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The NaK 1 1,3� states: Theoretical and experimental studies of fine
and hyperfine structure of rovibrational levels near the dissociation limit
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Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational
levels of the 1 3� state of NaK have been extended to include high lying rovibrational levels with
v�59, of which the highest levels lie within �4 cm−1 of the dissociation limit. A potential curve is
determined using the inverted perturbation approximation method that reproduces these levels to an
accuracy of �0.026 cm−1. For the largest values of v, the outer turning points occur near R
�12.7 Å, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The
fine and hyperfine structure of the 1 3� rovibrational levels has been fit using the matrix
diagonalization method that has been applied to other states of NaK, leading to values of the
spin–orbit coupling constant Av and the Fermi contact constant bF. New values determined for v
�33 are consistent with values determined by a simpler method and reported earlier. The measured
fine and hyperfine structure for v in the range 44�v�49 exhibits anomalous behavior whose origin
is believed to be the mixing between the 1 3� and 1 1� states. The matrix diagonalization method
has been extended to treat this interaction, and the results provide an accurate representation of the
complicated patterns that arise. The analysis leads to accurate values for Av and bF for all values of
v�49. For higher v �50�v�59�, several rovibrational levels have been assigned, but the pattern
of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from
effects not included in the current model. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2010471�
I. INTRODUCTION

A program of high-resolution spectroscopic studies in
our laboratory has probed the fine and hyperfine structure of
several excited triplet states of NaK.1–4 Sodium-potassium
mixtures are of current interest for mixed species atom traps,
and the NaK high lying triplet states are of particular interest
for the understanding of future sodium-potassium photoasso-
ciation spectra. Our previous investigation of the 1 3� state1

reported fine and hyperfine structure of numerous rovibra-
tional levels for v�33. This work provided a Rydberg–
Klein–Rees �RKR� potential for the 1 3� state as well as
experimental values of the spin–orbit coupling constant Av
and the Fermi contact constant bF for the vibrational levels
probed. The present paper reports the investigation of signifi-
cantly higher vibrational levels for the 1 3� state and also the
application of more elaborate theoretical tools to the analysis
of the spectra. An enhanced theoretical analysis is needed at
larger v and N because the effects of the fine and hyperfine
structure terms in the molecular Hamiltonian can be of com-
parable size, and intermediate angular momentum coupling
schemes must be invoked to interpret the observed spectra.
In addition, several features are observed in the spectra that
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appear to arise from coupling between the 1 1� and 1 3�
states. The theoretical analysis of the spectra is generalized
to include this interaction as well.

As in our previous work,1–4 we use the technique of
“perturbation-facilitated, optical–optical double resonance”
�PFOODR� spectroscopy5–28 to measure the spectra of ex-
cited triplet states. This technique involves two-step excita-
tion from the singlet ground state to a highly excited triplet
state through specific intermediate state rovibrational “win-
dow” levels that display both singlet and triplet character due
to perturbations. When one uses narrow band continuous
wave �cw� lasers �as we do�, this technique is also capable of
very high resolution since it is inherently Doppler-free. Ad-
ditional studies using this method are cited in our previous
work. The theoretical analysis we report here is based on the
matrix diagonalization method that we have used before to
analyze the fine and hyperfine structure of the NaK 4 3�+

state2 and the 1�b�3��=0 component of the window levels.3

This paper is organized as follows: Section II briefly
describes the experiment and the data obtained. Section III
describes the theory. The main results are presented and dis-
cussed in Sec. IV, and Sec. V contains concluding remarks.

II. EXPERIMENT

The experimental setup is the same as that used in Ref. 1
and is shown in Fig. 1 of that reference. Briefly, a mixture of
sodium and potassium is contained in a four-arm cross heat-

pipe oven and heated to a temperature between 361 and

© 2005 American Institute of Physics06-1
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395 °C. This produces a vapor containing K2, NaK, and Na2

molecules, in addition to sodium and potassium atoms. Ar-
gon buffer gas at a pressure of �0.5–2 Torr is used to keep
the alkali vapor from reacting with the oven windows, which
are cooled to room temperature using external cooling coils.

Rovibrational levels of the NaK 1 3� state are accessed
by PFOODR spectroscopy. The sequence of transitions
is 1 3��v ,N ,J�←1�b�3��=0�vb ,J���2�A�1�+�vA ,J��
←1�X�1�+�vX ,J�±1�. The intermediate levels
1�b�3��=0�vb ,J���2�A�1�+�vA ,J�� have mixed singlet-
triplet character due to spin–orbit perturbations between
nearly degenerate levels of the two electronic states with the
same rotational quantum number J�. Such levels are called
“window” levels because they provide access from the sin-
glet ground state to various triplet states, and a number of
these levels for NaK have been listed in previous work.3,4

A tunable, single-mode, cw dye laser �Coherent 699-29�
is used as the “pump” laser to excite NaK molecules on
specific 1�b�3��=0�vb ,J���2�A�1�+�vA ,J��
←1�X�1�+�vX ,J�±1� transitions. The transition of interest is
found by observing 2�A�1�+�vA ,J��→1�X�1�+ fluorescence
emitted at right angles to the laser propagation axis with a
free-standing photomultiplier tube �PMT� equipped with a
700–1000 nm bandpass filter while the pump laser fre-
quency is scanned. Once the transition is found, the pump
laser frequency is fixed to line center of the transition. A
tunable, single-mode, cw Ti:sapphire laser �Coherent 899-
29� is used as the “probe” laser to excite specific
1 3��v ,N ,J�←1�b�3��=0�vb ,J���2�A�1�+�vA ,J�� transi-
tions, which are found by observing green 3 3�→1�a�3�+

fluorescence using a second free-standing PMT equipped
with appropriate filters. In this case, the upper 3 3� state is
collisionally populated from the laser excited level,
1 3��v ,N ,J�. The two laser beams counterpropagate through
the oven, and the total green fluorescence signal is recorded
as the probe laser frequency is scanned. As discussed in Ref.
1, the hyperfine structure of the intermediate state is canceled
for the most part in the counterpropagating beam geometry.
Thus the excitation spectra map out the fine and hyperfine
structure of the upper level 1 3��v ,N�. These spectra present
a distinctive signature pattern, which is discussed in Sec.
IV A and which was shown earlier in Figs. 2 and 4 of Ref. 1.
This pattern makes the 1 3� spectra easy to distinguish from
excitations to other triplet states �4 3�+ and 3 3�� that lie in
the same energy range.2,4

The pump laser wavemeter is calibrated by sending a
small fraction of the beam through an iodine cell and com-
paring I2 laser-induced fluorescence with lines listed in the
iodine atlas.29 The probe laser wavemeter is calibrated using
optogalvanic signals from neon transitions in a hollow cath-
ode lamp. We consider absolute energies of 1 3��v ,N ,J� lev-
els recorded using the PFOODR technique in our setup to be
accurate to within 0.02 cm−1. However, splittings between
hyperfine levels can be determined with much higher accu-

−1
racy, typically 0.001 cm �30 MHz�.
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III. THEORY

A. Fine and hyperfine structure of 3� states

Our analysis of the fine and hyperfine structure of the
1 3� state is based on the same methodology that we applied
in previous work on the 4 3�+ state of NaK.2 We summarize
this method briefly, and then we will describe the generali-
zation to include the interaction with the 1 1� state. Our
starting point is the Hamiltonian30–35

Ĥ = Ĥrot + AvL · S + bFI · S + �N · S + ��3Ŝz
2 − S2� , �1�

where Ĥrot is the rotational Hamiltonian, AvL·S is the spin–
orbit interaction, bFI ·S is the Fermi contact interaction,36

which is the dominant contribution to the hyperfine structure
of Rydberg states in alkali molecules,36–39 �N·S is the spin–

rotation term, and ��3Ŝz
2−S2� is the spin–spin term. As usual,

N is the sum of the rotational angular momentum of the
nuclei �R� plus the electron orbital angular momentum �L�;
S is the total electron spin, and I is the nuclear spin. We take
I to be the nuclear spin of Na only, since the nuclear mag-
netic moment of Na is much larger than that of K, and since
the electron density at the Na nucleus is also larger for this
electronic state.3,40

We formulate the coupling using Hund’s case �b�J� cou-
pling scheme,

N + S = J, J + I = F . �2�

We find the eigenvalues of Ĥ by direct diagonalization of the
matrix representation of Eq. �1�, using basis functions
��NSJI ;FMF	 that are eigenfunctions of N2, S2, J2, I2, F2,
and MF. These basis functions are constructed as linear com-
binations

��NSJI;FMF	 = �
MJ

�
MI

C�JMJ,IMI;FMF���NSJMJ	�IMI	 ,

�3�

where C�¯� is a Clebsch-Gordan coefficient, and the kets on
the rhs are direct products of Hund’s case �b� basis functions
�with no nuclear spin� and nuclear spin functions. This ex-
pression allows us to evaluate all matrix elements of the
general basis functions ��NSJI ;FMF	 using, for example, the
expressions derived by Kovács30 for Hund’s case �b�. Our
previous work2 contains explicit expressions for the matrix
elements of several terms in Eq. �1�. Here we concentrate on
the spin–orbit term, which was zero for the case we consid-
ered in Ref. 2. We will generalize our analysis to include
singlet and triplet mixing, and we will present explicit ex-
pressions in the next section.

B. Treatment of 1�− 3� mixing

In this section we will summarize the analysis of the
coupling between 1� and 3� levels. We consider a system
consisting of a Na atom in the 3s level and a K atom in the
3d level. We will attribute the fine structure splitting to the

atomic K spin–orbit operator Ĥso
�K�, although later we will

make the connection to the molecular NaK system. Let s1
and s2 be the spins of Na�3s� and K�3d�, respectively, and let
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l1 and l2 be the corresponding orbital angular momenta. Both
electron spins are 1

2 , that is, s1=s2= 1
2 . Also, l1=0 and l2=2.

Then the spin–orbit operator for atomic K may be written

Ĥso
�K� = Al2 · s2. �4�

We consider the matrix elements of this operator in different
coupling schemes in the molecular frame.

The first scheme is j j coupling, in which the angular
momentum of each atom is defined first. This scheme may be
written

j1 = l1 + s1 = s1, j2 = l2 + s2, Ja = j1 + j2. �5�

The total electronic and spin angular momentum is Ja, and
its projection on the internuclear axis is �. Since l1=0, j1

=s1= 1
2 , and we can write the general basis functions in this

scheme as

�s1s2l2�j2�;Ja�	 . �6�

The value of j2 for the K atom in the 3d state can be either 3
2

or 5
2 . The matrix elements of Ĥso

�K� are diagonal in the j j basis
functions:
Downloaded 05 Oct 2005 to 128.180.17.180. Redistribution subject to

s1s2l2�j2�;Ja��Ĥso
�K��s1s2l2�j2��;Ja���	

= � j2,j2�
�Ja,Ja�

��,��Ej2
, �7�

where E3/2 and E5/2 are the energies of the two K�3d� fine
structure levels. The splitting between these states is
2.33 cm−1; the ordering is inverted �E5/2	E3/2� because the
sign of the fine structure constant is negative.

The next coupling scheme we consider is LS coupling,
which corresponds to

S = s1 + s2, L = l1 + l2 = l2, Ja = L + S . �8�

The basis states are written

�s1s2�S�l2;Ja�	 . �9�

A variation of LS coupling that we call LS� coupling is
the most useful for making the connection with the formal-
ism of Sec. III A. The basis functions of this set are

�s1s2�S � �l2
	 . �10�

These basis functions correspond to a scheme that is the
same as the LS scheme defined by Eq. �8�, except that L and
S do not couple to form Ja. We want the projections 
 and �
of the total L and S on the internuclear axis �z� to be good
quantum numbers, so that we can identify this basis with
Hund’s case �a�. �We take 
 and � to be signed.�
The transformation between the j j basis and the LS� basis may be derived using standard techniques.41 The result is


s1s2�S � �l2
�s1s2l2�j2�;Ja�	 = ��,�+
�− 1�s1+s2+S+Ja−���2S + 1��2Ja + 1��2j2 + 1�� S l2 Ja

� 
 − �
�s1 s2 S

l2 Ja j2
� . �11�

We have used Eq. �11� to transform the matrix elements of Ĥso
�K� to the LS� basis. Since �=�+
 is conserved, Ĥso

�K� is
block diagonal in �. The only blocks in which both 1� and 3� states appear are those for �= ±2. We only need to consider

�=2, since the analysis is identical for �=−2. The �=2 block of the matrix representation of Ĥso
�K� is given by

1��=2
3��=2

3��=2
1��=2

2
5E3/2 + 3

5E5/2 � 2
25�E3/2 − E5/2� − 2

5 �E3/2 − E5/2�
3��=2

� 2
25�E3/2 − E5/2� 1

5E3/2 + 4
5E5/2 − � 2

25�E3/2 − E5/2�
3��=2 − 2

5 �E3/2 − E5/2� − � 2
25�E3/2 − E5/2� 2

5E3/2 + 3
5E5/2

. �12�

We now make the assumption that the coupling with the 3� state is weak �it will generally be far removed in energy from

the 1� and 3� states�. Dropping the terms involving the 3� state �the second row and column in Eq. �12�� we find that Ĥso
�K�

for �=2 takes the form

1��=2
3��=2

1��=2
2
5E3/2 + 3

5E5/2 − 2
5 �E3/2 − E5/2�

3��=2 − 2
5 �E3/2 − E5/2� 2

5E3/2 + 3
5E5/2

.

The only � state that can have �=1 or �=3 is the 3�. Adding these states to the subset of the LS� basis functions we’re
using, we obtain the following matrix representation:
 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3��=1
3��=2

1��=2
3��=3

3��=1
4
5E3/2 + 1

5E5/2 0 0 0
3��=2 0 2

5E3/2 + 3
5E5/2 − 2

5 �E3/2 − E5/2� 0
1��=2 0 − 2

5 �E3/2 − E5/2� 2
5E3/2 + 3

5E5/2 0
3��=3 0 0 0 E5/2

. �13�
Written in this form, Ĥso
�K� clearly retains its block diag-

onal structure with respect to �. To make the connection
with the pure triplet case, it is convenient to reorder the basis
functions so that the three 3� states are first. We also define

A = 2
5 �E5/2 − E3/2� , �14�

and we define the zero of energy to be the degeneracy-

weighted average Ē of the K�3d� fine structure energies:

Ē = 2
5E3/2 + 3

5E5/2. �15�

With these manipulations, we obtain the following

simple form for Ĥso
�K� in the basis of four LS� electronic func-

tions, assuming a fixed molecular axis:
3��=1

3��=2
3��=3

1��=2
3��=1 − A 0 0 0
3��=2 0 0 0 A
3��=3 0 0 A 0
1��=2 0 A 0 0

. �16�

The eigenvalues of the above matrix are −A, −A, A, and A,

corresponding to a splitting of 2A for the fine structure lev-
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els. This result is not quite right, since from Eq. �14�, the
splitting should be 5

2A. The discrepancy arises because we
neglected the 3� states with �=2. However, if we identify A
with 
Av, the upper 3�3 block of Eq. �16� corresponds
exactly to the spin–orbit interaction of a triplet state in the
molecular limit �for Hund’s case �a��. We will take Eq. �16�
to be our model of the fine structure interaction for molecular
NaK, treating Av as an empirical coupling constant that must
be adjusted to fit the data for each vibrational level.

The matrix given in Eq. �16� is the essential term for
coupling the levels of the 1 3� and 1 1� electronic states.
However, the complete calculation must also include vibra-
tional, rotational, and hyperfine coupling terms; our existing
code includes these terms using a Hund’s case �b� basis be-
cause of the simplicity of the hyperfine coupling term in that
basis. If we set A=
Av and transform Eq. �16� to case �b�,
we obtain
Av�

2

J




�2
��J2 − 
2��J + 1�

J2�J + 1
2�

0 −



�2
��J + 
��J + 1 + 
�

J�J + 1�

v��v	




�2
��J2 − 
2��J + 1�

J2�J + 1
2�

−

2

J�J + 1�



�2
�J��J + 1�2 − 
2�

�J + 1
2��J + 1�2


2

�J�J + 1�

v��v	

0



�2
�J��J + 1�2 − 
2�

�J + 1
2��J + 1�2

−

2

J + 1




�2
��J + 1 + 
��J + 1 − 
�

�J + 1
2��J − 1�


v��v	

−



�2
��J + 
��J + 1 + 
�

J�J + 1�

v��v	


2

�J�J + 1�

v��v	




�2
��J + 1 + 
��J + 1 − 
�

�J + 1
2��J − 1�


v��v	 0

� ,

�17�
where 
=2, and the basis functions are ��NSJ�	 in the or-
der N=J−1,J ,J+1 for triplet states �S=1� and N=J for the
singlet state �S=0�. The upper 3�3 block of the matrix in
Eq. �17� is exactly the same as the result of Kovács30 for the
spin–orbit operator. Note that the singlet–triplet coupling
terms in the last row and column contain the overlap matrix
elements 
v� �v	 between the appropriate vibrational wave
functions of the 1 1� and 1 3� rovibrational levels. The ap-
proximations leading to this result are discussed later in Sec.
IV B. The matrix that represents the vibrational and rota-
tional terms may be written �for a fixed J, in Hund’s case �b��
as
 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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�
Etrip

0 �v,N = J − 1,J� 0 0 0

0 Etrip
0 �v,N = J,J� 0 0

0 0 Etrip
0 �v,N = J + 1,J� 0

0 0 0 Esing
0 �v�, J�

� . �18�
The total Hamiltonian is represented by the sum of the
matrices given in Eqs. �17� and �18�, plus the hyperfine term
bFI ·S. We can evaluate the matrix elements of this sum in
the 16 Hund’s case �b�J� functions ��NSJI ;FMF	 listed in
Table I using Eq. �3�. This procedure is a straightforward
generalization of the work we have done previously using
only triplet states;2–4 in those cases we used only the upper
3�3 blocks of the matrices given by Eqs. �17� and �18�.

IV. RESULTS AND DISCUSSION

A. Vibrational levels 0ÏvÏ33: Experiment and
Theory

In our previous work,1 a total of 757 measurements of
PFOODR transition frequencies representing 562
1 3��v ,N ,J ,e / f� rovibrational levels with 3�v�36 were
recorded using four 1�b�3��=0�vb ,J���2�A�1�+�vA ,J�� win-
dow levels with J�=15, 26, 38, and 45. The most interesting
feature of the data was the systematic variation of the pattern
of the line splittings due to fine and hyperfine structure. Rep-
resentative data are shown in Fig. 1. For low values of N, the
three fine structure levels �labeled by J=N−1, J=N, and J
=N+1� are well split, and each is divided into a set of four
closely spaced hyperfine levels. As N increases, however, the
three fine structure levels move closer together and can no
longer be separately identified. This behavior suggests varia-
tions in the relative importance of the spin–orbit coupling
term �AvL·S� and the hyperfine coupling term �bFI ·S�.

Huennekens et al.1 analyzed these data to determine val-
ues of Av for each vibrational level. The hyperfine splittings
were not explicitly included in the analysis; rather the aver-
age energy of each hyperfine multiplet was used to represent
the corresponding fine structure level. Then a Hamiltonian
matrix that included electronic, vibrational, rotational, and

TABLE I. List of states for 1 1� and 1 3� in Hund’s case �b�J�.

No. N J State No. N J State

1 F− 5
2 F− 3

2 1 3� 9 F+ 1
2 F− 1

2 1 3�

2 F− 3
2 F− 3

2 1 3� 10 F+ 1
2 F+ 1

2 1 3�

3 F− 3
2 F− 1

2 1 3� 11 F+ 1
2 F+ 3

2 1 3�

4 F− 3
2 F− 3

2 1 1� 12 F+ 1
2 F+ 1

2 1 1�

5 F− 1
2 F− 3

2 1 3� 13 F+ 3
2 F+ 1

2 1 3�

6 F− 1
2 F− 1

2 1 3� 14 F+ 3
2 F+ 3

2 1 3�

7 F− 1
2 F+ 1

2 1 3� 15 F+ 5
2 F+ 3

2 1 3�

8 F− 1
2 F− 1

2 1 1� 16 F+ 3
2 F+ 3

2 1 1�
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spin–orbit interactions for each v was set up and diagonal-
ized using the program LSQ.42 The spin–orbit parameter Av
was adjusted to obtain a least squares fit to the observed
energies of the �v ,N ,J� levels. Subsequently, the best value
for the Fermi contact constant bF �the same value for all v’s�
was determined by a perturbative treatment of the low N data
�N=15�. This two step approach was expected to be very
reliable for levels such as those shown in Fig. 1 for low
values of N, where the hyperfine splitting is considerably less
than the fine structure splitting. However, for larger values of
N, a more elaborate analysis is desirable.

We have completed such an analysis using the general
matrix diagonalization method described in Sec. III A. We
evaluated the eigenvalues of Eq. �1� for a large number of
possible values of the parameters bF, Av, and Bv. �We set �
=�=0, because we found that those variables had a very
small effect.� The results for a wide variety of calculations
could be very well represented by a set of curves that relate
“reduced energy levels” to a “reduced hyperfine coupling
constant.” These curves are shown in Fig. 2. The abscissa is
2bF /S0, where S0 is the average splitting of the fine structure

FIG. 1. Variation of the fine and hyperfine structure for a series of rovibra-
tional levels of the 1 3� state. �a� 1 3��v=10,N=15�←1�b�3��=0�vb

=15,J�=15� transition, �b� 1 3��v=17,N=26�←1�b�3��=0�vb=17,J�=26�
transition, �c� 1 3��v=10,N=38�←1�b�3��=0�vb=12,J�=38� transition,
and �d� 1 3��v=14,N=45�←1�b�3��=0�vb=18,J�=45� transition. For
smaller values of N, the fine structure components J=N+1, J=N, and J
=N−1 are well separated. As N increases, these components tend to merge.

The dependence of the splitting on v is not significant for 10�v�17.
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levels when the hyperfine interactions are ignored �bF=0�.
The ordinate is determined by dividing all the energies by
��2bF�2+ �S0

2� and then shifting them so that the average
value is zero. Such a scaling is suggested by the analysis of
Condon and Shortley,43 who used similar methods to de-
scribe the transition between LS and j j coupling. Figure 2
shows the relative spacings of the 12 hyperfine levels for the
whole range of coupling strengths. On the left-hand side of
the diagram 2bF /S0→0, corresponding to Hund’s case �b�J�.
In this case the hyperfine coupling is weak and we have,
according to Eq. �2�, three sets of four states since I= 3

2 . On
the right-hand side, 2bF /S0→� �S0 /2bF→0�, corresponding
to Hund’s case �b�S�. For this case, the appropriate scheme is

G = S + I, F = N + G , �19�

leading to sets of two, four, and six states for G= 1
2 , 3

2 , and 5
2 ,

respectively.
The general curves in Fig. 2 account well for the trends

in the experimental data shown in Fig. 1. Smaller values of
2bF /S0 correspond to lower values of N, so that the scans
�a�–�d� in Fig. 1 correspond to moving rightward from
2bF /S0=0 in Fig. 2. One can clearly see that as N increases,
the splitting of the three groups of states for J=N+1, N, and
N−1 gradually diminishes. Careful examination of scans �c�
and �d� in Fig. 1 also reveals one of the four central states
splitting off slightly to the right; the theoretical curves in Fig.
2 exactly reproduce this behavior.

Experimental data points have also been explicitly in-
cluded in Fig. 2. These points were determined from several
experimental scans for various values of v and J. We fit
many scans together, using the experimentally determined
values of Bv, a quadratic polynomial for the dependence of
Av on v, and a constant bF �independent of v� to achieve the
best fit. Once Av and bF were determined, we used them to
determine appropriate values of S0 and 2bF /S0 so that the
measured absolute energies could be converted to reduced
energies and plotted on the diagram at the appropriate value
of 2bF /S0. The groups of points corresponding to the same N

FIG. 2. Comparison of theory and experiment for the hyperfine splitting of
the NaK 1 3� state. The solid curves �—� show the relative spacing of the 12
hyperfine levels. The experimental data have been plotted in the same way.
Data are shown for several different values of N: N=15 ���, N=26 ���,
N=38 ���, N=45 ��� N=86 and 87 ���.
and different v are spread out by the dependence of Av and
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Bv on v. Data corresponding to N=15, 26, 38, 45, 86, and 87
are shown. The agreement for a large number of data points
is remarkably good. The data for N=86 and 87 �2bF /S0�1
at the center of the plot� were fit separately, but for all the
other points we used four adjustable parameters and fit 1128
hyperfine energy levels. Many of the larger discrepancies
may be attributed to localized perturbations.

The present calculations lead to slightly different best-fit
values of Av and bF for the data reported by Huennekens
et al.1 However, the changes are very small, and in general
the present results confirm the approximations of Ref. 1. The
details will be presented in Sec. IV C.

B. New experimental data for 34ÏvÏ59 and analysis
of 3�− 1� mixing

The present work reports many additional energy levels
for the NaK 1 3� state. The data set has been expanded to
1645 measurements of PFOODR transition frequencies rep-
resenting 1083 1 3��v ,N ,J ,e / f� rovibrational levels with 3
�v�59. Most of the new data appear in the region v34.
The same set of window levels allowed access to
1 3��v ,N ,J ,e / f� levels with N=J�−2, J�−1, J�, J�+1, J�
+2 and J=J�−1, J�, J�+1 where J� is the rotational quantum
number of the window level �see Fig. 3 of Ref. 1�, although
a few levels with v=27, 28, J=86, 87, and 88 obtained using
the window level 1�b�3��=0�vb=22,J�=87��2�A�1�+�vA

=28,J�=87� were added to the data set. All measured NaK
1 3��v ,N ,J ,e / f� level energies are listed in EPAPS Table I
of the supplementary Electronic Physics Auxiliary Publica-
tion Service �EPAPS� deposit.44 Also listed in EPAPS Table I
are the ground state, intermediate state, and upper 1 3� state
levels, as well as the pump and probe laser frequencies for
each PFOODR transition studied in this work. Ground state
energies are taken from Ref. 45. A pictorial view of the cur-
rent data set is shown in Fig. 3.

The measured fine and hyperfine structure for v in the
range 44�v�49 exhibits anomalous behavior. An example
is shown by the experimental scans in Fig. 4�b�. These scans
exhibit features that are qualitatively different from the be-
havior exhibited by the scans in Fig. 1. The left and right

FIG. 3. The experimental data set.
groups of states move asymmetrically with respect to the

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



124306-7 The NaK � states J. Chem. Phys. 123, 124306 �2005�
central peak, and the left group even switches position with
the middle group for v=49. In addition, the splitting of the
central peak increases dramatically as v changes from 46 to
48. We were not able to fit these features using the model
Hamiltonian of Eq. �1�, but we were able to model them by
invoking the mixing between the 3� and 1� states, as de-
scribed in Sec. III B.

Including the singlet–triplet coupling introduces addi-
tional parameters into our model Hamiltonian. For each J we
need the offset �E between the rovibrational levels for the
1 1� and 1 3� states before the effect of fine structure and
hyperfine structure is added �cf. Eq. �18��:

�E = Esing
0 �v�, J� − Etrip

0 �v,N = J,J� . �20�

We also need the overlap matrix element 
v� �v	 between the
vibrational wave functions �cf. Eq. �17��. Unfortunately, the
singlet level is not observed and the vibrational overlap is
not known. However, even though the rovibrational spectrum
of the 1 1� state is not known, the shapes and equilibrium
separations of the 1 1� and 1 3� states are very similar,46,47

and we can use the measured triplet state Bv values to esti-
mate Esing

0 �v� , J±1� from Esing
0 �v� , J�:

Esing
0 �v�, J + 1� � Esing

0 �v�, J� + 2�J + 1�Bv, �21�

Esing
0 �v�, J − 1� � Esing

0 �v�, J� − 2JBv. �22�

For the analysis of the data presented in Fig. 4, this approxi-
mation has a very small effect because it only influences the
locations of the two distant singlet levels �v� , J=45� and
�v� , J=44� that weakly perturb the corresponding triplet
components �v ,N=45,J=45� and �v ,N=45,J=44�. The
dominant effect observed in these data is the interaction be-
tween the triplet level �v ,N=45,J=46� and the nearby sin-
glet level �v� , J=46�. The energy splitting of these levels is
fully specified by �E and the measured values of Bv and Av
for the triplet levels.

Exploratory calculations made it clear that �E and

v� �v	 are significantly correlated. Including them both as
fitting parameters does not work well. The reason for the
correlation can be easily understood by considering second
order perturbation theory. For small Av, we can approximate
the second order shifts in the triplet energies as

Etrip�v,N = J,J� − Etrip
0 �v,N = J,J� �

Av
2
v��v	2

�E
. �23�

In other words, as long as the perturbation is weak, we ex-
pect that the effect of 
v� �v	 and �E can be represented by a
single parameter �E / 
v� �v	2. We performed several tests to
evaluate this approximation. We diagonalized several repre-
sentative matrices formed by adding Eqs. �17� and �18� and
compared the results obtained by invoking second order per-
turbation theory. For plausible values of the fitting param-
eters, Eq. �23� is reasonably accurate.

Therefore we implemented our fit by setting 
v� �v	=1,
with the understanding that �E is an effective parameter that
represents the real energy offset divided by a factor that en-
sures the correct ratio �E / 
v� �v	2 in Eq. �23�. To emphasize

this point, we will rename �E as Q. The parameter Q may be
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also viewed in a more general way. Although we have pre-
sented Av as an adjustable constant, we could also consider
an R-dependent function A�R�. In this framework, the fine
structure coupling constant of vibrational level v of the 1 3�
state is

Av = 
v�A�R��v	 , �24�

and the 3�– 1� mixing is governed by the mixed matrix el-
ement


v��A�R��v	 . �25�

The present approach preserves the distinction between

v�A�R��v	 and 
v��A�R��v	 if we interpret Q as a composite
parameter that gives a scaled energy offset between the sin-
glet and triplet states:

Q =

v�A�R��v	2


v��A�R��v	2�E . �26�

For given values of the three fitting parameters Av, bF,
and Q, we can calculate the energies of the 16 hyperfine
levels for a rovibrational level of the 1 3� state and a nearby
1 1� level. If Q is large, we expect that 12 of these levels
will be the unperturbed levels of the 1 3� and the other four
will be the nearly degenerate states of the 1 1� level. As Q
gets smaller, we expect an increasing degree of mutual per-
turbation between the states. We vary the parameters Av, bF,
and Q to fit only the 12 observed levels that are nominally
1 3�. Because of our lack of knowledge of the separate val-
ues of 
v� �v	 and �E in the fitting process, we cannot draw
any conclusions about the location of the perturbing 1 1�
level.

The results of the calculations for the nominally 1 3�
levels are summarized in Fig. 4. Part �a� of the figure pro-
vides an overview of the interaction in the absence of hyper-
fine structure. The calculated pattern of states is determined
by diagonalizing the sum of Eqs. �17� and �18� for J=44, 45,
and 46 and plotting the appropriate eigenvalues. We have
also shifted the energies horizontally to keep the dashed line
vertical for all 1 1�–1 3� energy differences except near the
curve crossing. Part �b� of Fig. 4 shows how our model cor-
responds very closely to the observed spectra. As v increases
from 46 to 49, the appropriate value of Q decreases, corre-
sponding to a closer approach of the unperturbed J=46 rovi-
brational levels. We plot the scans for each value of v in part
�b� at a vertical offset that is proportional to the best value of
Q; in this way the experimental scans overlay the theoretical
curves. The theoretical curves in part �b�, which include hy-
perfine structure, follow a pattern that is consistent with the
simpler behavior shown in part �a�, where hyperfine structure
is not included. Essentially, the hyperfine interaction splits
each level into four states, and there is a complicated pattern
of crossings and avoided crossings whenever two sets of four
cross. This diagram should make it clear that the anomalous
behavior of the 12 nominally 1 3� hyperfine levels is caused
by the interaction with the rotational levels of a relatively
distant 1 1� vibrational level.

The fits shown in Fig. �4� for v=46–48 were determined

by our standard nonlinear least squares program, which is
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based on the Levenberg–Marquardt algorithm. We had some
difficulty fitting the scans for v=49. The problem is that the
states shown must be extracted from a larger set of energy
levels determined for several values of F, and the identifica-
tion of the proper states is tricky and must sometimes be
done by hand. The fit shown in Fig. �4� for v=49 appears to
be satisfactory, but it was determined manually by extrapo-
lating bF�v� and Av from the values at smaller v, and then
trying selected values of Q.

The 1 3� v=49 level is the highest level for which we
were able to obtain a reliable fit to the fine and hyperfine
structure. Levels corresponding to values of v up to 59 were
identified. However, the scans for v50 were difficult to
interpret; no reasonable set of parameters could be found that
would make the calculated spectra resemble the experimental
results. It is possible that several 1 1� vibrational levels
should be included in our model for each high v of the 1 3�
state since the vibrational spacing rapidly decreases as the
energy approaches the dissociation limit. In addition, effects
due to the 3 3� state might also play a role.

C. Results for Av and bF over entire range of v

This section collects and discusses all our data for Av
and bF�v�. Figures 5 and 6 display the results. �The numeri-
cal values are tabulated in EPAPS Table II.44� Huennekens et
al.1 determined the best values of Av for v in the range 0
�v�33. The analysis was performed for each value of v
independently. A linear fit to the vibrational dependence of

FIG. 4. Comparison of experiment with theory for the 3�– 1� mixing. Th
vertical axis is proportional to the 3�– 1� energy offset. The curves in part �a
levels of a 3� state are labeled by J=46, 45, and 44, and each J level exhibit
in part �a� is enlarged in part �b� and compared with experiment. The exper
The experimental peaks should be compared with the vertical tic marks draw
the J=45 peaks. The curves in �a� and �b� do not correspond exactly. The c
the curves in �b�, the best-fit values of Av and bF determined for each v wer
between the spectra obtained for each v. The calculated curves in �b� corre
=46–48� bend to the right because the magnitude of Av increases as a functi
have been exaggerated in order to be visible. The matrix elements between s
hyperfine coupling constant. Accurately drawn crossings would not be resol
Av was determined using all the measured values. The work
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described in Sec. IV A determined new values of Av and
bF�v� for 1 3� levels with 3�v�43. The data for each v
were analyzed separately, and the results for v=13 �which is
clearly perturbed� were excluded. The work described in Sec.
IV B determined Av and bF�v� for the 1 3� levels with 44
�v�49, using a theoretical model that included the effect of
the nearest 1 1� level. All of these results are shown in Fig.
5. The new results are completely consistent with the older
analysis in the region where they overlap, and the values of
Av for larger v join smoothly with the earlier values.

izontal axis corresponds to measured or calculated energy levels, and the
strate the behavior in the absence of hyperfine structure. Three fine structure
nteraction with a 1� state of the same J. The region shown in the small box
al scans in �b� have been shifted slightly upward from the horizontal lines.
the theoretical curves. All curves have been shifted horizontally to line up
in �a� are idealized and are based on constant values of Av, and bF=0. For

o polynomials so that the theoretical curves could be smoothly interpolated
ding to the hyperfine levels with J=44 �that is, the rightmost curves for v
v. The avoided crossing evident in the theoretical curves at the upper right

of the same F but different J are of order 10−5 cm−1, much smaller than the
on the present scale.

FIG. 5. Fitted values for Av. The solid squares ��� show the results obtained
by Huennekens et al.1 for 3�v�33, and the open circles ��� show the new
e hor
� illu
s an i
iment

n on
urves
e fit t
spon
on of
tates
values for 3�v�48 obtained in the present work.
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Figure 5 clearly shows the systematic variation in the
value of Av for different values of v. We expect that the
dependence on v reflects the dependence of the molecular
spin–orbit interaction on the internuclear separation R. For
smaller v, Av depends only weakly on v, presumably because
for low vibrational levels, the average value of R is close to
that of the v=0 state. However, as v increases, the extent of
the vibrational motion of the molecule increases, and the
average value of Av has an increasing contribution from large
values of R. For large v, the vibrational wave function is
strongly peaked at large R, and the limiting value of Av
should be determined by the separated atom limit of
Na�3s�+K�3d�. For a simple estimate of this value, we fol-
low the analysis in Ref. 35, which leads to the relationship
Av=A /2 between the molecular spin–orbit constant Av and
the single electron constant A, for the case of a 3� state
arising from a �� electronic configuration. Hence in the large
v limit, we expect Av to approach one half the potassium 3d
atomic value, Av→

1
2 �

2
5 �E5/2−E3/2�� 1

2 �
2
5 � �−2.33 cm−1�,

or about −0.46 cm−1. The variation in Av displayed in Fig. 5
is consistent with this asymptotic limit, but more data and
analysis are needed for a definitive conclusion. �Note that in
Ref. 4 we incorrectly gave the asymptotic limit of Av for the
3 3� state as about −1 cm−1. According to the analysis of
Ref. 35, this limiting value should also be −0.46 cm−1.�

Figure 6 shows the values of bF determined for various
values of v. The straight line is a linear least squares fit. The
value for small v, 0.011 cm−1, is similar to that found for
several other electronic states of NaK.1–3,37,48–50 For large v,
we expect that bF should approach a value determined by the
separated atom limit, Na�3s�+K�3d�. In the present case, we
attribute the hyperfine interaction entirely to the Na nucleus,
and we would expect bF to be half as large as it is for atomic
Na.51 The argument is that the hyperfine energy Uhf for
atomic Na can be written Uhf=bF

�atom�I · s, where s is the
single electron’s spin. Near the separated atom limit of NaK,
the effect on the energy should be the same, but we write
Uhf=bF

�molecule�I ·S. Since S includes the spins of both of the
�indistinguishable� valence electrons of the molecule �one of

FIG. 6. Fitted values for bF. Results for the range 3�v�48 are shown. The
behavior of bF�v� near v=35 is not thought to be significant. Nothing was

found in the original data to suggest any unusual features.

Downloaded 05 Oct 2005 to 128.180.17.180. Redistribution subject to
which is in a Rydberg orbital and, therefore, has little prob-
ability of being found at the location of the Na nucleus�, the
effective Fermi constant must decrease by a factor of two.
Hence we expect

bF = 0.5 � 886 MHz = 0.0148 cm−1. �27�

This limiting value of bF is consistent with the present mea-
surements.

D. The NaK 1 3� potential and long-range behavior

In order to map the NaK 1 3� electronic potential, we
first fit energies obtained from 622 PFOODR transition fre-
quencies representing 394 1 3��v ,N ,J=N ,e / f� rovibrational
levels �F2 components� to a standard Dunham expansion52,53

using the program DParFit:54

E�v,N,J = N� = �
i,k

Yi,k�v + 1
2�i�N�N + 1� − 
2�k, �28�

where 
=2 for a � state. To first order, the F2 components
are not strongly affected by the spin–orbit and hyperfine in-
teractions, so the Dunham coefficients reported in EPAPS
Table III44 provide a reasonably accurate representation of
the 1 3��v ,N ,J=N ,e / f� level energies. The RMS deviation
of the fitted energies from measured values is 0.0079 cm−1.

In the next step, the Dunham coefficients were used to
determine a Rydberg–Klein–Rees �RKR� potential for the
NaK 1 3� state using Le Roy’s RKR program.55 However, as
Beckel and Engelke56 pointed out, the Dunham expansion no
longer converges for R values that are more than twice the
equilibrium separation. In the present case, the highest vibra-
tional levels measured have outer turning points that are
more than three times the equilibrium separation. Thus we do
not expect that the RKR potential determined here will pro-
vide an accurate representation of the long range region of
the potential.

We decided to refine the fitted potential using the in-
verted perturbation approximation �IPA� method.57,58 IPA is
an iterative approach that attempts to find a potential V�R�
such that the calculated rovibrational level energies,
Ecalc�v ,N ,J=N�, agree with the experimentally measured en-
ergies in the least squares sense. We recently described our
implementation of this method4 using the publicly available
IPA code,58 slightly modified to make use of subroutines
from the program LEVEL

59 to calculate the rovibrational level
energies. Because the IPA method adjusts the potential on a
grid of points, it can introduce unphysical wiggles into the
results. Even the RKR curve showed some small wiggles
high on the inner wall, so we first smoothed the RKR poten-
tial by fitting the v50 inner wall turning points to the func-
tion

Rmin = �1 ln
E − �2

�3
, �29�

which is equivalent to fitting the energies to an exponential
E=�3 exp�Rmin/�1�+�2. The inner wall turning points were
corrected to the fitted values and the outer wall turning
points were adjusted to maintain the differences �Rmax
−Rmin� calculated in the RKR analysis. The smoothed RKR
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potential �which is reported in EPAPS Table IV44� was then
used as the initial reference potential in the IPA analysis. The
RMS deviation of energies calculated using this smoothed
RKR potential from the experimental energies was
0.177 cm−1.

We carried out 13 iterations of the IPA procedure, letting
the number of grid points gradually increase from five to 27.
After each iteration, the IPA potential was plotted to see if
any unphysical wiggles had appeared in the curve. We con-
sider the best fit to be a compromise between reducing the
RMS deviation between calculated and experimental level
energies on the one hand, and maintaining a smooth curve on
the other. The final IPA potential reported here in EPAPS
Table V44 and plotted in Fig. 7, produced an RMS deviation
of 0.026 cm−1 between calculated and experimental energies.
Figure 7 also shows a comparison of the present IPA 1 3�
potential with the theoretical results of Magnier et al.46,47

Ji et al.60 have proposed a modification to the Le Roy
criterion for the region of validity of the inverse-power ex-
pansion in diatomic long-range potentials:

RLR-m = 2�3�
nlm�z2�nlm	A
1/2 + 
n�l�m��z2�n�l�m�	B

1/2� ,

�30�

where nlm and n�l�m� are the quantum numbers for the va-
lence electrons of atoms A and B, respectively, and the z
direction is the internuclear axis. For internuclear separations
greater than RLR-m, the potential should approximately fol-
low a simple dependence,

V��� − V�R� = �
n

Cn

Rn , �31�

in terms of the long-range dispersion coefficients Cn. For
heteronuclear molecules, the C3 and C5 resonance terms are
zero since no resonant dipole or quadrupole excitations be-
tween the different atoms are allowed. Therefore, the R−6 van
der Waals interaction provides the leading term in this ex-
pansion for the NaK 1 3� state. Using the formulas of Ji
et al.,60 we calculate RLR-m�20.3 a0 for the NaK 1 3� state,
which dissociates to the Na�3s��+K�3d�� asymptote. Since

3

FIG. 7. The IPA potential determined from the present experimental data
compared with the theoretical results of Magnier et al. �Refs. 46 and 47�.
the present IPA 1 � state potential extends past 24 a0, where

Downloaded 05 Oct 2005 to 128.180.17.180. Redistribution subject to
the long-range analysis should be valid, we attempted to de-
termine the leading coefficients, C6 and C8, from these data.
We note that the correlation diagram connecting the Hund’s
case �a� or �b� molecular states near the ground state equi-
librium separation and the separated atom dissociation limits
shows the NaK 1 3� state adiabatically dissociating to the
Na�3s1/2�+K�3d5/2� limit.61 Thus the Na�3s1/2�+K�3d5/2�
dissociation limit was used in the analysis of the 1 3� state in
Ref. 1. However, in the present work, the 1 3� state has been
mapped to large R values that are well past the 3 3�–1 3�
curve crossing region. The 1 3� potential in this large R re-
gion correlates adiabatically to the Na�3s1/2�+K�3d3/2� dis-
sociation limit, and therefore V��� corresponds to this limit
in the present long-range analysis.

Figure 8 shows a plot of V���−V�R� versus R−6 for R
11.3 a0. The dependence is linear over a broad range that
extends well inside the modified Le Roy radius. A much
more sensitive view of the long-range dependence appears in
Fig. 9 which shows a plot of R6�V���−V�R�� versus R−2. If
C6 and C8 are the dominant terms in Eq. �31�, it follows that
this plot should be a straight line with slope C8 and intercept
C6. A linear fit of the data in Fig. 9, corresponding to the
long-range region of the IPA potential �R11.3 a0�, yields
the values of C6 and C8 given in Table II, which include
statistical error bars only. However, the dependence of
R6�V���−V�R�� on R−2 shown in Fig. 9 is clearly not linear,
and thus the systematic errors in both the intercept and espe-
cially the slope are significantly larger than the statistical
errors. The C6 and C8 coefficients both depend on the range
of R values included in the fit. By varying the minimum R
value used in the fit, we determined that the C6 value re-
ported above is accurate to approximately 10%. However,
the C8 coefficient reported above can at best be considered to
be an estimate to within a factor of three.

Rérat et al.62 used the time-dependent gauge-invariant
method to calculate the long range C6 coefficient for the NaK

3

FIG. 8. The binding energy of the 1 3� potential is plotted as a function of
R−6.
1 � state. Their result is in good agreement with ours. More
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recently Marinescu and Sadeghpour63 calculated C6 and C8

values in second order of perturbation theory for all the het-
eronuclear alkali diatomics. Their results for the NaK 1 3�
state are also given in Table II. For comparison with the
present experimental long-range data, Fig. 9 shows a plot of
C6+C8R−2 versus R−2 using the C6 and C8 values of Mari-
nescu and Sadeghpour.63 The agreement between theory and
experiment is excellent. In fact, the theory is probably more
accurate than experiment in the present case, since only the
last four experimental points on the left in Fig. 9 represent
the potential for R values beyond the modified Le Roy ra-
dius, and these points correspond to the highest energy levels
�v=56–59� where the recorded data were limited. The de-
viation between the experimental and theoretical results at
smaller R values �right-hand side of Fig. 9� is probably due
to the breakdown of the long-range inverse power series ex-
pansion.

V. CONCLUDING REMARKS

We have reported extensive theoretical and experimental
studies of rovibrational levels of the 1 3� state of NaK for
3�v�59. We determined a potential curve, and we inter-
preted the observed patterns of fine and hyperfine structure.
Modeling this structure requires using intermediate angular

TABLE II. C6 and C8 coefficients. The quoted error estimates for the
present experimental results represent only the statistical errors in the least
squares fit. Systematic errors are on the order of 10% for C6 and perhaps a
factor of three for C8. The theoretical values cited were originally reported
in atomic units and have been converted to the units used here.

C6�109 cm−1 a0
6� C8�1010 cm−1 a0

8�

Present work 1.97±0.02 −2.91±0.32
Rérat et al. �Ref. 62� 2.112
Marinescu and
Sadeghpour �Ref. 63�

2.0187 −4.4968

FIG. 9. Reduced plot of the potential. This plot exaggerates the deviation
from pure C6 and C8 behavior. The agreement with recently calculated val-
ues of C6 and C8 �Ref. 63� is excellent.
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momentum coupling schemes. The interplay between fine
and hyperfine coupling terms as the rotational quantum num-
ber N changes is analogous to the classic transition between
LS and j j coupling as the atomic number changes in the
periodic table. For v in the range 44–49, anomalous hyper-
fine structure could be explained by including perturbations
induced by rovibrational levels of the 1 1� state. The present
work has led to the determination of the coupling constants
Av and bF over a wide range of v. Further investigation is
needed to address the complications that arise for v in the
range 50–59.
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