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The excited 3 3� and 4 3� electronic states of the NaK molecule exhibit an avoided crossing,
leading to the anomalous behavior of many features of the rovibrational energy levels belonging to
each state. A joint experimental and theoretical investigation of these states has been carried out.
Experimental measurements of the vibrational, rotational, and hyperfine structure of numerous
levels of the 3 3� state were recently obtained using the Doppler-free, perturbation-facilitated
optical-optical double resonance technique. Additional measurements for the 4 3� state as well as
bound-free emission spectra from selected 3 3�, 4 3�, and mixed 3 3��4 3� rovibrational levels
are reported here. A model is also presented for calculating the mixed rovibrational level energies
of the coupled 3 3�-4 3� system, starting from a 2�2 diabatic electronic Hamiltonian. The 3 3�
and 4 3� potential curves and the coupling between them are simultaneously adjusted to fit the
observed rovibrational levels of both states. The energy levels of the potential curves determined by
the fit are in excellent agreement with experiment. The nonadiabatic coupling is sufficiently strong
to cause an overall shift of 2–3 cm−1 for many rovibrational levels as well as somewhat larger shifts
for certain pairs of 3 3��4 3� levels that would otherwise be very close together. © 2006
American Institute of Physics. �DOI: 10.1063/1.2348635�

I. INTRODUCTION
Several high-resolution spectroscopic studies in our

laboratory have probed the fine and hyperfine structure of
rovibrational levels of electronically excited triplet states of
NaK.1–5 As part of this program, Morgus et al.4 recently
reported several anomalous features of the 3 3� state that
arise from the avoided crossing of the adiabatic potential
curves corresponding to that state and the 4 3� state. Several
rovibrational level energies of the 3 3� state could not be
accurately described because they were significantly per-
turbed by levels of the 4 3� state. In the present work, we
report the measurement of additional rovibrational levels for
the 4 3� state, and we formulate a theoretical description of
the coupled 3 3�-4 3� system that rigorously includes the
nonadiabatic coupling between these electronic states.

As in our previous experimental work,1–5 we use the
technique of “perturbation-facilitated, optical-optical double
resonance” �PFOODR� spectroscopy6–29 to measure excita-
tion spectra of various rovibrational levels of excited triplet
states. This technique relies on two photon excitation from
the singlet ground state to a highly excited triplet state
through specific, mixed, intermediate “window” levels that
display both singlet and triplet character. By using narrow
band continuous wave �cw� lasers, we achieve very high
resolution since the technique is inherently Doppler-free.

The analysis of the two coupled electronic states �3 3�
and 4 3�� is based on a description using a 2�2 diabatic
Hamiltonian matrix. Nonadiabatic coupling between two

adiabatic states can be easily evaluated if those states are
written as linear combinations of diabatic states and if one
assumes that the R dependence of the adiabatic electronic
wave functions comes entirely from the coefficients of the
linear combination.30,31 We show in the present work that
this approach leads to a very convenient formalism for cal-
culating the rovibrational energy levels of a system described
by two diabatic states.

Magnier and Millié32 and Magnier et al.33 have calcu-
lated adiabatic potential curves for many excited electronic
states of NaK, and their results clearly exhibit the avoided
crossing between the 3 3� and 4 3� curves. However, they
did not determine diabatic curves, which are needed to
implement our coupled state formalism, so we performed
new ab initio calculations using the block diagonalization
method34 that we have implemented to determine diabatic
potentials for other systems.35,36 The calculated diabatic po-
tentials provide the initial approximation for a fitting proce-
dure based on our coupled state formalism. We report calcu-
lations in which we simultaneously vary the potential curves
for the 3 3� and 4 3� electronic states as well as the cou-
pling between them in order to achieve an accurate fit of all
the measured ro-vibrational energy levels.

This paper is organized as follows. Section II briefly
describes the experiment and the data obtained. Section III A
presents the theory of nonadiabatic coupling for two elec-
tronic states, and Sec. III B describes the ab initio electronic
structure calculations. Section IV presents and discusses our
main results: new rovibrational level energies for the 4 3�

state, bound-free spectra from mixed 3 3��4 3� rovibra-
tional levels, and the details of our fitting procedure and the
fit obtained. Section V contains concluding remarks.
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II. EXPERIMENT

The experimental setup is the same as that used in Ref. 1
and is shown in Fig. 1 of that reference. Briefly, a mixture of
sodium and potassium metal in a five-arm stainless steel
heat-pipe oven is heated to a temperature in the range of T
�330–395 °C, producing a vapor of NaK molecules in ad-
dition to other atomic and molecular species. Argon buffer
gas with pressure in the range of 0.5–2.2 Torr is used to
keep the alkali vapor away from the windows.

We use the PFOODR technique to excite some NaK
molecules from the ground state 1�X�1�+ to levels of either
the 3 3��=0 or 4 3��=0 state through mixed
1�b�3��=0��b ,J� � 2�A�1�+��A ,J� window levels
�n 3��=0��n� ,J±1� ← 1�b�3��=0��b ,J� � 2�A�1�+��A ,J�
←1�X�1�+��X ,J±1��. A tunable, cw, single-mode dye laser
�Coherent 699-29� is used to pump molecules from a se-
lected ground state level 1�X�1�+��X ,J±1� to the intermedi-
ate window levels, which are mixtures of 1�b�3��=0��b ,J�
and 2�A�1�+��A ,J� that are coupled together by the spin-orbit
interaction. Once the pump transition of interest is found, the
pump laser frequency is fixed. A tunable, cw, single-mode
Ti:Sapphire laser �Coherent 899-29� is used as the probe la-
ser to further excite molecules from the populated window
level to various levels of the upper state n 3��=0��n� ,J±1�.
The pump and probe lasers counterpropagate through the
heat-pipe oven. They are gently focused and carefully over-
lapped at the center of the oven.

Excitation to a particular upper state level is detected by
monitoring green n 3��=0��n� ,J±1�→1�a�3�+ fluorescence
�using a photomultiplier tube equipped with appropriate fil-
ters�, emitted at 90° with respect to the laser propagation
direction, as the probe laser frequency is scanned over a
transition. Since the pump laser has a very narrow band-
width, only one velocity component of the intermediate level
is populated by the pump laser, and the method is inherently
Doppler-free. As demonstrated in Ref. 1, the intermediate
state hyperfine structure is strongly suppressed when coun-
terpropagating laser beams are used, so that the hyperfine
structure of the upper state can be resolved. Pump laser fre-
quencies are calibrated using an iodine reference cell and
comparing measured I2 spectral lines to values listed in the
iodine atlas.37 Probe laser frequencies are calibrated using
optogalvanic signals from neon transitions in a hollow cath-
ode lamp. We believe that absolute energies of 3 3� and
4 3� rovibrational levels are accurate to �0.02 cm−1. How-
ever, hyperfine splittings are determined with a much higher
precision of �0.001 cm−1.

Resolved fluorescence scans can also be recorded. In this
case, both pump and probe laser frequencies are fixed, and
fluorescence is sent through a 0.3 m monochromator
�McPherson model 218�. Monochromator slits are typically
set to �200 �m, yielding a resolution of about 0.5 nm. Fur-
ther details of the experimental setup can be found in previ-
ous reports.1,4,38

III. THEORY

We consider the problem of calculating the overlapping
rovibrational energy levels of two coupled electronic poten-

tial energy surfaces such as those shown in Fig. 1. Section
III A describes our method for calculating the rovibrational
levels of the coupled 3 3� and 4 3� electronic states, starting
from diabatic potential curves. Section III B describes the
ab initio calculations we performed to determine plausible
diabatic curves.

A. Nonadiabatic coupling for two electronic states

The radial Schroedinger equation for a diatomic mol-
ecule can be written as

�Ĥ − E���R,q� = 0, �1�

where

Ĥ = −
�2

2�

d2

dR2 + Ĥelec�R,q� + Vc�R� , �2�

� is the reduced nuclear mass, R is the internuclear separa-
tion, q denotes collectively all the electronic coordinates,

Ĥelec�R ,q� is the electronic Hamiltonian, and Vc is the cen-
trifugal potential,

Vc�R� =
�J�J + 1� − �2��2

2�R2 . �3�

J and � determine the total angular momentum and its pro-
jection along the internuclear axis, respectively.

We look for a solution ��R ,q� to Eq. �1� as a sum over
vibrational-electronic functions,

��R,q� = �
	

�
�


	�
J �R��	

ad�R,q� , �4�

where 	 denotes the electronic state �3 3� and 4 3�� and

each �	
ad�R ,q� is an adiabatic eigenfunction of Ĥelec,

Ĥelec�R,q��	
ad�R,q� = E	�R��	

ad�R,q� . �5�

The �	
ad�R ,q� are orthonormal with respect to integration

over the electronic coordinates q.
The usual procedure leading to the Born-Oppenheimer

approximation is to substitute Eq. �4� into Eq. �1� and then to
neglect the derivatives of �	

ad�R ,q� with respect to R. One
arrives at a separate nuclear radial equation for each elec-
tronic state, whose solutions are the rovibrational eigenfunc-
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FIG. 1. The 3 3� and 4 3� potential curves of NaK and their overlapping
vibrational levels.
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tions. For the present case, however, one does not expect the
R derivatives of the 3 3� and 4 3� electronic functions to be
negligible near the avoided crossing. An alternative proce-
dure is to express the adiabatic functions �two in the present
case� in terms of diabatic functions �	

dia�q�,

�1
ad�R,q� = cos ��R��1

dia�q� − sin ��R��2
dia�q� , �6�

�2
ad�R,q� = sin ��R��1

dia�q� + cos ��R��2
dia�q� . �7�

To emphasize that the diabatic functions usually have a much
weaker dependence on R, we have dropped the R from our
notation. It has been pointed out30,31 that the expansion given
by Eqs. �6� and �7� enables the R derivatives of the adiabatic
wave functions to be evaluated in terms of the derivatives of
��R�.

We now look for a solution to Eq. �1� that has the form
of Eq. �4�, without the expectation that the coupling between

the electronic states will be neglected. We will regard Eq. �4�
as a double sum over vibrational-electronic basis functions
labeled by the indices 	 and �. The exact form of the func-
tions 
	�

J �R� will not be specified until later, although we
assume that they form an orthonormal set. We can find the
eigenfunctions of Eq. �1� by diagonalizing the matrix repre-

sentation of Ĥ,

H	�,	���
J =� � 
	�

J �R��	
ad�R,q�Ĥ
	���

J �R��	�
ad �R,q�dRdq .

�8�

All of the terms in Eq. �8�, including the effect of the d2 /dR2

operator on the basis function 
	���
J �R��	�

ad �R ,q�, can be
evaluated exactly using the expansion in Eqs. �6� and �7�.
Using trigonometry and integration by parts, we obtain

H	�,	���
J = 	,	�� 
	�

J �R��−
�2

2�

d2

dR2 + E	�R� + Vc�R� +
�2

2�
	 d�

dR

2�
	���

J �R�dR

+ �1 − 	,	��
�2

2�
� �d
	�

J

dR

	���

J − 
	�
J

d
	���
J

dR
� d�

dR
dR for 	 � 	�. �9�

The restriction 	�	� is based on the convention 	=1 for 3 3� and 	=2 for 4 3�. One should use Eq. �9� to construct the
upper triangular part of the matrix and then invoke symmetry.

The first term on the right hand side of Eq. �9� suggests a natural definition of the 
	�
J �R�. We will require these functions

to be eigenfunctions associated with the eigenvalues E	�
J�0� of the following radial Schroedinger equation:

�−
�2

2�

d2

dR2 + E	�R� + Vc�R� +
�2

2�
	 d�

dR

2

− E	�
J�0��
	�

J �R� = 0. �10�

In other words, the functions 
	�
J �R� and the eigenvalues E	�

J�0� are the vibrational wave functions and energies for two potential
curves that are slightly modified from the pure Born-Oppenheimer 3 3� and 4 3� potentials. Each effective potential is formed
by adding an additional term to the adiabatic Born-Oppenheimer potential,

Veff
	 �R� = E	�R� +

�2

2�
	 d�

dR

2

. �11�

The rovibrational functions 
	�
J �R� and the corresponding energies E	�

J�0� that solve Eq. �10� can easily be determined numeri-
cally by using, for example, Le Roy’s code LEVEL.39 The superscript zero is a reminder that the energies E	�

J�0� are calculated
for two potential curves before the coupling between them is included.

With the definitions of the functions 
	�
J �R� given above, the matrix elements of Ĥ can be written in final form as

H	�,	���
J = 	,	��,��E	�

J�0� + �1 − 	,	��
�2

2�
� �d
	�

J

dR

	���

J − 
	�
J

d
	���
J

dR
� d�

dR
dR for 	 � 	�. �12�

The matrix of Ĥ defined by Eq. �12� is in block form

H	�,	���
J →� 3 3� block nonadiabatic

�diagonal� coupling terms

nonadiabatic 4 3� block

coupling terms �diagonal�
 . �13�

The diagonal elements are the “unperturbed” rovibrational
energies E	�

J�0� for the modified 3 3� and 4 3� potentials
given by Eq. �11�. The energies of the coupled system are
found by diagonalizing the matrix. The eigenvectors of the
matrix give the mixing coefficients of each state.
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B. Ab initio calculation of diabatic potentials

We have used the block diagonalization method34 to cal-
culate the diabatic potentials. This method provides an effec-
tive technique for transforming the results of a standard elec-
tronic structure calculation, which we performed using the
GAMESS code,40 into diabatic potential curves. One obtains
diabatic potentials of comparable accuracy to the adiabatic
potentials.

Our calculations for NaK are similar to the ones we have
performed for other systems.35,36 The general procedure in-
volves multiconfiguration self-consistent field �MCSCF� cal-
culations at each value of R, then a rotation of the molecular
orbitals in the active space to bring them to a form close to
so-called “reference” orbitals, which are defined in a way
that minimizes their variation with R. Finally, a configuration
interaction �CI� calculation is performed to determine the
adiabatic and diabatic energies.

For this discussion, we will focus on the features specific
to NaK, such as the basis set and the definition of the refer-
ence orbitals. The basis set was Dunning’s triple-zeta valence
basis set �TZV�,41 augmented by long range orbitals used to
describe excited states. The basis set was designed to repre-
sent accurately the first several excited electronic states of
NaK. Asymptotically, these states included the 3S and 3P of
Na and the 4S, 4P, 5S, 3D, and 5P of K. The added orbitals
are listed in Table I.

For the MCSCF calculations of states of 3� symmetry,
we used an active space of two � and five � orbitals for the
two valence electrons. The two � orbitals correlate with the
asymptotic 3sNa and 4sK orbitals, and the five � orbitals
correlate with the asymptotic 3pNa, 4pK, 5pK, 3dK, and 4dK

orbitals. We minimized the sum of the energies of the five
lowest 3� states. After the MCSCF calculations, we rotated
the converged � orbitals to match the ground state and first
excited state � orbitals of NaK+, which were obtained by
separate unrestricted Hartree-Fock �UHF� calculations at the
same value of R. The two � orbitals thereby obtained have a
very clear interpretation. At large R, one becomes 3sNa, and
the other becomes 4sK. As R decreases, there is a gradual
transformation to a pair of orbitals that can be characterized
as a bonding/antibonding pair,

� �
1
�2

�3sNa + 4sK�, �* �
1
�2

�3sNa − 4sK� . �14�

We rotate the five � orbitals to match reference orbitals

that were obtained as follows. We initially performed MC-
SCF calculations at a very large value of R �10 000a0� that
determined the excited atomic orbitals 4pK, 3pNa, 3dK, 5pK,
and 4dK. At each smaller R, for the � orbitals, we defined a
set of “shifted orbitals” using the same expansion coeffi-
cients in terms of the atomic orbitals. These orbitals were
normalized and then symmetrically orthogonalized42 to ob-
tain the � reference orbitals. This procedure has been
shown43 to produce the set of orthonormal orbitals closest to
the original set.

The next step was to perform a CI calculation using the
converged and rotated orbitals. We froze the NaK++ core and
did a full CI calculation for the two valence electrons. The
number of configuration state functions �CSF’s� for this cal-
culation was 1525. The dimension of the diabatic Hamil-
tonian that we initially calculated was determined by inves-
tigating which CSF’s contributed most strongly to the 3 3�
and 4 3� adiabatic eigenfunctions. We found that six CSF’s
contribute significantly to the first five electronic states.
These six CSF’s are shown in Table II. Therefore, we set the
dimension of the diabatic matrix to six.

The diagonal elements of Hdia are shown in Fig. 2. The
potentials determined by our UHF calculation for the ground
state and the first excited state of NaK+ are also shown. The
curves have not been shifted to the experimental asymptotic
values. There are three types of curves. Curves in the first
class are roughly parallel to the ground state NaK+ curve,
which asymptotically approaches Na�3s�+K+. The occupied
orbitals for these curves include the bonding � orbital de-
scribed by Eq. �14�. Curves in the second class are roughly
parallel to the excited state NaK+ curve, which asymptoti-
cally approaches Na++K�4s�. The occupied orbitals for these
curves include the antibonding �* orbital described by Eq.
�14�. The final class corresponds to ion pair states that sepa-
rate to Na−+K+. The dashed curves in Fig. 2 are the adiabatic
2 3�, 3 3�, and 4 3� potential curves. Close examination of
these curves indicates that the 3 3� adiabatic potential results
from several diabatic potentials. The inner well is formed
from the �-type curve with the asymptote Na�3s�+K�5p�.
The barrier is a result of the crossing between this curve and
the repulsive �* curve that dissociates to Na�3p�+K�4s�. We
note that the ion pair curve cuts through and mixes with the
repulsive �* curve and the Na�3s�+K�3d� � curve in the
range from R=10 a0 to 16 a0 to form the outer well. Finally,
the 4 3� potential is composed of the Na�3s�+K�5p� �
curve and the �* Na�3p�+K�4s� curve.

TABLE I. The long range orbitals used to augment the TZV basis set for the
present calculations.

Na orbital Exponent K orbital Exponent

s 0.007 66 s 0.006 00
d 0.271 90 p 0.063 90
d 0.090 64 p 0.019 80
d 0.028 90 p 0.005 20
d 0.010 00 d 0.173 20

d 0.057 74
d 0.026 60
d 0.005 00

TABLE II. Orbital occupancies for the six CSF’s that contribute signifi-
cantly to the first five 3� adiabatic states. The bonding and antibonding
orbitals � and �* are related to the 3sNa and 4sK atomic orbitals by Eq. �14�.

CSF
Orbital occupancy
�excluding core�

�1 ���1��K�4p��1

�2 ��*�1��Na�3p��1

�3 ���1��K�3d��1

�4 ���1��K�5p��1

�5 ���1��K�4d��1

�6 ���1��Na�3p��1
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For the present application, we reduce the 6�6 diabatic
representation to a simpler, 2�2 form that only includes the
3 3� and 4 3� states. This 2�2 representation accurately
describes the diabatic crossing that forms the avoided cross-
ing between the adiabatic 3 3� and 4 3� states, but it models
the coupled diabatic states at the bottom of the outer well of
the 3 3� adiabatic potential by a single effective potential.
The nonadiabatic coupling of the 2 3� and 3 3� states is
much weaker than the coupling of the 3 3� and 4 3� states.
As one can see from the adiabatic �dashed� curves in Fig. 2,
the change in the electronic wave function at the bottom of
the outer well of the 3 3� adiabatic potential is much more
gradual than it is near the 3 3�-4 3� avoided crossing. The
rovibrational levels localized in this part of the 3 3� adia-
batic potential could be well fitted by a single potential, so
simplifying the coupling there appears justified.

To obtain the desired 2�2 diabatic representation, we
must rearrange the 6�6 Hdia into blocks. We isolate the �
curve that correlates with the asymptotic limit Na�3s�
+K�5p�. This curve is the one that dominates the inner well
of the adiabatic 3 3� state. We rearrange Hdia so that this
element is in the �1, 1� position. We denote the rearranged
matrix Hdia� . Then we evaluate T†Hdia� T, where T has the
following block form:

T = 	1 0

0 T�5 � 5�

 , �15�

and T�5�5� is the transformation that diagonalizes the
lower 5�5 block of Hdia� . When we apply T to Hdia� , we

obtain a new matrix whose lower 5�5 block is diagonal but
has nonzero elements in the first row and column. We can
identify one of the lower diagonal elements as a composite
state corresponding to the outer well of the 3 3� adiabatic
potential. This element, the �1, 1�, and the elements from the
first row and column that couple them form the desired 2
�2 diabatic potential. The diagonal and off diagonal ele-
ments of this matrix are shown in Fig. 3.

IV. RESULTS AND DISCUSSION

A. Experimental results

1. Level energies for the 33� and 4 3� electronic
states

Measured energies for 40 levels of the 23Na39K 4 3��=0
state with 0���8 and 9 levels of the 23Na39K 4 3��=2 state
are listed in Table 1 of the Electronic Physics Auxiliary Pub-
lication Service �EPAPS� deposit associated with the present
article.44 Measured energies for 290 rovibrational levels of
the 23Na39K 3 3��=0 state with 6���53 were previously
reported45 in EPAPS Table 2 of Ref. 4. In addition, energies
for 32 levels of the 23Na39K 3 3��=2 state and for four levels
of the 23Na41K 3 3��=0 state were also reported in that work.
The vibrational levels of the minor isotopomer were useful in
making the absolute vibrational numbering assignment.

Because the vibrational spacings of the 4 3� state are
much larger than those of the 3 3� state and because levels
of the 3 3� state with ��32 lie well below any levels of the
4 3� state with the same J, most of the observed levels of the
3 3� state reported in Ref. 4 are not strongly perturbed by
3 3��4 3� nonadiabatic coupling effects. As a result, we
were able to fit Dunham coefficients to the experimentally
measured energies of the 3 3� outer well levels and to use
the inverted perturbation approximation �IPA� method46 to
obtain a mapping of an effective 3 3� state potential that was
able to reproduce observed energies of 264 relatively unper-
turbed 3 3��=0 levels with a standard deviation of
0.24 cm−1.4 Twenty-six of the original 290 3 3��=0 levels
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�all with ��32� are more strongly affected by nonadiabatic
coupling effects and were therefore excluded from the IPA
fit.

On the other hand, levels of the 3 3� state lying above
the 4 3� state minimum have vibrational spacings of
�32 cm−1. Consequently, no 4 3� level lies more than
16 cm−1 from a 3 3� level of the same J and �, and as a
result, all 4 3� levels are strongly perturbed by nonadiabatic
coupling effects. Attempts to fit Dunham coefficients to the
measured 4 3� energies and to carry out an IPA analysis of
the 4 3� state were not successful. Thus an analysis like the
one presented in Sec. III A that explicitly takes into account
nonadiabatic coupling effects is necessary in order to repro-
duce measured 4 3� energies accurately. Sections IV B and
IV C present the details of our determination of the 2�2
diabatic potentials that describe the 3 3� and 4 3� states and
the resulting effects that can be ascribed to nonadiabatic cou-
pling.

2. Bound-free spectra

Levels associated primarily with the 3 3� or 4 3� state
are not easily distinguished from each other using just a
comparison of PFOODR excitation spectra. High lying lev-
els of the 3 3� state and low lying levels of the 4 3� state
coexist in the same energy region, and from a particular in-
termediate state window level 1�b� 3��=0��b ,J�
�2�A� 1�+��A ,J� we observe two rotational transitions �P11

and R11� into each vibrational level of both upper states.
Moreover, each transition displays a hyperfine structure pat-
tern consisting of four peaks, with the hyperfine splittings of
transitions to 4 3��=0 levels being only slightly smaller than
those associated with 3 3��=0 levels. Figure 4 presents spec-

tra that have been assigned to each state and illustrates how
similar they can be.

Fortunately, transitions to the 3 3� and 4 3� states can
be differentiated by considering resolved bound-free spectra.
These resolved spectra correspond to fluorescence from a
particular upper state rovibrational level to the continuum of
levels of the 1�a� 3�+ state for fixed pump and probe laser
frequencies. Figure 5 shows spectra recorded for the rovibra-
tional levels �a� 4 3��=0��=5,J=27�, �b� 3 3��=0��=35,J
=46�, and �c� for the mixed level 4 3��=0��=1,J=27�
�3 3��=0��=37,J=27�. In Fig. 5�a�, the upper level has
predominantly 4 3� character and the bound-free spectrum
exhibits a single peak around 490 nm. In Fig. 5�b�, the upper
level has predominantly 3 3� character and the spectrum is
broader, with the major peaks in the range 502–512 nm.
Figure 5�c� illustrates the interesting case where levels are
strongly mixed, and the bound-free spectrum exhibits fea-
tures associated with both the 3 3� and 4 3� states. The ratio
of the emissions in the spectral regions near 490 and 508 nm
is determined by the mixing amplitudes of the 3 3� and 4 3�
rovibrational levels. In fact, by invoking a two-state model,
or in some cases a three-state model, we can estimate the
mixing probabilities directly from these experimental spectra
�see Appendix�. Table III shows, for selected levels, the com-
parison between the experimental mixing probablities and
those calculated by the nonadiabatic coupling model. The
agreement is quite good.

The differences between 3 3� and 4 3� bound-free spec-
tra can be explained by considering Fig. 6, which shows the
calculated NaK 3 3�, 4 3�, and 1�a� 3�+ potential curves of
Magnier et al.33 and the corresponding difference potentials.
The analysis predicts the energy range of the bound-free
spectrum for each upper state level. For the 4 3� state, the
vibrational functions of the narrow, V-shaped potential span
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33Π(v = 39, J = 46)

In
te

n
si

ty
 (

ar
b

. 
u

n
it

s)

Detuning (GHz)

-1.0 -1.01.0 1.00 0

(a)

(b)

(c)

(d)

FIG. 4. Excitation spectra showing the hyperfine structure of various 3 3�
and 4 3� rovibrational levels. The upper states for each transition are la-
beled in the figure, and in each case, the lower state is the predominantly
triplet component of a window level 1�b�3��=0��b ,J−1��2�A� 1�+��A ,J
−1�. For scans �a� and �b� �b=17 and �A=18; for �c� and �d� �b=18 and
�A=20. The measured hyperfine splittings increase with J for both electronic
states. However, for levels of the same J in the same energy range, the 4 3�
hyperfine splittings are smaller than those of the 3 3� state.
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FIG. 5. Comparison of the bound-free spectra for various upper state rovi-
brational levels: �a� a predominantly 4 3� level �4 3��=0��=5,J=27��, �b� a
predominantly 3 3� level �3 3��=0��=35,J=46��, and �c� a mixed level
�4 3��=0��=1,J=27��3 3��=0��=37,J=27��.
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a small range of R, leading to predicted emission over the
relatively narrow range 479–490 nm. The single peak shown
in Fig. 5�a� is consistent with this prediction, although one
might expect to see more oscillations in the spectrum since
the upper state vibrational level is �=5. However, the
4 3�–1�a� 3�+ transition dipole moment ��R� exhibits a

sharp dependence on R near the avoided crossing of the 4 3�

and 3 3� curves, switching from high values to low values
with increasing R. �The 3 3�–1�a� 3�+ transition dipole mo-
ment exhibits a complementary change.� The strong R de-
pendence of ��R� cuts off additional oscillations in the
4 3�→1�a� 3�+ bound-free spectra that would otherwise be
observable at shorter wavelengths. The vibrational functions
of the 3 3� potential exhibit more nodes and extend over a
larger range of R. As a result the predicted spectrum is
broader and extends over the range 475–543 nm. Experi-
mentally, we observe 4 3�→1�a� 3�+ emission between 485
and 495 nm and 3 3�→1�a� 3�+ emission primarily in the
range 502–512 nm.

B. Adjustment of ab initio diabatic potentials
to fit the data

In Sec. III A, we analyzed the coupling between the
3 3� and 4 3� electronic states and we discussed the need to
treat these two states together. We describe this coupled sys-
tem by specifying the 2�2 electronic Hamiltonian matrix in
the diabatic representation

TABLE III. Experimental and calculated NaK 4 3��� ,J��3 3���� ,J� mixing amplitudes. The experimental
data for each set of two or three states were analyzed separately using the model discussed in the Appendix.
Except as noted, the experiments and the calculations give the same assignment of predominant 3 3� or 4 3�

character.

3 or 4 3�

assignment � or �� J

Experimental Theoretical

Energy �cm−1�
3 3�

fraction
4 3�

fraction
3 3�

fraction
4 3�

fraction

3 36 16 25 973.24 0.888 0.112 0.963 0.037
4 1 16 25 997.21 0.226 0.774 0.111 0.889
3 37 16 26 007.58 0.887 0.113 0.975 0.025

4a 1 27 26 025.10 0.430 0.570 0.580 0.421
3a 37 27 26 028.53 0.570 0.430 0.505 0.495

3 37 46 26 081.68 0.818 0.182 0.926 0.074
4 1 46 26 109.54 0.428 0.572 0.401 0.599
3 38 46 26 119.25 0.754 0.246 0.704 0.296

4 2 25 26 143.96 0.394 0.606 0.364 0.636
3 41 25 26 159.62 0.606 0.394 0.737 0.263

3 44 27 26 250.86 0.834 0.166 0.879 0.121
4 3 27 26 275.08 0.452 0.548 0.462 0.538
3 45 27 26 289.84 0.714 0.286 0.707 0.293

3 48 14 26 354.53 0.721 0.279 0.886 0.114
4 4 14 26 360.41 0.279 0.721 0.216 0.784

3 49 44 26 442.41 0.823 0.177 0.897 0.103
4 4 44 26 465.28 0.400 0.600 0.422 0.578
3 50 44 26 474.99 0.777 0.223 0.745 0.255

4 5 27 26 498.39 0.231 0.769 0.180 0.820
3 53 27 26 512.60 0.769 0.231 0.914 0.086

aAssignment of predominant character �3 3� or 4 3�� based on the experimental mixing amplitudes.
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Hdia�R� = 	V11�R� V12�R�
V12�R� V22�R�


 . �16�

In order to determine the best diabatic Hamiltonian for the
coupled states, we have developed flexible analytic forms for
the functions V11�R�, V12�R�, and V22�R�. These analytic
functions depend on parameters that can be adjusted to
achieve agreement with experimental data.

We obtain the adiabatic potential curves and the mixing
angle � by direct diagonalization of Eq. �16�, and then we
apply the formalism of Sec. III A to calculate the rovibra-
tional energy levels, including the effects of nonadiabatic
coupling. By iteratively varying the parameters of the ana-
lytic curves, we match the calculated rovibrational energy
levels of the 3 3� and 4 3� states to the experimental energy
levels. We determine initial estimates for the fitting param-
eters from our ab initio calculations.

1. Analytic form for the potentials

We express each diagonal diabatic potential �denoted ge-
nerically here by V�R�� using a function that has different
analytic forms depending on whether R is less than or greater
than Re, the point where V�R� has its minimum,

V�R� = �V1�R� if R � Re

V2�R� if R � Re.
� �17�

We use a generalization of the Morse potential for R�Re,

V1�R� = Dx�x − 2� + V�, �18�

where

x = exp�− �
n=1

N�

�n�R − Re�n� . �19�

For R�Re,

V2�R� =

�
n=0

NA

An�R − Re�n

�R/Re�NA+6 + V�. �20�

When R approaches Re, Eq. �20� simplifies to a power series,
and as R→� it becomes an inverse power series whose lead-
ing term behaves as 1/R6, as it should.

We require that the functions V1�R� and V2�R� join
smoothly at Re. Requiring continuity of V�R� and its first two
derivatives at Re leads to a set of three algebraic equations
that can be solved to determine A0, A1, and A2. The results
are

A0 = − D , �21�

A1 = − D
NA + 6

Re
, �22�

A2 = D	�1
2 −

�NA + 5��NA + 6�
2Re

2 
 . �23�

We used separate sets of parameters to define the two
diagonal diabatic potentials. The off diagonal, diabatic cou-
pling function was defined by

H12�R� = �A + B�R − R0��e−��R − R0�2
. �24�

This off diagonal term is most important near the crossing
point of the diabatic potentials. The value of R0 in Eq. �24�
was chosen to give the maximum flexibility of the function
near the crossing point and to ensure that the function be-
haves in a benign way far from the crossing point.

2. Nonlinear fitting methodology and results

The parameters of the functions defined above were ad-
justed in order to achieve the best possible agreement be-
tween the measured and calculated rovibrational energy lev-
els for the 3 3� and 4 3� states. We used a general
implementation of the Levenberg-Marquardt algorithm47 and
wrote specific subroutines that evaluated elements of the di-
abatic Hamiltonian. We also used a slightly modified version
of LEVEL 7.5 �Ref. 39� to calculate the energy levels. We
included in our final calculations all levels for �=0–65 in the
3 3� state and for �=0–18 in the 4 3� state. The calcula-
tions were used to fit measured levels up to �=53 in the 3 3�
state and up to �=5 in the 4 3� state.

The theoretical calculations were fitted to experimental
data for 288 rovibrational levels with predominantly 3 3�
character ��=6–53� and 22 rovibrational levels with pre-
dominantly 4 3� character ��=0–5�. The values of J for
these data include 14, 16, 18, 20–29, 37, 39, 44, 46, 86, and

TABLE IV. The parameters of the best fit for the diagonal elements of the
diabatic Hamiltonian for the coupled 3 3�-43� system. The parameters are
defined in Eqs. �17�–�23�; those marked with an asterisk � *� were not varied
in the fit.

Parameter Inner well value Outer well value

V�
* 2.998 400�104 cm−1 2.680 913 2�104 cm−1

Re 3.983 46 Å 5.712 30 Å
D 4.765 11�103 cm−1 2.116 31�103 cm−1

N�
* 5 5

�1 −5.6047�10−1 Å−1 4.309 36�10−1 Å−1

�2 5.725�10−1 Å−2 3.3389�10−2 Å−2

�3 −4.718�10−1 Å−3 −2.3364�10−2 Å−3

�4 −2.177 Å−4 −1.1616�10−2 Å−4

�5 −3.184 Å−5 9.063�10−4 Å−5

NA
* 9 8

A3 −1.6650�104 Å−3 −2.1502�103 Å−3

A4 −4.1139�104 Å−4 −3.203 07�103 Å−4

A5 1.0311�104 Å−5 1.915 47�103 Å−5

A6 3.054�103 Å−6 −4.6587�102 Å−6

A7 −9.95�102 Å−7 3.9661�101 Å−7

A8 −4.381�103 Å−8 6.57�10−1 Å−8

A9 7.47�102 Å−9

TABLE V. The parameters of the best fit for the off diagonal element of the
diabatic Hamiltonian for the coupled 3 3�-4 3� system. The parameters are
defined in Eq. �24�; those marked with an asterisk � *� were not varied in the
fit.

Parameter Value Parameter Value

R0
* 4.909 02 Å A 366.86 cm−1

�* 1.1744 Å−2 B 160.72 cm−1/Å
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88. Also included in the fit were 48 artificial levels for �
=0–5 of the 3 3� state �J=14, 16, 25, 27, 37, 39, 44, and
46�. These levels were calculated using a single potential that
fit the �=6–12 levels of the 3 3� state. Without these levels
as a constraint, the final fitted 3 3� potential tended to have
an unphysical, flat shape near its minimum. The parameters
for the best fit are given in Tables IV and V, and a plot of the
deviation between experiment and theory is shown in Fig. 7.
The rms deviation of the best fit was 0.23 cm−1, with all the
original data included. The fit also gives us a measure of
accuracy of the ab initio 2�2 diabatic potentials. The fitted
diabatic potentials and the coupling term are shown in Fig. 8.
The difference between the ab initio 3 3� adiabatic potential
inner and outer well depths is 480.0 cm−1, whereas the dif-
ference between the well depths in the fitted 3 3� adiabatic
potential is 545.6 cm−1. The ab initio equilibrium positions
of the 3 3� inner and outer wells are 4.13 and 6.12 Å, re-
spectively, whereas the equilibrium positions in the fit are
3.98 and 5.71 Å.

EPAPS Table 2 �Ref. 44� tabulates the best-fit diabatic
and adiabatic potentials. EPAPS Table 3 �Ref. 44� provides
an extensive list of calculated energy levels and the compari-
son with experiment.

C. Effects of nonadiabatic coupling

An important conclusion of our calculations is that the
nonadiabatic coupling between the 3 3� and 4 3� states is

strong enough to couple levels that are not particularly close
in energy. Although it would be appealing to be able to iden-
tify unperturbed levels of the 3 3� and 4 3� states that are
not shifted except in the unusual case that a 3 3� level is
nearly degenerate with a 4 3� level, this model is not justi-
fied for this system. Our results clearly indicate that the
nonadiabatic coupling shifts all the levels investigated for the
4 3� potential ��=0–5� as well as all levels of the 3 3�
potential in the same energy range.

Figure 9 illustrates this conclusion very clearly. The fig-
ure shows the comparison between experiment and theory
for J=27. The right column shows the energy levels found
experimentally. The left column shows the diagonal elements
of the nonadiabatic Hamiltonian matrix �Eq. �12��, which
correspond to “unperturbed energies” E	�

J�0�. The column
marked “calculated mixed levels” gives the eigenvalues of
the Hamiltonian matrix. The dotted lines show the effect of
“turning on� the nonadiabatic coupling by multiplying the off
diagonal elements of the full Hamiltonian by a factor � that is
varied from 0 to 1. One can see that every one of the energy
levels is perturbed by the nonadiabatic coupling.

Unfortunately, unperturbed energies cannot be observed
experimentally, so the calculated shifts cannot be measured.
The experimental data show a regular spacing of 3 3� levels
interspersed with a few perturbed levels, suggesting that the
4 3� state only adds local perturbations to the 3 3� state.
The local perturbations would correspond to 3 3� energy
levels shown in Fig. 9 that are nearly degenerate with a 4 3�
energy level. We have found that we can recover the inter-
pretation of a local perturbation by considering second order
perturbation theory �SOPT�. The background shift of most of
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the levels in Fig. 9 is well described by SOPT. However,
SOPT fails and even becomes singular when two unper-
turbed levels are degenerate. We found that a slight modifi-
cation of SOPT can be used to “tame” the singularity,

�E	�
J = �

	���

�H	�,	���
J �2

�E	�
J�0� − E	���

J�0� � + 4�H	�,	���
J �2/�E	�

J�0� − E	���
J�0� �

, �25�

where E	�
J�0� and H	�,	���

J are defined in Eqs. �10� and �12�,
respectively. The second term in the denominator, which we
artificially added, is negligible for large values of E	�

J�0�

−E
	���
J�0� but suppresses the singularity that normally occurs

when E	�
J�0�−E

	���
J�0� is zero. This modification of SOPT accu-

rately accounts for the overall background shift in the energy
levels when the energy denominator E	�

J�0�−E
	���
J�0� is large and

remains finite when the energy denominator is small. In Fig.
10 we have plotted the difference between the energy pre-
dicted by our modified SOPT and the result obtained by ma-
trix diagonalization versus the unperturbed �diagonal� ener-
gies E	�

J�0� of the nonadiabatic Hamiltonian matrix. This figure
highlights the part of the shift that is not explained by SOPT,
which is nearly zero for each level that is not very close to
another level. However, when a 3 3� and 4 3� level are very
close, there is a significant difference between the back-
ground shift predicted by SOPT and the exact shift. These
are the levels where the perturbation is obvious in the experi-
mental data.

If the 3 3� levels that are shifted significantly more or
less than the background shift—those that are close in energy
to the 4 3� levels—are neglected, the rest may be fitted to a
potential curve in a fit that neglects the nonadiabatic cou-
pling. This was done for the 3 3� data by Morgus et al.4

using the IPA method. This potential, while reproducing
those states that were included with a rms deviation of
0.24 cm−1, is an effective potential: it effectively includes the
background shift that these levels feel. The present fit, which
includes nonadiabatic coupling, has an overall shift in the
range of the 4 3� potential compared to the IPA potential.
Furthermore, the fit reported here includes the energy levels

that were excluded from the IPA fit. It reproduces this set of
3 3� data with a rms deviation of 0.21 cm−1.

It is not sensible to fit the energy levels of the 4 3� state
with an effective potential curve. Each 4 3� level is rela-
tively close in energy to one of the 3 3� energy levels. The
4 3� levels are perturbed in an irregular way, and one cannot
pick out those that are more perturbed or less perturbed. The
present fit, which includes nonadiabatic coupling, is able to
reproduce the 4 3� data with a rms deviation of 0.40 cm−1.

The fitted energies also allowed us to identify 30 previ-
ously unassigned 3 3� levels �up to �=56� and 12 previously
unassigned 4 3� levels �up to �=6�. Comparisons of these
measured and calculated level energies are also listed in
EPAPS Table 3. Including these additional 42 levels, the rms
deviation of the calculated energies from measured energies
of all experimentally assigned 3 3� �6���56� and 4 3�
�0���6� levels is only increased to 0.27 cm−1.

V. CONCLUDING REMARKS

We have reported a comprehensive experimental and
theoretical study of the coupled 3 3� and 4 3� states of
NaK. Rovibrational energy levels and hyperfine structure
were measured from near the minimum of the 3 3� potential
up to the region where levels belonging to both electronic
states coexist and interact. The hyperfine signatures of the
3 3� and 4 3� states are very similar, but additional data
from bound-free emission spectra were used to assign the
electronic states. The mixing coefficients of strongly coupled
levels could also be estimated from the data. The nonadia-
batic coupling between the 3 3� and 4 3� states was formu-
lated using a 2�2 diabatic representation of the electronic
potentials. The diabatic electronic states and the coupling
between them were simultaneously adjusted to fit the experi-
mental data. This level of theory provides an excellent rep-
resentation of all the measured rovibrational energy levels,
including many perturbed levels that could not be fitted by a
conventional single-channel analysis.
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APPENDIX: TWO- AND THREE-STATE MODEL

We consider the case in which two vibrational-electronic
levels of the 3 3� state interact with one of the 4 3� state,
forming a three-state system. For m=1, 2, and 3, the eigen-
states �m� can be written as

�m� = um1
�
�4��4 3�� + um2
��

�3��3 3�� + um3
��
�3��3 3�� ,

where the coefficients umn form a unitary matrix.
We assume that the observed total integrated intensity of

the bound-free spectrum from state �m� can be expressed as
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FIG. 10. Comparison of second order perturbation theory �SOPT� with ma-
trix diagonalization. This figure shows the difference between SOPT, as
modified using Eq. �25�, and the exact eigenvalues calculated by matrix
diagonalization. The abscissa is the unperturbed energy E	�

J�0� of each state
considered. The two rows of tic marks show the unperturbed energies of the
3 3� �upper row� and the 4 3� �lower row� states.
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the sum of nonoverlapping contributions Im1 from the wave-
length range of the 4 3� component and Im2 from the wave-
length range of the 3 3� component,

Im1 = um1
2 ��4 3����4 3���m,

Im2 = �um2
2 + um3

2 ���3 3����3 3���m,

where ��n 3�� and ��n 3�� are the radiative rate and relative
detection efficiency for n 3�→1�a� 3�+ transitions and �m is
the number density of the state �m�.

The following ratios of the observed intensities eliminate
the �’s, �’s, and �’s:

	 =
I11I32

I12I31
=

u11
2 �u32

2 + u33
2 �

u31
2 �u12

2 + u13
2 �

,

� =
I21I32

I22I31
=

u21
2 �u32

2 + u33
2 �

u31
2 �u22

2 + u23
2 �

.

By straightforward analysis, we can transform the unitarity
condition �m=1

3 �um2
2 +um3

2 �=2 into an equation for the un-
known quantity x=u32

2 +u33
2 ,

x

	�1 − x� + x
+

x

��1 − x� + x
+ x = 2.

The other mixing coefficients follow from x.
We can reduce these formulas to a two-state model for

states �1� and �3� by uncoupling the state �2�. In that case
u22=1, �=0, and we can identify x=u33

2 =u11
2 =cos2 � and

1−x=u13
2 =u31

2 =sin2 �, where

cos2 � =
	1/2

1 + 	1/2 , sin2 � =
1

1 + 	1/2 .
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