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Calculations of rotationally inelastic scattering at thermal energies for a model atom–diatom system have
been performed using two completely different methodologies. The first method is the multi-configura-
tion time-dependent Hartree (MCTDH) wave packet method, and the second is the well known, time-
independent, Arthurs and Dalgarno coupled channel formalism. Excellent agreement is obtained between
the two calculations. The advantages and drawbacks of these two methods are somewhat complemen-
tary, so that the decision to use one or the other approach will depend on what type of computational
results are desired.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction lar momentum quantum number in a collision can be fairly large.
The development in the last few years of the multi-configura-
tion, time-dependent Hartree (MCTDH) method [1–3] for wave
packet propagation has enabled a large variety of molecular pro-
cesses to be modeled accurately and efficiently. The MCTDH meth-
od has been applied to photoexcitation [4], photodissociation [5],
ro-vibrational excitation [6], and reactive and non-reactive scatter-
ing [7–9]. Multiple electronic states may be included. Previous
studies have confirmed the accuracy of MCTDH calculations for
vibrational energy levels [10], for dynamics in the presence of an
external time-dependent field [11], and for reactive collisions of
HþH2 (or D2) [12]. In the present letter, we present a systematic
comparison of the results obtained for rotationally inelastic scat-
tering with the Heidelberg MCTDH package [13] with those ob-
tained by a completely different method.

The scattering process considered in this letter exhibits differ-
ent features from the systems studied previously with MCTDH
and thus provides a nontrivial test. For most previous work with
MCTDH, the masses of the atoms involved (H, D, O, C, N, etc.) have
been rather small. Here we focus on the delicate process of rota-
tional excitation of heavier molecules. The energy level splittings
are very small, and consequently the change Dj ¼ j0 � j of the angu-
In addition, there are long range terms in the potential that en-
hance the importance of trajectories with very large impact param-
eters. We have compared the results of MCTDH with the
traditional, coupled channel [CC] method [14] for this process.
Since both methods are, at least in principle, exact methods of solv-
ing the Schroedinger equation, one expects agreement. However,
achieving agreement in practice required that the scattering simu-
lations with MCTDH be very carefully designed. For example, we
found it necessary to adjust some details of the MCTDH calcula-
tions when the total angular momentum of the propagation was
large. We also paid particular attention to the choice of parameters
for the complex absorbing potentials (CAPs) to insure accurate
monitoring of fluxes. The experience we have gained should facil-
itate the application of the MCTCH method to other scattering
problems.

This letter is organized as follows. Section 2 describes briefly the
MCTDH approach. Section 3 summarizes our application of MCTDH
to calculate cross sections for rotational excitation. We used the
masses of the He–NaK molecule and an analytic model potential
that roughly represents the ground electronic state of He–NaK.
Section 4 describes the coupled channel calculations. Finally, sec-
tion 5 compares the results of the two methods and discusses
the pros and cons of each method.
2. The MCTDH approach

In a conventional propagation method, the wave function is di-
rectly expressed in the mathematical or ‘primitive’ basis set:
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WðQ1; . . . ;Qf ; tÞ ¼
XN1

j1¼1

. . .
XNf

jf¼1

Lj1 ...jf ðtÞ
Yf

j¼1

vðjÞjj
ðQjÞ; ð1Þ

where Q1; . . . ;Qf denote the f nuclear coordinates, Nl the number of
primitive functions for degree of freedom l;vðjÞjj

are the ‘primitive’
time-independent functions, typically Hermite functions, spherical
harmonics, or the functions associated with a Discrete Variable Rep-
resentation (DVR). The equations of motion for the coefficients
Lj1 ...jf ðtÞ can be derived from the Dirac-Frenkel variational principle,
i.e. by minimization of hdWjH � i@tjWi ¼ 0.

In contrast, the wave function in the MCTDH approach is writ-
ten as follows [2]:

WðQ1; � � � ;Qf ; tÞ � Wðq1; � � � ; qp; tÞ

¼
Xn1

j1

� � �
Xnp

jp

Aj1 ;���;jp ðtÞ
Yp

j¼1

uðjÞjj
ðqj; tÞ ð2Þ

q1; � � � ; qp are ‘logical’ coordinates that can be either nuclear coordi-
nates or sets of nuclear coordinates combined together (combined
modes). The uðjÞjj

ðqj; tÞ are the so-called single-particle functions
(SPFs), which are in turn expressed in the primitive basis set:

uðjÞjj
ðQj; tÞ ¼

XNj

ij¼1

Gjj
ij
ðtÞvðjÞij

ðQjÞ: ð3Þ

The equations of motions of the coefficients Aj1 ;���;jp ðtÞ and of the sin-
gle-particle functions uðjÞjj

ðqj; tÞ (i.e. the equations of motions of the
coefficients Gjj

ij
ðtÞ) are obtained using the Dirac-Frenkel variational

principle. In other words, the difference between the MCTDH and
the conventional propagation methods is the fact that, in MCTDH,
the wave function is expressed in an intermediate time-dependent
basis set that is optimized by a variational principle. In general,
n1 � . . .� np is significantly smaller than N1 � . . .� Nf .

3. Rotationally inelastic scattering with MCTDH

We will apply the MCTDH method to the model atom-diatom
system illustrated in Figure 1. We assume that the internuclear
separation of the target, r, has a fixed value, so that the interaction
potential V depends only on R and h. The Hamiltonian for this sys-
tem [15] has the form

bH ¼ �h2

2l
� @2

@R2 þ
JðJ þ 1Þ � 2K2 þ |̂ 2 � Aþ |̂þ � A� |̂�

R2

 !
þ B|̂ 2 þ VðR; hÞ; ð4Þ

where

A� |̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ � KðK � 1Þ

p
� @

@h
� K cot h

� �
; ð5Þ

and l is the reduced mass of the atom–target system,

l ¼ mðM1 þM2Þ
mþM1 þM2

: ð6Þ
M2

m

M1

R

r

θ

c.m.

Figure 1. Illustration of the coordinates used for the atom–diatom system. For the
present work, we assume that the internuclear separation r of the diatom is fixed.
The abbreviation ‘c.m.’ denotes the center of mass of the diatom.
K is the projection of the total angular momentum J onto R. B is the
rotational constant,

B ¼ �h2

2lrr2 ; ð7Þ

where

lr ¼
M1M2

M1 þM2
: ð8Þ

A separate wave packet propagation must be carried out for each
value of J and for each initial rotational state ðj;mÞ.

For the interaction potential V, we used the general form

VðR; hÞ ¼
X

k

VkðRÞPkðcos hÞ: ð9Þ

This form is well suited for MCTDH because the algorithms used in
the code are most efficient when the Hamiltonian can be written as
sums of products of mono-mode operators. In fact, this form is opti-
mal for any quantum method when the evaluation of matrices is
necessary since this form allows one to express any multi-dimen-
sional integral as a sum of products of low-dimensional integrals.
This is particularly important if the number of degrees of freedom
is large (more than six, typically). The whole Hamiltonian, Eq. (4),
as well as the potential, Eq. (9), satisfy this condition. For the pur-
poses of the present study, we used a simple analytic form for the
Vk coefficients:

VkðRÞ ¼ ak expð�bkRÞ: ð10Þ

We obtained the parameters ak and bk by performing small ab initio
electronic structure calculations for the He–NaK molecule at several
representative geometries using the GAMESS code [16]. For these
calculations the internuclear separation of NaK was fixed at its
equilibrium values, so the rigid-rotor potential thereby determined
should be appropriate for the v ¼ 0 vibrational level. At several val-
ues of R we fit the calculations using five-term Legendre fits, there-
by determining a table of numerical values of VkðRÞ for
k ¼ 0;1; . . . ;4. We then fit the numerical values of each VkðRÞ using
the analytic form in Eq. (9). The values obtained are listed in Table 1.
This procedure provided a model potential that could be used to
compare different computational methods; the potential obtained
should not be considered a highly accurate representation of the
specific He–NaK molecule.

MCTDH propagates the wave packets using a basis set expan-
sion as shown in Eqs. (2) and (3). For the present case, the target
rotational state is expanded in a basis of spherical harmonics,
and the built-in Colbert–Miller DVR [17] (also called sine DVR) ba-
sis set is used for the R degree of freedom. Details are in Table 2.
The system is described by three coordinates: in Eq. (2),
q1 ¼ Q 1 ¼ R; q2 ¼ ðQ2;Q3Þ with Q2 ¼ h and Q3 ¼ /. In Eq. (3),
N1 ¼ 863;N2 ¼ 31, and N3 ¼ 61 (see Table 2). In MCTDH, the wave
function is not directly expressed in the primitive basis set but in
an intermediate basis set, which is the basis set of the single-par-
ticle functions (see Eq. (2)). In our case, we have chosen n1 ¼ 20
and n2 ¼ 20 (see Table 2). It is worth noting that the ratio
rMCTDH ¼ n1 � n2=ðN1 � N2 � N3Þ ¼ 400=1631933 shows that
MCTDH allows one to drastically reduce the number of basis
Table 1
Values of the constants used for the exponential functions in the model potential.

k ak bk

0 1.26100 0.798340
1 �0.99356 0.752171
2 0.8018727 0.717405
3 �1.0 0.817900
4 1.0 0.879588



Table 2
Parameters for the primitive basis set and the number of single particle functions
(SPF) employed for each degree of freedom. sine-DVR denotes the sine discrete
variable representation of Colbert and Miller [17]. The extended Legendre DVR KLeg
uses the spherical harmonic basis functions. K is the projection of the angular
momentum on the body-fixed z axis.

R h;/

Primitive basis Sine-DVR KLeg-DVR
Number of points or functions 863 j ¼ 0;1; . . . ;30 for h and

K ¼ �30;�29; . . . ;30 for /
Range 8.0–79.0 a0 0–p for h and 0–2p for /
Size of SPF basis 20 20
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functions with respect to conventional propagation methods. Fig-
ure 2 displays the populations of the natural single-particle func-
tions for the two combined modes R as a function of time. The
corresponding figure for the second mode (h;u) looks similar. This
allows us to estimate the convergence behavior of the MCTDH ap-
proach. In general, it is considered that the convergence is reached
when the last population is smaller than 10�4. Figure 2 clearly
shows that with 20 SPFs, MCTDH has reached a very high level of
convergence. The last population (the 20th) is of order 10�9. It
could be possible to work with smaller values of n1 and n2 and
to reduce the ratio rMCTDH even more (here only four SPFs would
be sufficient). This will be important when we add more degrees
of freedom in our simulations. But even with n1 ¼ n2 ¼ 20, the
MCTDH calculations were about a factor of two faster than the
CC calculations. (More details are given in Section 5.)

The initial wave packet is a gaussian, specified by a position,
width and momentum. The initial momentum of the incident par-
ticle He (in the center of mass frame) was exactly 4.0 a.u., which is
nominally equivalent to an energy of 0.00116706 Eh. In principle,
this initial wave packet should start at infinity and undergo free
motion towards the scattering center. To simulate this motion,
an ‘adiabatically corrected’ [2] wave packet can be started closer
to the scattering center; the correction accounts for propagation
from infinitely far away. The interaction at the initial position must
be small enough to ensure that this correction is accurate. After
careful testing, we found that a starting position at R ¼ 64:0 a0

was sufficiently far from the scattering center. This is why we have
chosen a large range for R (8.0–79.0 a0). Such a long range was nec-
essary since the large values of J create a long range centrifugal po-
tential and the initial wave packet must start at large values of R.
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Figure 2. The population of the natural single-particle functions for R.
Since the adiabatic correction depends on J, the initial wave
packets are different for each value of J and correspond to slightly
different distributions DJðEÞ of initial translational energies. These
distributions are shown in Figure 3 for several different values of
J. The dependence on J is negligible for small J but becomes increas-
ingly stronger for larger J. Since many large values of J contribute to
the scattering, it is important to determine DJðEÞ accurately for the
propagation for each J. We did this using the autospec routine
(from the MCTDH package [13]), which evaluates the Fourier trans-
form of the autocorrelation function determined during a short
time interval at the beginning of the propagation. (The interval
must be long enough so that the autocorrelation function has time
to decrease to zero.) For each J, the energy distribution DJðEÞ and
the quantum flux in each chananel determine transition probabil-
ities, as described in the next paragraph.

MCTDH, like any wave packet propagation scheme, implements
a complex absorbing potential (CAP) near the end of the R grid. This
CAP absorbs the wave packet as it approaches the edge of the grid
and eliminates unphysical reflections. The CAP is also used to
determine the quantum flux. As the scattered wave packet propa-
gates outward through the CAP, MCTDH determines the contribu-
tion of each final state of the system to the absorption; this
contribution is the quantum flux for each final state. Transition
probabilities between specific initial and final states are found by
dividing the corresponding flux by the energy distribution, DJðEÞ.
The CAP turns on gradually for large values of R; the analytic form
is [15]

�iWðRÞ ¼ �ig R� R0j jbH R� R0ð Þ; ð11Þ

where R0; g, and b are the starting point, the strength, and the order
of the CAP, respectively, and H is the Heaviside step function. The
MCTDH program has built-in routines to determine which CAP
parameters are best suited for a particular calculation. We used
these routines to determine appropriate parameters, which are tab-
ulated in Table 3.

Each separate wave packet propagation models the scattering,
for a fixed J, from a particular initial state (j;mjÞ to several possible
final states (j0;m0j). A specific transition probability is denoted
PJðj;m! j0;m0jÞ. By performing propagations for many values of J,
one can compute total cross sections as a sum:

rBF
j;mj!j0m0

j
ðEÞ ¼ p

ð2jþ 1Þk2
j

X
J

ð2J þ 1ÞP Jðj;mj ! j0;m0jÞ: ð12Þ

We use the superscript ‘BF’ to emphasize that the m quantum num-
bers are determined in the body frame, that is, with respect to the
rotating collision axis. E, the total energy of the system, is the
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Figure 3. This figure shows the energy distribution DJðEÞ for several different values
of J for the adiabatically corrected initial wave packet.



Table 3
Values of the parameters used for the Complex Absorb-
ing Potential.

Parameter Value

R0 69.0 a0

g 4:3824� 10�6Eh=a0

b 4
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sum of the relative translational energy and the internal energy of
the target, and one has

k2
j ¼

2l
�h2 E� Bjðjþ 1Þ½ �: ð13Þ

Because of the Fourier-transform relation between coordinate and
momentum wave functions, one can regard the initial time-depen-
dent wave packet as a superposition of momentum states. Each
propagation therefore provides information about a range of trans-
lational energies. To determine cross sections for a specific ðj! j0Þ
transition, one must perform propagations for every possible initial
m value, and then average over the initial m values and sum over
the final m0 values:

rj!j0 ðEÞ ¼
1

2jþ 1

Xj0

m0¼�j0
rBF

jm!j0m0 ðEÞ: ð14Þ
4. Coupled-channel method

This section briefly summarizes the CC method for scattering of
an atom by a rigid rotor developed by Arthurs and Dalgarno [14],
using a notation consistent with Section 3. This method uses a cou-
pled angular momentum representation in a space-fixed coordi-
nate system. Spherical harmonic target states Yjmj

ðr̂Þ of a rigid
rotor are combined with orbital angular momentum states of the
incident particle and the target, Ylml

ðR̂Þ. Using the coupling scheme

jþ l ¼ J; ð15Þ

basis functions YjlJMðr̂; R̂Þ of total angular momentum J can be de-
fined by appropriate linear combinations of the product states
Yjmj
ðr̂ÞYlml

ðR̂Þ. For each value of the total angular momentum quan-
tum number J, the total wave function is expanded as

WJMjlðR; r̂Þ ¼
1
R

X
j0

X
l0

F J
j0 l0 ;jl
ðRÞYj0 l0JMðr̂; R̂Þ: ð16Þ

One must then solve the following set of coupled equations for the
F J

j0 l0 ;jl
ðRÞ [14]:
Table 4
Values of the cross sections r0!j0 obtained by the multi-configuration time-dependent Ha

j0 E ¼ 0:0008Eh E ¼ 0:0011Eh

MCTDH CC MCTDH CC

1 80.94 80.20 78.44 78.42
2 66.28 65.08 59.03 57.74
3 88.18 87.74 84.58 82.19
4 18.14 18.21 18.59 19.68
5 30.24 29.98 26.64 26.15
6 31.99 32.41 29.78 31.00
7 11.21 11.23 10.80 11.28
8 19.90 20.02 17.71 17.41
9 12.55 12.70 13.55 14.62

10 9.52 9.53 8.78 8.49
d2

dR2 þ k2
j0 �

l0ðl0 þ 1Þ
R2

" #
FJ

j0 l0 ;jl
ðRÞ ¼ 2l

�h2

X
k

VkðRÞ
X

j00

X
l00

f kJ
j0 l0 ;j00 l00

FJ
j00 l00 ;jl
ðRÞ;

ð17Þ

where the f kJ
j0 l0 ;j00 l00

may be written in terms of 3-j and 6-j coefficients
[14].

We solved these equations using our standard code [18], which
is based on the log derivative method [19] and features adaptive
step size selection. Solutions can be found that satisfy the bound-
ary conditions

lim
R!1

F J
j0 l0 ;jl
ðRÞ ¼ djj0dll0k

1=2
j R jl kjR

� �
þ k1=2

j0 RK J
j0 l0 ;jl

nl0 kj0R
� �

; ð18Þ

where jl and nl are regular and irregular spherical Bessel functions,
respectively, and the K J

j0 l0 ;jl
are the elements of the reactance matrix

K. The transition matrix T is related to K by

T ¼ �2iK 1� iKð Þ�1
: ð19Þ

Then cross sections for transitions from the state j to the state j0,
averaged over initial m and summed over final m0, are defined as

rj!j0 ðEÞ ¼
p

ð2jþ 1Þk2
j

XJþj

l¼jj�Jj

XJþj0

l0¼jj0�Jj
ð2J þ 1Þ T J

jl;j0 l0

��� ���2: ð20Þ

Eqs. (14) and (20) give the results we compare for the CC and
MCTDH calculations. Since all values of m are included in the sum
over body-frame cross sections in Eq. (14), the cross section is
equivalent to the space-fixed sum in Eq. (20).
5. Comparison of MCTDH and coupled channel results

This section compares the results from the wave packet and
coupled channel methods. All MCTDH calculations were performed
for an initial momentum of 4.0 a.u., as discussed in Section 3. We
analyzed the results to determine cross sections for total energies
0.0008, 0.0011, 0.0014, and 0.0017 Eh. These energies are in the
middle portions of the distributions shown in Figure 3. We
summed over all values of J from 0 to 79; this range was enough
for convergence. To simplify the bookkeeping, we assumed that
the initial rotational level was ðj;mÞ ¼ ð0;0Þ. Coupled channel cal-
culations were also performed at energies of 0.0008, 0.0011,
0.0014, and 0.0017 Eh. All rotor states j ¼ 0� 28 were included;
this was enough to ensure convergence of cross sections from
j ¼ 0 up to j0 ¼ 10.

All of the results are tabulated in Table 4 and shown graphically
in Figure 4. Excellent agreement is achieved at all energies. We
now discuss several interesting points that emerge when we com-
pare the two calculations.
rtree (MCTDH) and the coupled channel (CC) methods.

E ¼ 0:0014Eh E ¼ 0:0017Eh

MCTDH CC MCTDH CC

77.42 77.51 76.63 76.26
55.48 53.76 52.84 50.17
80.16 77.33 77.13 74.07
19.39 20.75 19.74 22.58
23.77 22.67 20.86 19.90
29.09 32.05 28.52 31.35
10.28 11.08 9.77 12.13
15.17 15.35 13.91 13.95
13.35 14.50 12.26 14.33

8.03 7.69 7.44 7.38
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Figure 4. This figure shows the comparison of the cross sections r0!j0 obtained by
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First, each propagation in MCTDH provides information about a
range of collision energies, whereas a separate CC calculation is
necessary for each distinct total energy. This feature of MCTDH
might make that method more attractive for the calculation of rate
constants, which require a convolution over translational energies.

Second, one CC calculation provides cross sections at a single to-
tal energy E for all possible initial states (limited only by the num-
ber of channels included in the calculation, and of course, one must
sum over J.) For MCTDH, one can pick the initial state, and only per-
form calculations for that initial state, again summing over J. In the
present work, we chose ðj;mÞ ¼ ð0;0Þ, so we only needed to per-
form propagations for one initial state. We performed a few tests
with nonzero initial j. In these cases, careful scripting was imple-
mented to handle the extra bookkeeping. In addition, calculations
for many different initial quantum numbers m requires more com-
puter time.

A third point was that the integration range for MCTDH was
much larger than for the CC method. The initial wave packet, ‘adia-
batically corrected’ as discussed in Section 3, was started at a value
of R large enough that the interaction potential, as well as all the
centrifugal terms in Eq. (4), were very small. In the time-dependent
calculation, the wave packet moves inward, interacts with the tar-
get, and then moves outward again. The CAP is used to extract infor-
mation about cross sections from the outgoing wave packet. The CC
method allows the integration region to be shorter. One starts at
small R and integrates outward to values of R large enough that
the interaction potential (not including the centrifugal terms) is
negligible. At that point, the right hand side of Eq. (17) is effectively
zero; the solutions F J

j0 l0 ;jl
ðRÞwill have the limiting behavior shown by

Eq. (18), and the reactance matrix K can be determined. Typically
we integrated out to about 25 a0 in the CC calculations, whereas
the integration grid for MCTDH extended to 79 a0.

We did not make a precise comparison of the speed of the two
methods because different computers were used for the two sets of
calculations, but MCTDH is certainly faster. Roughly speaking, an
MCTDH propagation for a single value of J and a single initial rota-
tional state jjmi took 7–12 h on a serial processor. Higher values of
J took more time. The total time for all J from 0 to 79 was about
800 h. The coupled channel calculations were typically done on
32–64 processors and took around 1500 processor-hours for the
same range of J (about 500 channels for each of two parities,
0 6 j 6 30). Higher values of J took less time because the integra-
tion could be started at larger values of R. The coupled channel cal-
culations provided results for all initial rotational states at a given
total energy.

In conclusion, we have found near-perfect agreement between
two completely different methods of calculating rotational energy
transfer. MCTDH is well suited to the case when the initial rota-
tional quantum number is small, because the propagations must
only be performed for a few initial states. The ideal case for MCTDH
would be when the energy-sudden approximation (negligible rota-
tional state spacing) is valid; then one can construct the cross sec-
tions for all j! j0 transitions using only the results for r0!j0 [20,21].
The CC method may be preferred when several initial states need
to be considered. However, the number of coupled channels grows
very rapidly as more degrees of freedom are included. Generalizing
the present CC code to include vibrational as well as rotational mo-
tion would increase the computational requirements dramatically
and would make the CC calculations prohibitive. In contrast, even
though the size of the SPF basis was chosen to obtain a very high
level of convergence, the MCTDH calculations were about a factor
of two faster than CC. More importantly, the MCTDH program will
allow us to treat a larger number of degrees of freedom.
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