperature measurement (±0.5 ◦C)
and of vapour pressure formulae in general, we expect a statistical and possibly a systematic
uncertainty in our determination of the cesium number density (and henceα0) of up to 5%.
As expected, such a variation ofα0 was observed from experiment to experiment. A more
accurate way of obtainingn is to use the low incident power data to findα0. The first
five to eight data points were used from each of the four ln(P0/PL) againstP0 plots (see
figures 2 and 3) to determine an experimental value forα0. Using other known constants
in equation (11) allows us to calculaten for each point. Averaging these densities provides
an accurate value ofn necessary for the models.

In our models, we assumed that the effective radiative rate of the excited state was equal
to the natural radiative rate, that the homogeneous linewidth was due to natural broadening
only, and that the cesium atoms passed through the laser beam without interacting with any
other particles. If the density of cesium atoms in the cell is too high, these approximations
break down. Our measurements ofα0 (and the Nesmayanov vapour pressure formula)
show that the cesium number density wasn ≈ 4 × 1010 cm−3 at our experimental
temperatures. This density is too small for radiation trapping to be significant (< 3.5% effect
[10, 13]). Also, self-broadening does not significantly affect the homogeneous linewidth of
the transition at this density [14]. In addition, long-range resonance exchange collisions
with other cesium atoms limit the cesium atomic mean free path to several centimetres [10],
but this is still much larger than the largest beam FWHM used in this experiment.

It is also known that the cesium vacuum cell used in this experiment has a background
of impurity gases with densitynim 6 1014 [15]. However, this should not affect the
approximations listed above. Using this impurity gas density and a typical upper limit to
the quenching rate coefficient [16], we find that the quenching rate of cesium 6P1/2 atoms
is negligible compared to that state’s radiative rate. In addition, impurity gas broadening
(0 = knim with a typical k ≈ 5 × 10−9 cm3 s−1) does not significantly influence the
homogeneous linewidth compared to the natural width. Finally, the velocity-changing
collision (VCC) rate between impurity gas molecules and cesium atoms may limit the
cesium mean free path to as little as a centimetre using typical VCC rate coefficients [17].
We assume that the last interaction of a cesium atom entering the laser beam was with the
cell walls, and therefore that these atoms are in a statistical ratio of ground-state hyperfine
levels. Since the cell diameter is 2.1 cm, this assumption may not be strictly valid, but it is
still a reasonable approximation.

It is well known that the temporal relaxation of excess population in statei due to
transit relaxation does not have the general formni(t) − n

eq
i = [ni(0) − n

eq
i ] e−0ij t . In other
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words, it is not entirely correct to describe transit relaxation by using a term0ijni in a
rate equation model. The actual transit relaxation, shown in figure 6, cannot be represented
by a simple exponential rate. Hence, the choice of an effective rate coefficient0t (here
set equal to the reciprocal of the average time of flight of an atom through the laser beam
cross section) is somewhat arbitrary. Our value for the transit relaxation rate coefficient is
compared to similar coefficients used by other researchers in the following subsection.

Figure 6. Transit relaxation. Given that a cesium atom enters the laser beam at timet = 0,
the thick full curve shows the probabilityP(t) of the atom still being within the beam at a
later timet . This curve was found by averaging over all possible velocities (as given by a two-
dimensional Boltzmann distribution of velocities) and trajectories across a circle to find atomic
flight times through the beam profile. The units of time areD/vrms, whereD is the FWHM
of the Gaussian beam andvrms is the two-dimensional root-mean-squared atomic velocity. The
other lines are plots ofP(t) = e−0tt , where0t is the effective transit relaxation rate. These
effective rates are discussed in the text (section 4.2) and listed in the insert. The rate0t is
simply the numerical coefficient listed, timesvrms/D.

Another approximation made concerning transit relaxation involves the general idea of
an atom passing through an interaction region of circular cross section with diameterD.
We assume that the atom interacts with the laser within a circular area of diameterD and
does not interact beyond this circle. Since the laser beam spatial profile is Gaussian, the
choice ofD equal to the Gaussian FWHM is somewhat arbitrary. In addition, attenuation of
the low-intensity spatial wings is much more severe than attenuation of the highly saturated
beam centre. Thus, the beam shape is distorted and the beam diameter effectively decreases
with depth into the vapour. Here, we calculate the transit relaxation rate using the incident
beam FWHM,D. However, the good agreement between the model and the experimental
data appears to justify this approximation.

Our models have neglected the sublevel splitting produced by the magnetic field.
The splitting (in angular frequency units) of adjacent ground-state magnetic sublevels (i.e.
1mF = ±1) in the x̂ basis due to the magnetic fieldBx = 1.1 G is given by the Larmor
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frequencyωL defined by equation (18). This splitting is much less than the homogeneous
width δ of each sublevel transition. Hence, the assumption that the sublevels within a
particular hyperfine state are degenerate, which is implicit in the multilevel model, is a
good one.

As with transit relaxation, the temporal decay of population from subleveli due
to magnetic mixing is non-exponential. However, we again approximate it as such to
incorporate it easily into the rate equation model. The magnetic mixing of population among
themF sublevels (defined in reference to thez axis) is a result of the precession of the atomic
polarization axis around thex axis. The temporal redistribution of population is found
by using rotation matrix elements [18] to project the rotated axis of polarization onto the
z axis. After a time 1/0m, we observed (via numerical simulation) that population oscillates
among the sublevels within each hyperfine level at frequenciesω = ωL, 2ωL, . . . , 2FωL.
Hence, it seems reasonable to set a magnetic mixing rate of decay of population out of
a particular sublevel as0m = ωL(2I + 1) = gJ µBBx/h̄. Unfortunantly, this experiment
cannot determine the quality of this approximation because our data were obtained in the
limits of no mixing (B = 0 G) and complete mixing (B = 1.1 G).

4.2. Effective transit relaxation rate coefficients

The quality of the agreement between the modelled curves and experimental data points
in figures 2 and 3 allows us to place limits on the value of the effective transit relaxation
rate coefficient. We are able to do this because all other rates in the model depend on well
known or accurately measured physical quantities. Hence, the quality of the model reflects
the quality of the combination of approximations used to describe transit relaxation. By
varying the effective transit relaxation rate coefficient0t in the model, and comparing the
generated curves with the data, we estimate the uncertainty in this calculated rate to be
±18%.

The value used here for the effective transit relaxation rate coefficient was defined by
0t = v̄/d̄. Here, the average speedv̄ is

v̄ =
∫ ∞

0
vP (v) d2v =

√
πkT

2m
(20)

where d2v = 2πv dv and

P(v) = e−(v/vrms)
2

πv2
rms

(21)

is the normalized two-dimensional Boltzmann distribution. The average distanced̄ is found
by averaging all possible paths through a circle representing the laser beam cross section.
For simplicity, we consider only atoms travelling parallel to thez axis. Hence,

d̄ = 2

D

∫ D/2

−D/2
dx

√
(D/2)2 − x2 = π

4
D. (22)

Using equations (20) and (22) and the uncertainty quoted above, the effective transit
relaxation rate coefficient becomes

0t = (1.13± 0.20)
vrms

D
. (23)

This value can be compared to the results obtained by other researchers using different
approaches to this problem.
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One approach to this problem was formulated by de Tomasi [19], but has not been
published. He considered a homogeneous distribution ofn atoms located at random positions
(r, θ) and moving in random directionsθ ′ within a circular beam cross section of radiusR.
The transit relaxation rate was found by considering the number of atoms leaving this circle
(1n) in a short time (1t). Hence,

1n = n

∫ 2π

0

∫ R

0

r dr dθ

πR2

∫ 2π

0
dθ ′

∫ ∞

r ′/1t

P (v)v dv (24)

where

r ′ = r cosθ ′ +
√

R2 − (r sinθ ′)2 (25)

is the distance from an atom’s position(r, θ) to the edge of the circle in the directionθ ′.
Equation (24) was integrated numerically to find1n. The rate coefficient is defined by

0t = dn/dt

n
= 1

n
lim

1t→0

1n

1t
= 1.13

vrms

D
(26)

where the last step is found by taking the limit1t → 0 of the numerical results. De
Tomasi’s result is identical to that obtained in the present work.

Pappaset al [5] use a rate coefficient of0t = √
2vrms/D1/e = 1.18vrms/D (where

D1/e is the Gaussian beam FW1eM), although they do not provide either a derivation or a
reference for this result. However, the same value was shown previously by Bordé et al
[20] to be the frequency HW1eM of a (non-Lorentzian) transit time broadened line profile
and subsequently quoted in [21] as a transit relaxation rate, although the equality of this
linewidth and the transit relaxation rate is not discussed in these references. Nonetheless, the
resulting rate coefficient agrees within uncertainty with the rates calculated and measured
here. (We note here that Bordé et al predict an exponential lineshape for a transition
broadened purely by transit time broadening. In our case,0b � 0t, so that the lineshape
here should be well described by a Voigt convolution of a Doppler-broadened Gaussian and
a homogeneously-broadened Lorentzian.)

In [22, 23], the authors (Haverkortet al) use the low-density limit of a diffusion rate
coefficient to find the transit relaxation rate. The authors quote this limit as0t = vrms/2R.
This equation yields0t = vrms/D, assuming that the beam radiusR from their paper is the
Gaussian beam HWHM. This barely agrees with our experimental and theoretical results
within uncertainty. However, in re-examining the limiting case of the same diffusion
equation, we find the result to be0t = 0.8vrms/2R. This clearly does not agree with
our result within its uncertainty. Thus, we believe that the method of finding the transit
relaxation rate in [22, 23] produces results that slightly underestimate the observed rate.

Figure 6 lists all of the results of the transit relaxation rates calculated. Note that
two of the approaches yield the same result, while a third agrees well within experimental
uncertainty. However, as can be seen in the figure, the exponential population decay
represented by these rate coefficients is only a very crude approximation to the actual non-
exponential transit relaxation decay. Nonetheless, we believe the present experiment shows
that equation (23) represents the best expression for a transit relaxation rate for use in a rate
equation model.

As mentioned previously, we have modelled the Gaussian spatial profile of the laser
beam with a circle of diameterD equal to the FWHM of the beam intensity distribution for
the purpose of calculating effective transit relaxation rate coefficients. This model generated
the curves shown in figures 2 and 3. If instead, the FW1

eM was used for the beam diameter,
the calculated value of0t would be reduced by 17%. This would shift the model curves of
figures 2 and 3 to the left such that the half maximum point (i.e. the value ofP0 for which
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ln(P0/PL) is equal to half of its maximum value) would be reduced by approximately the
same amount. Thus, calculation of the transit relaxation rate using the FW1

eM for the beam
diameter produces results that differ from experiment by slightly less than the experimental
uncertainties. Hence, although our data favour the use of the beam profile FWHM in the
calculation of0t, they are not sufficiently accurate to exclude the use of the Gaussian beam
FW1

eM.

5. Conclusions

Saturation of atomic transitions is easily observed using tunable narrow-band lasers.
When trap atomic levels are available, this saturation may be observed at relatively low
intensities. However, accurately modelling the intensity dependent absorption of a real
atomic transition is not necessarily a simple task, even under ideal conditions (i.e. one
isotope, no overlapping hyperfine transitions, low density, low temperature) such as those
available in this experiment involving the cesium D1 line. A three-level model provides
effective predictions in some cases, but generally, a more complex multilevel model that
includes all of the magnetic sublevels is required. Using this multilevel model, we can
reproduce all of the data presented. Also, accurate modelling of transit relaxation and, in the
presence of a magnetic field, of magnetic sublevel mixing is necessary. Here, we have found
that an effective transit relaxation rate coefficient of0t = (1.13±0.20)vrms/D is required to
accurately model our data. This model could be adjusted to accomodate diffusion, collisional
effects, and the hyperfine structure to study saturation of other transitions at higher densities
with and without buffer gases. The approach used here may also be extended to model more
complex nonlinear phenomena, such as optical bistability, two beam coupling, or four-wave
mixing based upon nonlinear absorption phenomena in real atoms.
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