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ON THE GESKE COMPOUND OPTION MODEL WHEN 
INTEREST RATES CHANGE RANDOMLY – WITH AN 
APPLICATION TO CREDIT RISK MODELING 

ABSTRACT 

To extend the Geske model (1979) to incorporate random interest rates is 

not trivial, even in the simplest case.  This is because the “implied strike prices” 

in the Geske model must be numerically solved and can be solved with non-

stochastic interest rates.  This prevents the Geske model from evaluating credit 

derivatives like bonds and credit default swaps.  In this paper, we derive a new 

valuation technique where no “implied strike prices” are needed.  As a result, we 

can easily extend the Geske compound option model to incorporate random 

interest rates.  We apply the new model to conduct various analyses. 
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ON THE GESKE COMPOUND OPTION MODEL WHEN 

INTEREST RATES CHANGE RANDOMLY – WITH AN 
APPLICATION TO CREDIT RISK MODELING 

1 INTRODUCTION 

The Geske model (1979) for compound options cannot be extended easily 

to incorporate random interest rates (see Frey and Sommer (1998) and Geman, 

Karoui, and Rochet, (1995)) in that the “implied strikes” are not easily solvable 

when there are multiple exercise dates in the compound option.  In the Geske 

model, as the number of exercise dates of the compound option increases, the 

dimensionality of the implied strike also increases.  Note that an n-exercise-date 

compound option (when n > 2) does not have a closed-form solution (as multi-

variate normal probabilities must be computed numerically) and as a result, 

solving for the implied strikes is extremely computationally expensive.  With 

random interest rates, each of the implied strikes is a function of future interest 

rates and the problem becomes impossible to solve. 

To overcome this difficulty, we propose a new approach that does not 

require solving for the implied strikes.  This approach is similar to the valuation 

technique for collateralized debt obligations (CDO) that turns fixed strikes into 

random strikes.  In doing so, we successfully avoid solving for the implied strikes.  

This is analogous to how the random strike option pricing model by Fisher 

(1981) is compared to the Black-Scholes model.  This approach not only solves 

the dimensionality problem in the Geske model, but also provides a 

straightforward way to include random interest rates. 

Random interest rates are critical when the Geske model is applied in the 

area of credit risk modeling.  The Geske model for credit risk (1977) has not been 
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widely used mainly in that credit derivatives are interest rate sensitive and must 

be modeled with the interest rate risk.  Our model, i.e. Geske model with random 

interest rates, therefore can be used to study credit and interest rate risks and 

how they interact in the prices of various credit derivatives.  Furthermore, it will 

be shown in details later that our model provides a consistent framework for the 

endogenization of equity, interest rate, and credit risks.  Such endogeniety allows 

for the right insight toward the interactions of these risks.  As a result, our model 

can also provide regulatory suggestions as three major risk factors are 

endogenously related.  For example, our model can generate the substitution 

effect between the interest rate risk and credit risk endogenously for any fixed 

income securities (as demonstrated explicitly in Section 4). 

The implementation of the model makes use of a binomial lattice similar 

to Cox, Ross, and Rubinstein (1979).  Given that there is no need to recursively 

solve for the implied strikes, the binomial model can compute accurate prices 

swiftly.  The use of the binomial model has also other advantages.  We can 

randomize the other parameters (such as interest rate and volatility) easily.  We 

can include liquidity risk in the model.1 

The paper is organized as follows.  Section 2 reviews the Geske compound 

option model (1979) and how Geske relates it to credit risk modeling (1977).  In 

this section, an extension to the Geske-Johnson model (1984) which is a 

correction of the Geske credit risk model (1977) is provided.  In other words, in 

this section, a correct, multi-period Geske model is presented.  Section 3 is the 

main contribution of the paper.  In this section, an alternative valuation 

approach of the Geske model is presented.  Geske’s fixed strike model is 

transformed into a random strike model.  Then random interest rates (of the 

                                            
1 See, for example, Chen et. al. (2013). 
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Vasicek type) are introduced to the model.  The binomial implementation of the 

model is explained in this section.  In Section 4, various numerical examples are 

provided.  Section 5 compares our model with the reduced-form models used in 

the industry.  Consistency is shown and a unified framework for valuing fixed 

income securities is offered.  Section 6 concludes the paper. 

2 The Geske Model 

The compound option model by Geske (1979) adopts the usual Black-

Scholes assumptions that under the risk-neutral measure the underlying asset, V , 

follows the log normal process: 

(1) t
t t t

t

dV
rdt dW

V
σ= +  

where tr  and tσ  represent the risk-free rate and the volatility respectively that 

can both be random.  Define 1, , nT T T=< >⋯  as a series of exercise times (note 

that these times need not be even intervals) and iK  where 1, ,i n= ⋯  as the strike 

price at time iT . 

At each exercise time, iT , the holder of the option decides if it is 

worthwhile to pay iK  to exercise the option.  If the continuation value (i.e. 

expected present value of future uncertain cash-flows) is higher than iK , the 

option is not exercised and kept alive; otherwise the option will be exercised. 

Formally, at any time iT , the comparison is made between 

( )1

1
exp i

i ii

T
T u TT r du C+

+
 − ∫  E  (continuation value) and the strike price iK .  In other 

words, the current call option value 
iTC  at time iT  must be: 

(2) ( ){ }1

1
max exp ,0

i

i i i
i

T

T T u T i
T

C r du C K
+

+

 = − − 
 ∫E  



 4

where [ ]
iT ⋅E  represents the conditional risk-neutral expectation taken at time iT .  

This is a recursive equation, as in American option pricing, and can be easily 

solved by the binomial model. 

In a separate paper, Geske (1977) demonstrates that the call compound 

option is identical to the equity value of the firm when the firm has multiple 

debts.  In other words, the call option value in equation (2) can be replaced with 

the equity value 
iTE  as follows: 

(3) ( ){ }1

1
max exp ,0

i

i i i
i

T

T T u T i
T

E r du E K
+

+

 = − − 
 ∫E  

where iK  now represents the cash-flow due at time iT  necessary to be paid by the 

firm to avoid default.  If the firm cannot make the iK  payment, then the firm 

must default (this is equivalent to the compound option decision not exercising 

the option and letting the debtholders take over the firm). 

As one major purpose of the paper is to apply the Geske model on credit 

derivatives, we shall now present our model (with random interest rates) in the 

context of credit risk modeling.  In doing so, the “implied strike” in the 

compound option model can be easily interpreted as the default boundary (a.k.a. 

default barrier) of the firm.  Given that the implied strikes (default boundary) 

are internally solved, the Geske model, and hence our model, distinguishes itself 

from other reduced-form and barrier-option credit risk models where the default 

boundary is exogenously given.  As a result, our model can be used for regulatory 

purposes. 

In this section, we first present the model in a two-cash-flow setting in 

order to demonstrate the basic modeling structure and then we generalize it to 

any arbitrary number of cash flows.  Finally, we carry out a number of analyses 

and show various numerical results such as default barrier, default probability 
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curve, and expected recovery.  For the sake of easy exposition and no loss of 

generality, in the two-cash-flow model, we use continuous states while in the n-

cash-flow model, we use discrete states. 

2.1 The Two-Cash-flow Example – Geske (1977) 

In a two-period model, the firm has two cash-flow payments 1K  and 2K  at 

times 1T  and 2T .  The firm liquidates at time 2T .  Let the value of debt be ,t TD  

where the current time is t  and the maturity time is T .  It is apparent that 

2 2 2, 2min{ , }T T TD V K=  and 
2 2 2max{ , 0}T TE V K= − .  At time 1T , the equity value before 

checking for default is precisely the Black-Scholes value: 

(4) 
2 1

1 1 2

2 1
1

* ( )
2

( )
2

[max{ ,0}]

( ) ( )

r T T
T T T

r T T
T

E e V K

V N d e K N d

− −

+ − − −

= −

= −

E

 

where [ ]τ ⋅E  is the risk-neutral expectation conditional on (the information given 

at) time τ  and 

1

2
2 2 1

2 1

ln ln ( ½ )( )TV K r T T
d

T T

σ

σ
± − + ± −

=
−

 

In the option literature this is called the “continuation value” which is the 

present value of future payoff.  In the compound option model, this value needs 

to be compared against 1K , the cash-flow amount (or strike price) at time 1T .  

Hence the equity value at time 1T  is: 

(5) 
1 1

*
1max{ ,0}T TE E K= −  

The current value of the equity is 

1 1
1 1

( ) ( ) *
1[ ] [max{ ,0}]r T t r T t

t t T t TE e E e E K− − − −= = −E E .  Should we know the distribution of 

1

*
TE , the solution can be easily derived.  Unfortunately, the distribution of 

1

*
TE  is 

unknown.  As a result, the closed-form solution can only be derived if we perform 

the change of variable from 
1

*
TE  to 

1TV  using (4).  In doing so, we must also 

translate the strike price of 1K  for the equity to the “implied strike price” of 1V  
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for the firm value.  This implied strike price for the firm value must be solved 

numerically as a value that makes the following equality hold: 

(6) 
1

*
1TE K=  

Equations (5) and (6) are graphically depicted via dotted line and solid 

line respectively in Figure 1.  In Figure 1, 
1

*
TE  is the Black-Scholes call option.  

The situation where 
1

*
1TE K<>  is equivalent to 

1 1TV V<> .  As a result, we can 

solve for 1V  which is a constant value today. 

[Figure 1 Here] 

The value 1V , which is the “implied strike price” in the context of 

compound option, is known as the default point at time 1T .  Once we know the 

value of 1V , we can then derive the closed-form solution for the equity today as: 

(7) 

1
1

1
1

1 11 2

2 2

( ) *
1

( )
1

( ) ( )
2 1 1 1 2 2 1 21 2

[max{ ,0}]

[max{ , 0}]

, ; [ ] , ;

r T t
t t T

r T t
t T

T t T tr T t r T t
t T t T t

E e E K

e V V

V N h h e K N h e K N h h

− −

− −

− −+ + − − − − − − −
− −

= −

= −

   = − −      

E

E  

where 1[ ]N ⋅  and 2[, ; ]N ⋅ ⋅ ⋅  are uni-variate and bi-variate standard normal 

probabilities respectively with: 

2
1ln ln ( ½ )( )t i

i
i

V V r T t
h

T t

σ

σ
± − + ± −

=
−

 

and 1

2

T t
T t

−
−  to be the correlation in the bi-variate normal probability function.  

The total debt value is t tV E−  which is equal to: 

(8) ( )1 11 2

2 2

( ) ( )
2 1 1 1 2 2 1 21 21 , ; [ ] , ;T t T tr T t r T t

t t T t T tD V N h h e K N h e K N h h− −+ + − − − − − − −
− −

   = − + +      
 

The first term is known as the expected recovery value.  The second and 

third terms are the current values of the first and second cash-flows ( 1K  and 2K ) 

respectively.  Note that 1 1[ ]N h−  and 1

2
2 1 2, ; T t

T tN h h −− −
−

 
  

 are 1T  and 2T  risk-neutral 

survival probabilities respectively.  The 1T  survival probability 1 1[ ]N h−  is the 
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probability of 
1 1TV V>  (or equivalently 

1

*
1TE K> ).  The 2T  survival probability 

1

2
2 1 2, ; T t

T tN h h −− −
−

 
  

 is the joint probability of 
1 1TV V>  and 

2 2TV K> . 

The total risk-neutral default probability, which is 1

2
2 1 21 , ; T t

T tN h h −− −
−

 −   
, 

represents either default at 1T  or 2T .  When the random recovery value (
1TV  or 

2TV  paid at 1T  or 2T  should default occur) combines with the corresponding 

default probability, it gives rise to the expected recovery value of 

( )1

2
2 1 21 , ; T t

t T tV N h h −+ +
−

 −   
 which is the current asset value multiplied by the default 

probability under the measure in which the random asset value is the numerarie.2 

As one can see, the closed-form solution actually relies upon the numerical 

solution of the default point 1V  at time 1T .  In a multi-period setting, although 

the solution can be easily extended, the solutions to the default points over time 

(i.e. 1 nV V⋯  at 1 nT T⋯ ) become increasingly complex.  For example, in a three-

period model, 2V  is the internal solution to 
2

*
2TE K=  which is a uni-variate result.  

But 
1

*
TE  is a bi-variate integration and hence 1V  requires a bi-variate numerical 

search (such that 
1

*
1TE K= ).  Hence, as the number of dimensions increases (say 

n), the solution to 1V  cannot be solved without an n-dimensional numerical 

algorithm. 

2.2 The General (n-cash-flow) Case — Extension of 

Geske-Johnson (1984) 

Although there is an n-cash-flow model in Geske (1977), a mistake was 

made with seniorities in debts, which was later corrected by Geske and Johnson 

(1984).  However, Geske and Johnson only provide a two-cash-flow example.  

                                            
2 This expected value is performed under the following change of measure: 

[ ] [ ] [ ]V
t s s t s t sV X V X=E E E  where s t> , V is the numerarie, and X is the random cash flow. 
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Here, we extend the Geske-Johnson result and present the general n-cash-flow 

model where seniorities of debts in Geske and Johnson are explicitly considered. 

The notation we employ here is more complex than that in Geske-

Johnson.  Not only do we label firm default points, we also label the default 

points of each bond.  In the previous section, the default points (n periods) are 

labeled as < 1 2, , , nV V V⋯ > where in each period the default point is solved for by 

*
iT iE K=  for 1 i n< <  and n nV K= .  Here, these points are labeled as 

< 1, 2, ,, , ,n n n nV V V⋯ > where ,n n nV K= .  The reason for this more complex system of 

notation is due to the fact that not only must we capture firm default, we must 

also capture the default of each of the n bonds.  In an n-period case, there are n 

cash-flows.  For the sake of argument, we regard these cash flows as the face 

values of zero-coupon bonds whose current values are labeled as , it TD  for 

1, ,i n= ⋯ .  Each bond has a set of default points labeled as ,j iV  where j i<  (so 

there are ( 1)
2

n n−  of them).3  Again, when i n= , it represents the firm default. 

With this extension in notation, we can write the extension of the Geske-

Johnson formula as follows: 

(9) 
{ }

{ }

, 1 1, 1 1, 1 1 1, ,1 1 1

( )
1 1, 1 , 1 1, 1 1 , 11

( ) ( ); ( ) ( );

( ) ( ); ( ) ( );

i

j

t T t i i i i i i i i i iii

i r T t
j j i j i j j i j i jj

D V N h V h V N h V h V

e K N h V h V N h V h V

+ + + +
− − − − −−

− − − − − −
− −=

   = −   

   + −   ∑

⋯ ⋯

⋯ ⋯

C C

C C

 

where  

2ln ln ( ½ )( )
( ) t i

i
i

V x r T t
h x

T t

σ

σ
± − + ± −

=
−

 

(, ; )i iN ⋅ ⋅ C  is the i-dimensional normal probability function with the correlation 

matrix: 

                                            
3 The notation system seems complex at the first glance, it can be easily understood with a simple 
example which we shall present and discuss in the next section with the help of Table 2. 
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1 1 1

2 3

2 2

3

1

1

1

1

1

i

i

i

i

T t T t T t
T t T t T t

T t T t
T t T t

i

T t
T t
−

− − −
− − −

− −
− −

−
−

 
 
 
 
 
 

=  
 
 
 
 
 
   

⋯

⋯

⋱ ⋮C  

and finally ,i i iV K= , ,j iV = −∞  for j i>  (which indicates that any probability 

involving this argument is 0), and 0[ ] 1N ⋅ = .  Summing all debt values yields: 

(10) 
( )

( )

, 1, ,1
1

( )
1 1, ,1

1 ( ) ( );

( ) ( );

i

i

n

t T t n n n n n n
i

n r T t
i i n n n n ni

D V N h V h V

e K N h V h V

+ +

=

− − − −
=

 = − 

+

∑

∑

⋯

⋯

C

C

 

The equity value as a result is equal to: 

(11) ( )

( )

,
1

1, ,1

( )
1 1, 3 ,1

( ) ( );

( ) ( );

i

i

n

t t t T
i

t n n n n n n

n r T t
i i n n n ni

E V D

V N h V h V

e K N h V h V

=
+ +

− − − −
=

= −

=

−

∑

∑
⋯

⋯

C

C

 

In (9), the first line represents the default value (via expected recovery) 

and the remaining terms of the equation represent the survival value (i.e. 

expected cash flows).  Note that 1 1, ,( ) ( )i i i i iN h V h V− −  ⋯  and 1, ,1 ( ) ( )i i i iiN h V h V+ +  ⋯  

represent the i-th survival probabilities under the risk-neutral measure and the 

measure with random asset value as the numeraire respectively.  Hence in each 

period, the default probability is either (under the risk neutral measure) 

1 1 1, 1 1 1, 1 1 1, ,( ) ( ) ( ) ( )i i i i i i i i i iN h V h V N h V h V− − − −
− − − − −   −   ⋯ ⋯  or (under the “random asset 

measure”) 1 1, 1 1, 1 1, ,1 1 1( ) ( ) ( ) ( )i i i i i i i iiiN h V h V N h V h V+ + + +
− − − −−   −   ⋯ ⋯ .  In (9), the second line 

represents the seniority structure assumed in the Geske model.  In other words, 

the second line of (9) states that earlier maturing debts are more senior than 

later maturing debts.4  This assumption is quite reasonable if the firm issues only 

                                            
4 This point was not clear in the original Geske model (1977) and made clear in Geske and 
Johnson (1984). 
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zero-coupon debts.  When applying the model to coupon-bearing debts, one must 

bear in mind that within a coupon bond, earlier coupons have a higher priority 

than later coupons.  With this in mind, it is quite easy to interpret (10) if one 

regards all cash-flows of the firm as a coupon bond.  The first term of (10) is the 

expected recovery and the second term is the survival value which is equal to the 

sum of cash flows weighted by their corresponding survival probabilities. 

The major difficulty that prevents the Geske model from being widely 

used is the complexity in calculating the default points < 1, ,n n nV V⋯ >.  The last 

default point is the last strike price ,n n nV K= .  The next-to-last default point 

1,n nV −  is the solution to 
1

*
1nT nE K

− −=  which is a uni-variate numerical algorithm.5  

The default point for the firm at 2nT − , 2,n nV − , is the solution to 
2

*
2nT nE K

− −=  which 

is a bi-variate numerical algorithm.  Also at 2nT − , we need to solve for the default 

point of the bond that expires at time 1nT −  as 2, 1n nV − −  which is the solution to 

2 2 1 2

* *
,n n n nT T T TE D V

− − − −
+ =  where 

2 1 2 1 1

*
, ,[ ]

n n n n nT T T T TD D
− − − − −

= E .6  As we proceed backwards 

in time, we have a total of ( 1)
2

n n−  numerical solutions to identify, and the values 

to solve at time 1T  are n-dimensional numerical solutions. 

Furthermore, the Geske model cannot be extended to include random 

interest rates, as Frey and Sommer (1998) demonstrate.  This is easily observable 

from (6) in which adding another dimension makes (6) unsolvable.  Although 

Eom, Helwedge, and Huang (2002) and Chen, Chidambaran, Imerman, and 

Soprazetti (2010) propose a more straightforward way to compute the equity 

value without solving for the default points, their methods are not extendable to 

other debts of the firm.  The main reason is that the way they avoid solving the 

                                            
5 See equation (6). 
6 Note that, similar to *

iTE , *
,i jT TD  is the continuation value of jK  at time iT . 
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default points is by using the equity value at each time.  This method is not able 

to solve for other debt values.  We shall discuss this in details in the next section. 

3 A New Approach toward the Compound Option Problem 

In this section, we introduce a new approach toward the compound option 

problem.  This new approach improves the Geske model in the following two 

significant ways.  First, it avoids solving for the default points (i.e., “implied 

strike prices”) and hence avoids the formidable work of high-dimensional 

numerical algorithms.  To achieve this, we transform the model from a fixed 

strike problem of the Black-Scholes to a random strike problem of Fisher (1978).7  

The solution is certainly not closed-form but it remains one-dimensional, which 

we can implement easily with the Cox-Ross-Rubinstein binomial model. 

Secondly, due to the new structure, we can easily extend the model to 

include random interest rates which is a crucial necessity for the model to be 

used in pricing various financial assets that are exposed to interest rate risk.  We 

note in general that financial assets face three common types of risk: market 

(equity), interest rate, and credit.  The Geske model, using the corporate finance 

approach, properly prices market (equity) and credit risks.  Our model is to 

complete the Geske model by including the interest rate risk. 

[Figure 2 Here] 

Before we present the general case with n cash-flows, it is most intuitive to 

see a two-cash-flow case.  Figure 2 presents the basic idea with a two-cash-flow 

example.  Compared with Figure 1, it is clear that the equity value is the same.  

However, the equity value is not obtained by solving the default point, but rather 

using the concept of random strike, i.e. 
1 1

*
12max{ ,0}T TE V V= −  where 

                                            
7 Or equivalently the exchange option model by Margrabe (1978). 
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1 2

* *
12 , 1T TV D K= + .  *

12V  is random because 
1 2

*
,T TD  is random as a function of 

1TV .8  

Note that Figure 1 plots the payoff using 
1

*
1TE K−  and Figure 2 plots the payoff 

using 
1

*
12TV V− .  These two payoffs differ when 

1

*
12TV V<  (or identically 

1

*
1TE K< ) 

but equal each other when 
1

*
12TV V≥  (or identically 

1

*
1TE K≥ ).  As a result, both 

produce the same payoff which takes only positive values.  Algebraically, we 

present the result in the following Theorem. 

[Theorem] 

In Geske’s two-period compound call option model, the implied strike price 

(or default point for the firm) 12V  which is constant can be replaced by *
12V  which 

is random. 

[Proof] 

Note that: 

(12) 

1
1

1
1

1
1 1 1

1

( )

( ) *
1

( ) * * *
1

[ ]

[max{ ,0}]

( ) ( )

r T t
t t T

r T t
t T

r T t
T T T

K

E e E

e E K

e E K f E dE

− −

− −

∞− −

=

= −

= −∫

E

E  

where ()f ⋅  is the density for 
1

*
TE .  Geske recommends the change of variable from 

1

*
TE  to 

1TV , we can re-write (12) as follows: 

(13) 1
1 1 1

12

( ) *
1( ) ( )r T t

t T T T
V

E e E K g V dV
∞− −= −∫  

where ()g ⋅  is the density for 
1TV .  This is the fixed strike case where 12V  is the 

solution to 
1

*
1TE K= .9 

By accounting identity, 
1 1 1 2 1

* * *
1 , 1 12( )T T T T TE K V D K V V− = − − = − .  Hence, 

1 1 1

* *
12 1max{ ,0} max{ ,0}T T TE V V E K= − = − .  As a result (12) becomes: 

                                            

8 See footnote 6. 
9 Note that the Jacobian is embedded in the change of variable. 
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(14) 
1

1

1
1

( )

( ) *
12

[ ]

[max{ , 0}]

r T t
t t T

r T t
t T

E e E

e V V

− −

− −

=

= −

E

E

 

The strike price *
12V  is random because 

1 2

*
,T TD  is random as 

1 2

* *
12 1 ,T TV K D= +  

where 2 1
1 2 1 2

* ( )
, 2[min{ , }]r T T

T T T TD e V K− −= E  in the two-period case. 

[Q.E.D.] 

To present the result more intuitively, we can transform (14) into the 

following: 

(15) 

{ }
[ ] { }

{ }
( ) ( ){ }

*
12

1 1

*
12

1
1

*
12

1

* * *
12 12 12

1 1 1

max 1 ,0

max 1 , 0

max 1 ,0

Pr 1 Pr 1

T

T

T

T T T

Vr t
t t T V

Vr t V
t T t V

VV
t t V

V V VV
t tV V V

E e V

e V

V

V

− ∆

− ∆

− +

 = −  
 = −  

 = −  
 = > − >  

E

E E

E

E

 

where V
tE  is the expected value taken under the measure where the asset value 

1TV  serves as the numeraire, Pr−  is the probability where 
1TV  serves as the 

numeraire, and Pr+  is the probability where 
*

12

1T

V
V  serves as the numeraire.  While 

the closed-form solution with this new approach is not possible, it can be quickly 

calculated via a binomial lattice. 

To help understand the mechanics of the Theorem, we provide a three-

period example to demonstrate the details of the mechanics, which is summarized 

in Table 1. 

[Table 1 Here] 

This three-period example includes the above theorem as a special case 

and also paves the way to the understanding of the n-period model.  The cash-

flows are 1K , 2K , and 3K  which are paid at 1T , 2T , and 3T .  The current time is 

t .  At time 3T , the firm liquidates and the equity and bond holders receive 
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3 3max{ ,0}TV K−  and 
3 3min{ , }TV K  respectively.  Clearly the default point at time 3T  

is *
33 3V K=  which is a constant. 

At time 2T , there are two default points, one where the firm defaults, and 

the other point where the firm cannot even pay 2K .  At time 2T , the firm 

defaults when the asset value of the firm falls short of its current cash liability 

2K  and the current value of the future liability which is 

3 2
2 3 2 3

* ( )
, 3[min{ , }]r T T

T T T TD e V K− −= E .  In other words, the firm survives when 

2 2 3

*
2 ,T T TV K D> +  and defaults when 

2 2 3

*
2 ,T T TV K D≤ + .  As a result, the default point 

is defined as 
2 3

* *
23 2 ,T TV K D= +  which is random. 

Another critical point is an economic condition where 

2 2 3

*
2 2 ,T T TK V K D< < + .  Under this circumstance, the firm defaults but 2K  is paid 

in full (i.e. 100% recovery).  As a result, the owners of 2K  do not suffer any losses 

even if the firm defaults.  The debt owners who suffer are those who own 3K .  

For those debt owners the value of their debt is less than 
2 3

*
,T TD  which is the 

discounted expected value of 
3 3min{ , }TV K .  For convenience, we label the second 

critical point *
22 2V K=  which is constant. 

In Table 1 at time 2T , we can then derive the debt and equity values, 

(16) 

2 2

2 3 2 2

2 2 2 2 2

*
23

, 2

*
, 2 22

max{ ,0}

max{ , 0}

min{ , } max{ , 0}

T T

T T T T

T T T T T

E V V

D V K E

D V K V V V

= −

= − −

= = − −

 

At time 1T , continuation values (ones with asterisks) are calculated as 

follows: 

(17) 

2 1
1 1 2

2 1
1 3 1 2 3

2 1
1 2 1 2 2

* ( )

* ( )
,

* ( )
,

[ ]

[ ]

[ ]

r T T
T T T

r T T
TT T T T

r T T
TT T T T

E e E

D e D

D e D

− −

− −

− −

=

=

=

E

E

E

 

and then it can be seen from Table 1 that the following holds: 
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(18) 

1 1

1 3 1 1

1 2 1 1

1 1 1 1

*
13

* *
, 12 13

* *
, 11 12

*
, 11

max{ ,0}

max{ ,0} max{ ,0}

max{ ,0} max{ ,0}

max{ ,0}

T T

T T T T

T T T T

T T T T

E V V

D V V V V

D V V V V

D V V V

= −

= − − −

= − − −

= − −

 

where *
11 1V K= , 

1 2

* *
12 1 ,T TV K D= + , and 

1 2 1 3

* * *
13 1 , ,T T T TV K D D= + + .  Note that equations 

(16) and (18) are precisely how various tranches of a CDO (collateral debt 

obligation) are evaluated.  In CDO pricing, such payoffs are convoluted with a 

complex loss distribution and here the simple log normal distribution is used for 

the asset value. 

Finally at the current time t , we reach the current values of all the debts 

and equity as follows: 

(19) 

1
1

1
3 3 1 3

1
2 2 1 2

1
1 1 1 1

* ( )

* ( )
, , ,

* ( )
, , ,

* ( )
, , ,

[ ]

[ ]

[ ]

[ ]

r T t
t t t T

r T t
t T t T t T T

r T t
t T t T t T T

r T t
t T t T t T T

E E e E

D D e D

D D e D

D D e D

− −

− −

− −

− −

= =

= =

= =

= =

E

E

E

E

 

It is now easy to induce that in an n-cash-flows model, we can obtain the 

following Corollary. While we shall not prove the Corollary, a numerical 

demonstration using 3n =  is provided to show that the random strike price 

model is identical to the constant strike model used in Geske (1979) and Geske 

and Johnson (1984). 

[Corollary] 

In the n-cash-flow case we can similarly replace all the constant default 

points ,i jV  with the random values *
,i jV  and obtain the same result for the Geske 

model. 

In the n-period case, each debt can be expressed as a call spread as in 

equations (16) and (18) at each time step.  Hence, the general formula for any 

debt at any time step is: 
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(20) 

* *
, , 1 ,

*
,

max{ ,0} max{ ,0}

max{ ,0}

i j i i

i i

T T T i j T i j

T T i n

D V V V V

E V V

−= − − −

= −
 

where * 0i jV > = , *
i j iV K= = , and * *

,i k

j
i j i T Tk i

V K D< =
= +∑  and *

,i kT TD  is the continuation 

value that needs to be computed recursively as 1
1

* ( )
, ,[ ]i i
i k i i k

r T T
T T T T TD e D+

+
− −= E .  

Finally, as in equation (19), the value of equity and debts are given as follows: 

(21) 

1
1

1
1

( )

( )
, ,

[ ]

[ ] 1, ,
i i

r T t
t t T

r T t
t T t T T

E e E

D e D i n

− −

− −

=

= = ⋯

E

E

 

Although we lose the closed-form solution as the “strike” price, *
,i jV , is now 

random, the general form of the solution similar to (10) remains.  To see that, we 

first recall that each 1 1, ,( ) ( )i i i i iN h V h V− −  ⋯  in equation (10) represents a risk-neutral 

survival probability.  In Table 1, they are 1 1 1,1( )N h V−   , 2 1 1,2 2 2,2( ), ( )N h V h V− −   , and 

3 1 1,3 3 3,3( ) ( )N h V h V− −  ⋯  in respectively.  Under our approach where the strikes are 

random, the three survival probabilities for the three periods are 
1

*
13Pr[{ }]TV V> , 

1 2

* *
13 23Pr[{ } { }]T TV V V V> ∩ −  and 

1 2 3

* * *
13 23 33Pr[{ } { } { }]T T TV V V V V V− ∩ − ∩ −  respectively.  

While there are no closed-form solutions to these probability functions, we can 

express them as 1
−Π , 2

−Π , and 3
−Π  respectively.  As a result, we can write the 

solution in the same form as (10) in a general n  period model: 

(22) [ ] ( )
, 1

1

1 i
i

n
n r T t

t T t n i ii
i

D V e K+ − − −
=

=
= − Π + Π∑ ∑  

which is similar to equation (10) where i
−Π  is similar to the normal probability 

with the arguments ih
−  and i

+Π  is similar to the normal probability with the 

arguments ih
+ . 

3.1 The Binomial Implementation 

In this sub-section, we demonstrate how the model works in a binomial 

implementation.  While not most computationally efficient, the binomial 

algorithm is the most intuitive and the easiest method to implement.  To 
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demonstrate, we set up a six-period model with three cash-flows.  Within two 

subsequent cash-flows, there is a time step in between.  We also assume the 

following parameter values. 

tV  100 r  3% 
σ  0.5 t∆  0.5 

1T  1 1K  40 

2T  2 2K  40 

3T  3 3K  40 

From these inputs, we can compute the following: tu eσ ∆= =1.1421, 

1/d u= = 0.7022.  The risk neutral probabilities are: exp( )r t d
u dp
∆ −
−= = 0.4335 and 

1 p− =0.5665.  The lattice is described in Table 2. 

[Table 2 Here] 

As the table shows, there are three cash-flows, 1K , 2K , and 3K , paid at 

1 1T = , 2 2T = , and 3 3T = .  For any two consecutive cash-flows, there is a 

partition in between and hence 0.5t∆ = .  We need to solve for three values of 

debts, 
1,t TD , 

2,t TD , and 
3,t TD , and the value of equity tE . 

Panel A of Table 2 is the standard binomial lattice of Cox, Rubinstein and 

Ross (1979) for the value of the firm.  This is a 6-period binomial lattice with 

each period of 0.5 year.  At the bottom of the panel, a time line and strikes are 

provided. 

Panels B through E are the binomial lattices for various classes of 

liabilities where equity is regarded as the least priority in the order of claiming 

firm’s assets.  In each of the Panels B through E, the times at which the cash 

obligations are due (in the example, they are $40 each at 1T , 2T  and 3T  

respectively) are further split into two separate columns – one immediately prior 

to exercise and one immediately post to exercise.  For example, in Panel A, cash-

flow paid is indicated in time 1T , 2T  and 3T  which are in periods 2, 4 and 6 
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respectively.  In Panel B, for example, periods 2 and 4 each is separated into 2 

columns, each labeled as 
1TE  and 

1

*
TE  (for period 2) and 

2TE  and 
2

*
TE  (for period 

4) respectively.  The ones with asterisks (on the right) represent the continuation 

values and the ones without (on the left) represent the exercise values. 

At time 3T , there is only one cash obligation of $40 ( 3K ) to be paid to the 

3T -maturity debt.  Hence the payoffs for the equity and the debt are 

3 3max{ ,0}TV K−  and 
3 3min{ , }TV K  respectively.  The numerical values are given in 

the last columns of Table 2’s Panels B and C respectively.10 

In between 2T  and 3T , it is the usual expected discount cash-flow 

calculation and 
2

*
TE  (shown in Panel B) and 

2 3

*
,T TD  (shown in Panel C) are 

continuation values of the equity and debt at time 2T  respectively.  Then a cash-

flow of 2K  is expected.  Depending on various asset values at time 2T , debt and 

equity holders will receive different payments.  The usual Gseke rule for exercise, 

as explained earlier, is 
2

?
*

2TE K=  which is not sufficient to price the other two debts 

– 2T -maturity and 3T -maturity debts.  The reason is clearly seen in Panels B, C, 

and D.  In Panel B, the two bottom values of 
2

*
TE  are less than 2K  and as a 

result, 
2TE  is 0 in these two bottom states.  Hence, it is clear that the default 

point for the firm value, 23V , is between $100 and $49.31 which are the two 

corresponding values of the asset in Panel A.  In other words, the payoff for the 

equity is positive when 
2

49.31TV > . 

Under our approach, in place of 23V , we define 
2 3

* *
23 2 TTV K D= +  which is 

random.  The values of *
23V  are (from low to high) 62.6148, 73.9311, 78.8178, 

78.8178, and 78.8178 for the asset value (
2TV ) at 24.31, 49.31, 100.00, 202.81, and 

                                            
10 We shall note that effectively both payoffs can be regarded as a call spread on the firm value.  
In other words, the payoff of the equity can be written as 

3 33max{ ,0} max{ , 0}T TV K V− − −∞  
and for the debt it is 

3 3 3max{ 0,0} max{ ,0}T TV V K− − − .  As a result, all the liabilities (equity 
included) can be priced as call spreads.  Note that these are precisely the tranche payoffs in a 
CDO structure. 
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411.33 respectively.  As we can see, the option payoff is positive when 
2

49.31TV > , 

identical to using the constant strike 23V .  Consequently, it can be seen that the 

equity value (
2TE ) and the 3T -maturity debt value (

2 3,T TD ) are unaffected using 

*
23V  in stead of 23V  even though when 

2
100TV < , *

23V  is decreasing in 
2TV .  Finally, 

note that *
22 2V K= . 

As we progress backwards, at time 1T , three strikes are determined as 

follows: 
1 2 1 3

* * *
13 1 , ,T T T TV K D D= + +  that replaces 13V  as the default point, 

1 2

* *
12 1 ,T TV K D= + , and *

11 1V K= .   

1TV  
*
13V  *

12V
*
11 1( )V K=

202.81 116.4884 78.8178 40

100.00 107.2961 78.8178 40

49.31 85.4447 73.9311 40

Such a process can easily be extended for more periods and ultimately 

converges to the continuous time result.  As discussed earlier, we can solve for 

13V  in the Geske model by letting 
1

*
1TE K= .  In the Geske model this is a bi-

variate search as 
1

*
TE  involves bi-variate Gaussian probabilities.  Here, by 

allowing 13V  to be replaced by *
13V , we successfully avoid the complex process.  

Also as discussed earlier, this new method allows us to price other debts.  As 

shown above, in this particular example, although the firm can default, 1T -

maturity debt is risk-free because it receives 100% recovery.  2T -maturity debt 

defaults in one state (lowest) only, while the firm defaults in two lowest states. 

In addition, we can also endogenously solve for the recovery value for each 

debt.  2T -maturity debt recovers $9.31 as a result of asset value being $49.31.  

The seniority rule established by Geske and Johnson (1984) as a result is 

reserved in the binomial model. 
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The convergence of the binomial model is given in an appendix via a two-

cash-flow example where the closed-form solution exists (1979 Geske, equation 4).  

For the given set of parameters, two-decimal convergence can be achieved with 

400 steps. 

As argued earlier, with this new methodology, we can easily extend the 

Geske model to include random interest rates that was previously impossible.  

Note that the original Geske model where the implied strike is a constant, jnV  

(where n  is the total number of periods and 1 j n≤ ≤ ), is not solvable under 

random interest rates. 

3.2 Extension to Include Random Interest Rates 

In this section, we extend the Geske/Geske-Johnson model to include 

random interest rates using the Vasicek model (1977).  We use the Vasicek model 

only for the ease of exposition.  More complex term structure models such as 

Heath-Jarrow-Morton (1992) and Hull-White (1990b) can be straightforwardly 

incorporated into our model. 

Frey and Sommer (1998) and Geman, Karoui, and Rochet, (1995)) show 

that extending the Geske model to include random interest rates is not trivial.  

As we argue previously, this is because these efforts use the fixed strike formula.  

As we shall demonstrate in this section, once we convert the problem to random 

strikes, the extension is straightforward. 

Let the joint dynamics (under the risk-neutral measure) be as follows: 

(23) 
1

, , , , 2

t
t t

t

T

t T t T t u t T t
t

dV
rdt dW

V

df v v du dt v dW

σ= +

 = +  ∫
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where ,ln
,

t TP
tT T
f

∂
∂= −  is the instantaneous forward rate and ,t t tf r= .  Define ,t TP  as 

the price of a $1 zero-coupon bond and 1 2t tdW dW dtρ= .  The interest rate process 

is an HJM which is general enough to include major interest rate models as 

special cases.  In the Ho-Lee model (1986), ,t Tv γ=  which is a constant and in 

this case the short rate process is 2t t tdr dt dWθ γ= + .  In the Hull-White model 

(which is an extension of the Vasicek model), ( )
,

T t
t Tv e α γ− −=  and in this case the 

short rate process is 2( )t t t tdr r dt dWθ α γ= − + .11  In the Cox-Ingersoll-Ross model, 

,

,
t TB

t T T
v rγ

∂
∂=  where ( ) ( )( ) ( )

, 2 1 / ( ) 1 2T t T t
t TB e eζ ζα ζ ζ− − = − + − +    and 2 2 22ζ α γ= +  and 

in this case the short rate process is 2( )t t t t tdr r dt r dWθ α γ= − + . 

While the lattice model is capable of incorporating any interest rate 

process described in equation (23), we shall present our numerical results using 

the Vasicek model in that we can demonstrate the convergence of our lattice 

algorithm by comparing to known closed-form solutions. 

The lattice algorithm is explained in details in the Appendix.  Basically, 

we follow the suggestion by Scott (1997) where the interest rate process is solved 

by the explicit finite difference method and the underlying asset process is solved 

by the implicit finite difference method.12  We test the convergence of the 

algorithm (provided in the appendix) using the Rabinovitch model (1989) where 

the closed-form solution for the European call option exists.  We find that 

convergence in two dimensions is achieved at 1000 steps. 

Recall that our model replaces 12V  (fixed strike) with 
1 2

* *
12 1 ,T TV K D= +  

(random strike) which is now a function of interest rates because 
1 2

*
,T TD  can be 

computed similar to (17) with a slight adjustment: 

                                            
11 If tθ  is constant, then usually it is expressed as tθ αµ=  where µ  is regarded as the level of 
mean reversion.  Then this degenerates to the Vasicek model. 
12 It is not feasible for both the processes to be solved by the explicit method which is more 
intuitive.  The reason is that the random interest rates (similar to the random volatility in Scott 
(1997)) can blow up the stock price process.  Detailed discussions can be found in an appendix. 
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(24) 
( )
( )

1

1

1

1

*

*
,

exp

exp

i

i i i
i

i

i j i i j
i

T

T T u T
T

T

TT T u T T
T

E r du E

D r du D

+

+

+

+

 = − 
 
 = − 
 

∫

∫

E

E

 

The computation of (24) is straightforward in a bi-variate finite difference 

algorithm.  Then, * *
,i k

j
i j i T Tk i

V K D< =
= +∑  and: 

(25) 

* *
, , 1 ,

*
,

max{ ,0} max{ ,0}

max{ ,0}

i j i i

i i

T T T i j T i j

T T i n

D V V V V

E V V

−= − − −

= −
 

The process repeats until we reach the current prices of debts and equity: 

(26) 
( )
( )

1

1

1

1, ,

exp

exp
j j

T

t t u T
t

T

t T t u T T
t

E r du E

D r du D

 = −  
 = −  

∫

∫

E

E

 

It is now apparent to see with the alternative formulation of the Geske 

model using random strikes, we can easily incorporate random interest rates.  In 

the next section, numerical exemplifications will be provided to examine the 

impact of random interest rates on credit sensitive financial assets such as 

convertible bonds and credit default swaps. 

4 Applications 

Reduced-form models cannot be used to study endogenously how various 

risk factors interact with one another.  Typically a reduced-form model uses an 

exogenous correlation matrix for the risk factors.  As a result, reduced-form 

models cannot answer the question like how interest rates and credit spreads 

substitute or supplement each other; or how equity volatility can lead to lower or 

higher recovery. 

Our model (i.e., Geske model with random interest rates) is a structural 

model that naturally endogenizes these risk factors.  Hence, the interactions 

among these risk factors can be analyzed with full economic rigor.  Our model is 
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particularly useful when all three risks – equity, credit, and interest rate, interact 

with one another.  A perfect example for all three risks is convertible bonds 

where all three risks jointly determine the value of conversion.  Moreover, it is 

common that convertible bonds embed call and put options that further 

convolute the relationships of these risks. 

For the current section of the paper, the parameter values for the Vasicek 

model are set as follows: 

α  0.4

θ  (constant
13

) 0.026
γ  0.06

0r  0.03

The capital structure of the firm is given as follows: 

t  0  0V  300

1T  1  1K  30

2T  2  2K  30

3T  3  3K  30

4T  4  4K  30

5T  5  5K  30

6T  6  6K  30

7T  7  7K  30

8T  8  8K  30

9T  9  9K  30

10T  10  10K  30

t∆  1/10  σ  0.2

   ρ
 -0.25

Unless otherwise specified, these are the parameter values used in the 

examples in this section.  Given this set of parameter values, the equity value is 

$55.55.  The risky discount factor, , /
it T iD K , and the risk-free discount factor, , it TP , 

are given as follows: 

                                            
13 In the Vasicek model, θ αµ λγ= −  where µ  is the level of mean-reversion and λ  is the market 
price of risk.  In here we set 0.05µ =  and 0.1λ = − . 
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 , /
it T iD K , it TP 14

1T  0.9810 0.9810

2T  0.9560 0.9561

3T  0.9272 0.9273

4T  0.8961 0.8962

5T  0.8635 0.8638

6T  0.8292 0.8307

7T  0.7867 0.7975

8T  0.7278 0.7646

9T  0.6448 0.7322

10T  0.5360 0.7005

We calculate the implied spread of the liabilities using the following 

equation: 

(27) 
10

, ,1
ln[ / / ]

i it T i t Ti
s D K P

=
= ∑  

Equation (27) represents an “aggregated” spread of all maturities.  The 

result is 4.95% (or an average spread of 49.5 basis points).  We shall use this 

quantity to measure credit risk in this section. 

4.1 Interactions among Equity, Interest Rate, and Credit 

Risk 

The first analysis of our model is convertible bonds in that convertible 

bonds are exposed to multiple risks.  Convertible bonds are exposed to the 

interest rate risk due to their fixed coupons.  They are also exposed to the equity 

risk due to conversion.  Finally they are exposed to the credit risk in that many 

convertible bonds are high yields so default is a crucial concern. 

Imagine a convertible bond with the coupon rate ξ  and maturity mT .  It 

must have a corresponding straight bond with a coupon rate c  and the same 

maturity mT  that is priced as: 

                                            
14 Note that these risk-free discount factors are not direct results of the Vasicek model.  Due to 
the discrete implementation of the binomial model, the Vasicek discount factors that are 
continuously compounded are converted into discrete time in order to be consistent with the 
binomial implementation.  Details can be obtained on request. 



 25

(28) 
, ,

, 1

i m

m

m tT t T
t T i

i m

D D
B c

K K=
= +∑  

where , it TD  for all i is defined in (26) and , /
it T iD K  for i = 1, ..., n can be 

viewed as the i-th discount factor.  WE note that the coupons of the convertible 

bond share the same seniority structure as the corresponding zero coupon debts.  

In other words, if the firm defaults at time kT  for k < m, then the recoveries of 

the remaining coupons of the convertible bond must follow the same seniority 

structure of the zero coupon bonds. 

It is interesting to note that (28) is similar to the formulation of the 

Duffie-Singleton model (1999).  We note that similarities exist between our model 

and the Duffie-Singleton model in that each , it TD  term contains survival value as 

well as recovery value.  Surprisingly interestingly, our model in (10) when we 

sum up all debt values is also parallel to the Jarrow-Turnbull model (1995) that 

separates the recovery value from the survival value.  In the next section, we 

compare our model in details with the Duffie-Singleton model as well as the 

Jarrow-Turnbull model. 

At any time t, the convertible bond is ,max{ , }
mB t T tN B CS  where BN  is the 

notional of the convertible bond, C  is the conversion ratio, and S is the stock 

price which is the equity value divided by the number of outstanding shares SN , 

i.e. /t t SS E N= .  In this sub-section, we set the conversion ration 1C = , number 

of stock shares 1SN = , notional of the bond 100BN = , the coupon rate 0ξ = , and 

finally 4m = .  The convertible bond price is $115.  In other words, the 

conversion value is $14. 

We can now study the relationships among different risk factors.  As an 

example, we choose to let vary the following two parameters: 

• asset volatility 
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• current short rate15 

The convertible bond prices are computed using equation (28).  We 

simulate 100 interest rate scenarios (0.1% to 10% at an increment of 0.1%) and 

150 volatility scenarios (5% to 20% at an increment of 0.1%) to obtain 15,000 

combinations of asset volatility and interest rates.  The outputs of these input 

changes are (1) convertible bond spread, (2) equity volatility, and (3) 10-year 

risk-free yield which is a common measure for interest rate levels.  These outputs 

are the market observables and are the jointly determined by our model.  We 

present the interactions of the three key outputs that are relevant to convertible 

bond valuation in a series of contour plots in Figure 3.  The regression result is 

given in the Appendix.16 

[Figure 3 Here] 

From these contour plots, we shall see that given CB prices, 10-year yield 

interacts with equity volatility but not with credit spread while equity volatility 

interacts with 10-year yield and spread.  We also observe that the interaction 

between volatility and spread presents very different patterns at different CB 

prices.  When CB prices are high, the relationship is non-monotonic.  The same 

phenomenon is observed for the interaction between volatility and 10-year yield. 

4.2  “Optimal” Capital Structure 

The “optimal” capital structure here refers the concept of “rating chasing” 

that many companies adopt as their primary financing strategy.  This is also 

known as mean-reversion of capital structure.17  There is ample evidence in the 

                                            
15 The reverting level µ  changes with the short rate in order to keep the “slope” of the yield 
curve fixed. 
16 Regressions with higher powers and interaction terms are also run and the results are similar 
(available upon request). 
17 See Kisgen (2006, 2007) for an excellent review on rating target. 
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literature on how credit ratings affect the capital structure of a company.  For 

example, Kisgen (2006) argues that “firms near a credit rating upgrade or 

downgrade issue less debt relative to equity than firms not near a change in 

rating”.  More recently, Hovakimian, Kayhan, and Titman (2009) investigate to 

see if firms have target credit ratings that are connected to various capital 

structure decisions.  They find strong evidence that supports the idea that firms 

make corporate financial choices that offset shocks that move them away from 

their target capital structures.18 

In this sub-section, we study how a firm can adjust its capital structure 

(via the amount of debt) to achieve the target credit risk (hence rating).  As our 

model ties capital structure directly to credit quality (i.e. credit spreads) of the 

company, by assuming there is monotonic mapping between credit ratings and 

credit spreads, we can then show how managers of the company should change 

the capital structure in order to achieve the target rating for the company. 

As a crude approximation, we continue to use equation (27) for the credit 

spread.  To answer the question that what kind of capital structure can meet a 

certain rating target, we use the following linear equation for the term structure 

of debts: i iK a bT= + .  When b is positive, the company adopts more long-term 

debts than short-term debts.  Similarly, when b is negative, the company adopts 

more short-term debts than long-term debts.  When b = 0, then the company 

adopts a flat debt structure.  For any given credit spread produced by equation 

(27), we solve for a combination of a and b.  In other words, there are infinite 

number of <a, b> combinations that can produce a certain credit spread. 

                                            
18 The literature on dynamic capital structure (currently nicknamed “rating chase” by the 
industry) and how ratings affect capital structure decisions is voluminous.  While our model 
provides a useful tool for making such decisions, this sub-section is not the main focus of our 
paper.  Hence, we apologize that many classical papers in this area are omitted from the paper.  
Interested readers please refer to Kinsgen (2007) for a review. 
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We then measure how each combination implies a certain capital 

structure.  For example, at 1% spread, a = 25.25 and b = −1 are the resulting 

combination, which implies that the 1-year debt is $25.25 and linearly drops to 

$15.25 for the 10-year debt is the capital structure for 1% credit spread.  To gain 

a more intuitive feel for such a capital structure, we represent the short-term and 

long-term debts as percentages of the asset value.  For example $25.25 is 8.42% 

(top left) of the asset value $300 and $15.25 is 5.42% of the asset value. 

 1% credit spread 

1-yr debt 8.42% 6.15% 3.66% 

10-yr debt 5.42% 6.15% 6.66% 

 5% credit spread 

1-yr debt 11.11% 9.28% 7.01% 

10-yr debt 8.11% 9.28% 10.01% 

 10% credit spread 

1-yr debt 12.68% 10.83% 8.98% 

10-yr debt 9.68% 10.83% 11.98% 

The above table indicates that various term structures (i.e. combinations 

of a and b) can achieve a specified goal of credit spread (hence credit rating).  

For 1% credit spread, a short-term of 8.42% and a long-term debt of 5.42% will 

suffice as well as a short-term of 3.66% and a long-term debt of 6.66%; or even a 

flat term structure of 6.15%.  However, the total leverage ratios (i.e. all 10 debts) 

are different – 69.17% for the case of decreasing term structure, 61.5% of flat 

term structure, and 51.65% for the case of increasing term structure.19 

Same analysis can be carried out for other credit spreads.  The model 

suggests that if a firm uses more short-term debts than long-term debts, then the 

overall leverage ratio must be higher, in order to achieve the same credit spread 

                                            

19 Note that each debt is just $1/$300 increment or decrement of its previous debt. 
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(hence credit rating).  This substitution effect is more pronounced when the firm 

targets very high ratings.  If the firm is targeting only mediocre ratings (e.g. 10% 

credit spread), then the substitution is not so obvious.  In other words, our model 

indicates the term structure of liabilities matters substantially in a firm’s target 

rating decisions. 

Certainly, the term structure of liabilities does not need to be linear and it 

can further interact with investment decisions (i.e. asset volatility).  To carry out 

a full analysis, we must generate mutli-dimensional combinations of various 

parameters.  Yet no matter how complicated the analysis could be, our model is 

a helpful tool in this important corporate finance decision. 

5 Consistency with the Reduced-form Models 

In this section, we provide an efficient comparison between the popular 

reduced-form models widely used in pricing credit derivatives and our model.  

The two popular reduced-form models are proposed by Jarrow and Turnbull 

(1995) who assume recovery of face value and Duffie and Singleton (1999) who 

assume recovery of market value.  Regardless of their recovery assumptions, the 

default event is defined over the Poisson process, which can be graphically 

displayed by the following binomial diagram (for a coupon paying bond): 
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As a result, the price of a risky coupon bond under the Jarrow-Turnbull 

model can be written as: 
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where , it TP  is the risk-free discount factor for the future time iT , c is percentage of 

the coupon payment over the face value, w is the recovery rate, and τ  is default 

time.  The first two terms of the last line represent the value of no default (under 

which the bond pays all coupons and the face value) and the last term represents 

the current value of recovery under default, which is an expected present value of 

the discounted recovery amount upon default. 

The Duffie-Singleton model assumes recovery to be paid upon default and 

to equal a fraction of the value of the bond if it were not defaulted.  Formally, we 

write the recovery as ,t t Tn
w Bδ=  where 0 1δ< <  is constant.  The Duffie-Singleton 

model is, 
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where , it TP  is the risk-free discount factor for the future time iT , c is percentage of 

the coupon payment over the face value, and 1
, ,

ˆ
i it T t TQ Q δ−= .  Note that since the 

recovery δ  is incorporated in every ,
ˆ

it TQ  term, there is no need to have a separate 

term for recovery. 

To show that our model is consistent with the Poisson process used by the 

reduced-form models, we first acknowledge that equation (28) is parallel to the 

Duffie-Singleton model, while equation (22) (or similarly equation (10)) is similar 

to the Jarrow-Turnbull model where the recovery is separate from the survival 

value.20  In other words, if we evaluate the total debt value of a company when 

the true capital structure is considered, the Jarrow-Turnbull model can be 

appropriate.  On the other hand, if we evaluate credit derivatives that are based 

upon a given capital structure, then Duffie-Singleton model is appropriate.  From 

(22) and (28), we can find the consistency between the two popular reduced-form 

models. 

In this section, we examine the multi-period behavior of the reduced-form 

models, namely Jarrow-Turnbull and Duffie-Singleton and our model (which is 

the Geske model with random interest rates).  We incorporate stochastic interest 

rates in our analysis.  The parameters for the Vasicek model are given in the 

previous section.  To better reflect reality, we set 30n = . 

5.1 Zero-coupon Bond 

We first examine the case of extremely low coupons 

( 1 29 0K K c= = = =⋯ ).  The face value of debt ( 30K ) is 110 and the asset value 

of 0 184V = .  This is the case where we can see the fundamental difference 

between our model and the Jarrow-Turnbull model.  We cannot solve the Duffie-

                                            
20 This is the case where we assume the total liability of the firm is a gigantic coupon bond and in 
this case, our model. 
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Singleton model in that their model does separate recovery from the hazard rate.  

Note that the Jarrow-Turnbull model is (29) and our model is a binomial 

implementation of (28).21  We run our model with various volatility levels: 0.4, 

0.6, 1.0, and 1.6.  Once we obtain the expected recovery and the current debt 

value (
30,t TD ), we then solve for the intensity rate and the recovery rate in the 

Jarrow-Turnbull model.  Two equations and two unknowns allow us to find the 

exact match between the Jarrow-Turnbull model and our model.  Note that the 

last term of equation (29) is the Jarrow-Turnbull value of the expected recovery, 

which is easy to compute.  The results are summarized as follows.   

Our Model     

Volatility 0.4 0.6 1.0 1.6 

equity value 169.13 177.97 183.60 183.99 

debt value 14.87 6.03 0.40 0.01 

Recovery 4.17 2.12 0.19 0.00 

JT Model     

recovery rate 1.04% 0.21% 0.01% 0.00% 

Intensity 1.48% 4.50% 13.55% 25.78% 

As the volatility goes up, the equity value in our model goes up (i.e. call 

option value goes up.)  Since the asset value is fixed at 184, the debt value goes 

down.  The survival probability curves under various volatility scenarios of our 

model are plotted in Figure 4(a); and the default probability curves 

(unconditional, i.e. 
1, ,i it T t TQ Q

−
− ) are plotted in Figure 4(b). 

[Figure 4 Here] 

We observe several results.  First, as the risk of default becomes eminent 

(i.e. high volatility and low debt value), the likelihood of default shifts from far 

                                            
21 Note that with c = 0, our model is effectively the Rabinovitch model (1989).  Yet, to obtain 
the entire default and survival curves, we must implement the binomial lattice. 
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terms (peak at year 30 for volatility = 0.4) to near terms (peak at year 5 for 

volatility = 1.6).  Second, it is seen that the asset volatility has an influential 

impact on the shape of the survival probability curve.  As volatility increases, the 

shape of the survival probability curve changes from strictly concave to an 

inverted S.  Furthermore, our model is able to generate humped default 

probability curve (volatility = 1.6), often observed empirically.  Third, these 

differently shaped probability curves are generated by one single debt, something 

not possible by reduced-form models.  Both the Jarrow-Turnbull and Duffie-

Single models cannot generate such probability curves with one single bond, due 

to the lack of information of intermediate cash-flows.   

Corresponding to the recovery amounts under our model, we set the fixed 

recovery rate of the Jarrow-Turnbull model as shown in the above table.  Given 

that one bond can only imply one intensity parameter value, we set it (under 

each scenario) so that the zero coupon bond price generated by our model is 

matched.  As shown in the above table, the intensity rate goes from 1.48% per 

annum to 25.78% per annum.  Note that flat intensity value is equivalent to a 

flat conditional default probability curve. 

5.2 Coupon Bond 

Our next analysis is to keep the bond value fixed, so that we can examine 

the default probability curve with the risk of the bond controlled.  To do this, we 

assume that the company issues a par coupon bond at a coupon rate of 10%.  At 

the volatility level of 0.4, the asset value is $119, at 0.6, it is $255, and at 1.0, it 

is $9,091.  The Vasicek model is assumed.  Figure 5 demonstrates the results of 

our model for various volatility levels but keep the bond at par.  We can see that 

for the same par bond, the default and survival probability curves are drastically 



 34

different as the asset/volatility combination changes.  This is a feature not 

captured by either the Duffie-Singleton or the Jarrow-Turnbull model.22 

[Figure 5 Here] 

To compare to the Jarrow-Turnbull and Duffie-Turnbull models, we keep 

the case where the volatility level is 0.6 and asset value is 255.  The recovery 

amount is $26.86 in this case.  Our model solves for a survival probability curve 

and an expected recovery amount that evaluate a 10% par bond.  We then try to 

use the Jarrow-Turnbull model and the Duffie-Singleton model to correctly price 

the par bond and match the recovery amount at the same time by solving for the 

fixed hazard rate and fixed recovery rate.  As discussed in the literature, given 

that the Duffie-Singleton model does not separate recovery from hazard, it is not 

possible to solve separately for the hazard rate and the recovery rate in the 

Duffie-Singleton model, unlike the Jarrow-Turnbull model. 

The hazard and the recovery rates for the Jarrow-Turnbull model are 

solved to be 8.38% and 43.09% respectively.  Due to the under-identification 

problem suffered by the Duffie-Singleton model, we find that there is no perfect 

match by the Duffie-Singleton model and there are infinite number of recovery-

hazard pairs for the minimum pricing error.  We select the one pair where the 

hazard rate matches the closest to 8.38%.  Under this criterion, we obtain 8% 

and 48.87% as the hazard rate and the recovery rate for the Duffie-Singleton 

model.  Figure 6 shows the survival and default probability curves of the three 

models.  From the survival probability curves, it is seen that our and the Jarrow-

Turnbull models can be close.   

[Figure 6 Here] 

                                            
22 Although not shown here, it is noted that the default probability curve in the case of 100% 
volatility is exploding. 
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From Figure 6, we observe that the survival probability curve generated 

by our model is more convex than the two reduced-form models.  It has two 

cross-over points with the curves generated by the two reduced-form models.23  

At near terms, the survival probabilities of our model are higher than the two 

reduced-form models, but then the probabilities decrease more rapidly than its 

two reduced-form counterparts.  Finally, they recover to be higher than the two 

reduced-form counterparts.  Given that the recovery amount is matched, it must 

be true that the areas of above and below are cancelled in order to generate the 

bond price (at par). 

The coupon bond example in this sub-section is similar to the zero coupon 

bond example previously.  The only difference is that we can now control for the 

target bond price (at par) and see how the probability curves react to various 

combinations of asset values and asset volatility levels.  We witness very similar 

results as in the zero coupon bond case.  The comparison to the reduce-form 

models sheds light on how prices can be matched and yet the fundamental 

default profiles can be drastically different. 

5.3 Credit Default Swap 

Using structural models for credit default swaps (CDS) has been difficult.  

Existing models all adopt short-cuts as approximations.24  Here we provide an 

accurate and efficient solution to the price of the credit default swap.  The 

reduced-form models can only evaluate CDS with both credit and interest rate 

risks and ignore the equity risk.  Unfortunately, default risk is related to the 

                                            
23 Inferring from the survival probability curve, we can obtain the flat conditional forward default 
probability curves induced by the two reduced-form models and a humped curve by our model. 
24 For example, an exogenous flat barrier is often assumed while the true default barrier is 
stochastic.  A constant recovery rate is also often assumed while the true recovery is stochastic as 
well. 
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firm's capital structure and hence must also be related to the equity risk.  Indeed, 

high grade bonds that have low spreads are more sensitive to equity risk than 

credit or interest rate risk and high yields are more sensitive to interest rate and 

credit risks.  Our model allows, for the first time, these risks to be jointly and 

accurately priced in CDS contracts. 

Credit default swaps are the most widely traded credit derivative contract 

today. A default swap contract offers protection against default of a pre-specified 

corporate issue.  In the event of default, a default swap will pay the principal 

(with or without accrued interest) in exchange for the defaulted bond.25 

Default swaps, like any other swap, have two legs.  The premium leg 

contains a stream of payments, called spreads, paid by the buyer of the default 

swap to the seller till either default or maturity, whichever is earlier.  The other 

leg, protection leg, contains a single payment from the seller to the buyer upon 

default if default occurs and 0 if default does not occur.  Under some restrictive 

conditions, credit default swap spreads are substitutes for par floater spreads.26  

In many occasions, the traded spreads off credit default swaps are more 

representative of credit risk than corporate bonds.  The valuation of a credit 

default swap is straightforward.  For the default protection leg: 
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25 Default swaps can also be designed to protect a corporate name.  These default swaps were 
used to be digital default swaps.  Recently these default swaps have a collection of 
“representative” reference bonds issued by the corporate name.  Any bond in the reference basket 
can be used for delivery. 
26 See, for example, Chen and Soprazetti (2003) for a discussion of the relationship between the 
credit default swap spread and the par floater spread. 
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where ,t sP  is the risk-free discount factor between now t and future time s, and 

,t sQ  is the survival probability between now t and future time s. 

In a discrete time where spread payments are made at times 1 nT T⋯ , we 

can write (31) as: 

(32) prot
, , ,, 11

[ ]
n

t T t T t T tt T i i in i
W P Q Q R−=

= − −∑  

This is called the protection leg or the floating leg of the swap.  For the 

premium leg, or the fixed leg, we can write the valuation equation as: 
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and hence the default swap spread can be solved as follow by setting the values 

of the two legs equal: 
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In our model, the survival probability ,t sQ  can be computed easily as: 
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where tE  is the risk-neutral expectation.  Equation (35) does not have a closed-

form solution but can be easily computed via the binomial model. 

Combining (32) and (33), we can use market credit default swap spreads 

to back out default probability curve.  As the default swap market grows, more 

and more investors seek arbitrage trading opportunities between corporate bonds 

and default swaps.  This suggests that we should use the calibrated corporate 

bond curves to compute default swap spreads.  We use the results of Figure 6 to 

compute the 30-year CDS value.27 

                                            
27 Note that CDS values for various tenors can be computed in the same way using equations (31) 
and (32). 
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Here, we demonstrate how such arbitrage trading strategies can be 

misleading.  Arbitrage profits can be entirely due to model specification.  To see 

that, we suppose that our model is the correct model.  Continue to assume the 

Vasicek model with the given parameter values.  Then, the probabilities that 

calculate the par bond are shown in Figure 7 for the case where asset value is 

$255 and volatility is 0.6 (so that the coupon debt is at par).  The 30-year 

default swap spread implied by our model is 499 basis points.  This is done by 

implementing (31) to obtain the default swap protection value of $35.47 and 

implementing (32) to solve for the spread.28  Note that the credit default swap 

value and spread computed using our model are consistent with the recovery 

assumption of our model.  To use the Jarrow-Turnbull model, we must fix the 

recovery rate.  To get such value, we use that the probabilities generated by our 

model and a fixed recovery rate to compute the default swap value.  This implied 

recovery rate is 0.4310.  If we let the Jarrow-Turnbull model calibrate to the data 

(i.e. the 10% par bond), then as mentioned earlier the hazard rate and the 

recovery rate are 8.38% and 43.09% respectively.  The CDS premium under the 

model would be 498 basis points, which is 1 basis point different from the correct 

value. 

As the volatility of the asset rises, the error becomes larger.  At 100% 

volatility (the corresponding asset value, as mentioned earlier, is $9,091), the 

correct CDS premium is 506 basis points and the implied Jarrow-Turnbull 

recover rate is 20.89%.29  If we let the Jarrow-Turnbull model calibrate to the 

data, then the hazard rate and the recovery rate are 6.07% and 21.80% 

                                            
28 The expected recovery value in (31) is calculated to be $26.86 (which is 26.86% of the face 
value of the bond which is priced at par) under the volatility of 0.6 and asset value of $255.  The 
full default value (first term of (31)) is calculated to be 62.33% of the face value.  As a result, the 
CDS protection value is 35.47% of the face value, or $35.47.  The risky annuity demonstrated in 
equation (32) is computed to be 7.1037 and hence the spread is 499 basis points. 
29 In this case, the expected recovery rate is $11.69. 
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respectively.  The resulting CDS spread is 489 basis points – a 17 basis point or 

3.3% difference. 

[Figure 7 Here] 

The situation can be even more severe if we allow our model to generate 

more humped shaped default probability curve.30 

5.4 Cheapest-to-Deliver (CTD) Option 

Finally we would like to make a note on how our model can be readily 

used for the valuation of the cheapest-to-deliver (CTD) option embedded in CDS 

contracts.  The majority of CDS contracts require physical deliveries of the 

underlying bonds in the event of default.  Being able to delivery any bond of the 

defaulted firm, a rational protection buyer of the CDS contract will surely deliver 

the cheapest bond.  Such an option has been shown to have a non-trivial value 

(see, for example, Pan and Singleton (2008)).  To evaluate the CTD option 

accurately, it must be the case that each and every bond of the defaulted firm is 

accurately evaluated.  Reduced-form models, as a result, cannot accomplish such 

work as they provide no linkage between CDS and their underlying bonds.  With 

our model, one can easily evaluate CDS contracts with the CTD option. 

To see that, we improve equation (32) with the following changes: 

(36) prot
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where 1, ,i n= ⋯  represents the i-th bond issued by the firm.  As the cheapest 

bond is delivered in return for the full notional value, the protection provider of 

the CDS contract suffers the most loss.  Given that this is a known behavior by 

                                            
30 We experiment a large number of various scenarios and discovered that the errors can be quite 
high in both overvalue and undervalue. 
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the protection buyer, the protection value is higher, as equation (36) shows, and 

hence the CDS premium is higher. 

6 Conclusion 

The capital structure model of credit risk began with Black and Scholes 

(1973)31 and Merton (1974) and then was extended by Geske (1977) and Leland 

(1994).32  However, none of these models has been widely used because the Geske 

model is computationally complex and expensive and the Leland model does not 

allow for flexible structures of debts. 

The Geske model is computationally complex and expensive because of the 

necessity to compute multi-variate normal probabilities.  Another even more 

bothersome complexity is the need to compute “implied strikes” (also known as 

the default barrier).  This complexity prevents the Geske model from 

incorporating random interest rates.  The Leland model, on the other hand, is a 

closed-form model which is inexpensive to compute and easy to incorporate 

random interest rates (see Huang, Ju, and Ou-Yang (2003)).  However, the 

assumption of firms must continuously issue perpetual debts does not represent 

the reality well. 

In this paper, we successfully resolve this issue.  By transforming the 

Geske model from a fixed strike form to a random strike form, we can 

successfully incorporate random interest rates in the model.  The binomial 

implementation of the model further facilitates the computation of the random 

strikes.  As a result, we obtain a model that is as easy to implement as the 

                                            
31 Their Section 6 “Common Stock and Bond Valuation”. 
32 Also Leland-Toft (1996). 
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Leland model with random interest rates and keep the flexibility of the debt 

structure. 

We then use our model for a number of applications.  Using a convertible 

bond example, we illustrate how various risks (i.e. equity, interest rate, and 

credit) can interact with one another endogenously.  There are substitution 

effects among these risk factors.  Our model also makes possible to study the 

common phenomenon in the industry known as “rating chasing”.  We show that 

with our model we can identify proper capital structure to achieve a particular 

rating objective.  Lastly, we provide a consistency analysis of our model and 

popular reduced-form models in the industry.  We find that our model is 

consistent with the Jarrow-Turnbull model from the whole company’s perspective 

and consistent with the Duffie-Singleton model from the individual debt’s 

perspective.  When we apply our model to the valuation of credit default swaps, 

we identify some misleading results by the reduced-form models.  In other words, 

reduced-form models could signal “false arbitrage opportunities” while the market 

is actually perfectly efficient. 
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Table 1 

t  1T  2T  3T  
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where 
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Note that: 
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Note that: 
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2 2 23
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22 2 2 2

max{ , 0}

max{ ,0} max{ ,0}
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E V V

D V K V V

D V V K
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Table 1 – In this table, in order to conserve space and present the table in the most intuitive way, we abbreviate the notation in the following 

way.  Time index iT  is abbreviated as i  and the current time t  is abbreviated as 0.  For example, ,i jT TD  is abbreviated as ijD , 
iTV  is abbreviated 

as iV , and tE  is abbreviated as 0E . 
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The model is intuitive.  For example, the first debt’s default point is 1K .  As long as 
1 1TV K>  the first debt will be paid in full (although the 

firm’s default point is *
13 1V K> .).  The (risk-neutral) probability of 

1 1TV K>  is 1 1 1( ( ))N h K− .  And the probability of 
1 1TV K<  is 1 1 11 ( ( ))N h K−− , 

which can be written as 1 111 ( ( ))N h K+−  if we make the change of measure using the asset value as the numeraire (see Appendix for the proof).  

As a result, the expected recovery is 1 11[1 ( ( ))]tV N h K+− . 

Similarly, the second debt defaults when 
2 12TV V<  where 12V  is the solution to 

1 1 22 ,T T TV K D= + .  This is a uni-variate search of the normal 

probability.  Note that the second debt survives if 
1 1TV K>  and 

2 12TV V> , hence the survival probability is two-dimensional 

( )2 1 12 2 2 2( ), ( );N h V h K− −
C .  The default is either 

1 1TV K<  or 
1 11 12T TV K V V> ∩ <  
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Table 2 – The binomial lattice for the Geske Model 

Basic inputs: 

tV  100 r  3% 

σ  0.5 t∆  0.5 

1T  1 1K  40 

2T  2 2K  40 

3T  3 3K  40 

Lattice: 

A - Firm Value      

      834.21 

     585.78  

    411.33  411.33 

   288.83  288.83  

  202.81  202.81  202.81 

 142.41  142.41  142.41  

100.00  100.00  100.00  100.00 

 70.22  70.22  70.22  

  49.31  49.31  49.31 

   34.62  34.62  

    24.31  24.31 

     17.07  

      11.99 
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K

=

=
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K

=

=
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3
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40
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B - Equity        

3T
E  

 1TE  
1

*
TE   2TE  

2

*
TE   3T

E  

                794.2145 

       546.3713  

     332.5072 372.5072  371.3250 

    211.1833   249.4232  

  86.3231 126.3231  123.9937 163.9937  162.8115 

 36.8601   64.7675   103.0074  

15.7394  0.0000 32.7039  21.1822 61.1822  60.0000 

 0.0000   9.0448   30.8144  

  0.0000 3.8622  0.0000 15.3758  9.3069 

    0.0000   3.9741  

     0.0000 1.6969  0.0000 

       0.0000  

                0.0000 
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C - T3 maturity Debt        

3,t TD  
 1 3,T TD  

1 3

*
,T TD  

 2 3,T TD  
2 3

*
,T TD  

 3 3,T TD  

                40.0000 

       39.4045  

     38.8178 38.8178  40.0000 

    38.2399   39.4045  

  37.6706 37.6706  38.8178 38.8178  40.0000 

 27.9074   38.2399   39.4045  

16.9645  21.1822 28.4783  38.8178 38.8178  40.0000 

 9.0448   21.7695   39.4045  

  0.0000 11.5136  9.3069 33.9311  40.0000 

    3.9741   30.6487  

     0.0000 22.6148  24.3117 

       17.0714  

                11.9873 

         

D - T2 maturity Debt        
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*
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E - T1 maturity Debt        
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  40.0000       

 39.4045        
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40
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=
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40
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=
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40

T

K

=
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Figure 1 – Constant Strike 

Equity Value

Asset Value

K1

V1

_

E1*

E1 = max{E1* - K1, 0}

 
In the graph, K1 (on the vertical axis) represents 1K  is the strike price at 1T ; E1* (solid line) 
represents 

1

*
TE  which is the continuation value equal to 2 1

1 2

( )
2[max{ ,0}]r T T

T Te V K− − −E  as seen in 
equation (4), E1 (long dotted line) represents 

1TE  which is the current value of equity equal to 

1

*
1max{ ,0}TE K− , and finally V1 represents 1V  which is the implied strike price (or default 

barrier) as the solution to 
1

*
1TE K=  like the short-dotted lines in the graph demonstrates 

 

Figure 2 – Random Strike 

Debt Value

Asset Value

K1

45-degree Line

E1 = max{V1 - V12*, 0}

V12* = K1 + D12*

 
Same as Figure 1, except that 

1 1

*
12max{ ,0}T TE V V= −  where, in the graph, 

1 2

* *
12 1 ,T TV K D= +  is 

labeled as V12* and 
1 2

*
,T TD  is labeled as D12* which is the 2T -maturity debt at 1T .  Note that E1 

in the graph is identical to E1 in Figure 1. 
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Figure 3 – Simulated Contour Plots of Key Inputs to CB Valuation 

 
The convertible bond prices are computed using equation (28).  We simulate 100 interest rate 
scenarios (0.1% to 10% at an increment of 0.1%) and 150 volatility scenarios (5% to 20% at an 
increment of 0.1%) to obtain 15,000 combinations of asset volatility and interest rates.  The 
outputs of these input changes are (1) convertible bond spread, (2) equity volatility, and (3) 10-
year risk-free yield which is a common measure for interest rate levels.  These outputs are the 
market observables and are the jointly determined by our model.  We present the interactions of 
the three key outputs that are relevant to convertible bond valuation in a series of contour plots 
in Figure 3.  The regression result is given in the Appendix. 
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Figure 4 – Example of Zero-coupon Bond 

(a) Survival Probability Plot under Various Volatility Levels 

Survival Probability Curves

under various volatilities
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(b) Default Probability Plot under Various Volatility Levels 

Default Probability Curves

under various volatilities
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Note: This figure illustrates the survival probability curves under various asset volatility 
scenarios of the 30-year zero coupon bond under the Geske model.  The Asset value is set to be 
$184.  The bond has no coupon and a face value of $110.  The yield curve is flat at 5%. 
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Figure 5 – 10% Par Coupon Bond Survival Probability Plot 

10% Par Bond Survival Probability Curves

under various volatilities
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Note: This figure illustrates the survival probability curves under various asset volatility 
scenarios of our model (i.e. Vasicek model is used).  The asset values are $119, $255, $9,091 for 
volatility levels of 0.4, 0.6, and 1.0 respectively.  The bond has a $10 coupon.  The equity values 
are $19, $155, and $8,991 respectively and hence the bond is price at par. 

 

Figure 6 – Comparison of DS, JT and Our Models: Par Coupon Bond 

(a) Survival Probability Plot 

Survival Probability Curves

of three different models
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Note: This figure illustrates the survival probability curves under our model (with Vasicek 
parameters).  The asset value is set to be $255 and volatility 0.6 so that the bond is priced at par.  
The bond has $10 coupon and a face value of $110.  The hazard rates of the Jarrow-Turnbull and 
Duffie-Singleton models are 8.38% and 8.00% respectively.  The recovery rates are 43.09% and 
48.87% respectively. 
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Figure 7: (Unconditional) Default Probability Curve for JT and Our models 

Default (Unconditional) Probability Curves

30-year 10% par coupon bond
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Note: In our model (where Vasicek model is assumed), asset = $255, volatility = 0.6, coupon = 
10, face = 100 (so that debt is at par).  The credit default swap protection value is $35.20.  The 
hazard rate and recover rate for the Jarrow-Turnbull model are 8.38% and 0.4309 respectively. 
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8 Appendix 

 

8.1 Proof of the Theorem 

[Lemma] 

(37) 
1*

12

1

( ) *
12[ ]

T

r T t
VV

t V
t

e EV
E

V

− − 
= 

  
 

[Q.E.D.] 

 

8.2 Convergence of the Binomial Model – Geske 

Figure 8 demonstrates the speed of convergence of the binomial model in a 

two-cash-flow model where the closed-form solution exists.  The solid line in 

Figure 8 is computed with the closed form solution of equation (7) and the 

dotted line is generated with the algorithm described in equation (19). 

Figure 8 – Convergence of the Binomial Model 
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8.3 Two-Dimensional Lattice 

In this Appendix, we demonstrate how to construct the two-dimensional 

lattice.  The Vasicek model (by setting 0β =  in (23)) can be described as follows: 

(38) 2( )dr r dt dWθ α γ= − +  

For any contingent claim written on r, it must follow the following PDE: 

(39) 21
( )

2 rr r tP r P P rPγ θ α+ − + =  

and the partial derivatives are approximated as follows: 

(40) 

1, 1 1, 1

2
1, 1 1, 1, 1

2 2

1, ,

2

2

i j i j

i j i j i j

i j i j

P PP

r r

P P PP

r r
P PP

t t

+ + + −

+ + + + −

+

−∂ = ∂ ∆ − +∂ = ∂ ∆ −∂ = ∂ ∆

 

where i represents the time dimension and j represents various economic states.  

Substitute the above discrete approximations back to the PDE and get: 

(41) 
1, 1 1, 1, 1 1, 1 1, 1 1, ,2

,2

21
( )

2 2
i j i j i j i j i j i j i j

i j

P P P P P P P
r rP

r tr
γ θ α

+ + + + − + + + − +− + − −
+ − + =

∆ ∆∆
 

Re-arranging the terms (and letting r  at various states as jr ), we get: 

(42)

 
2 2 2

1, 1 1, 1, 12 2 2

,

( ) ( )
1

2 22 2

(1 )

j j
i j i j i j

j i j

r r
t t P t P t t P

r rr r r

r t P

θ α θ αγ γ γ
+ + + + −

     − −    ∆ + ∆ + − ∆ + ∆ − ∆            ∆ ∆     ∆ ∆ ∆
= + ∆

 

The condition for the explicit method to converge (see Hull-White 

(1990a)) is all probabilities must be between 0 and 1.  This condition translates 

into the following inequalities:  
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(43) 

2

2

2

2

2

2

( )

22

( )
1

22

1

j

j

r
t t

rr

r
t t

rr

t
r

θ αγ

θ αγ

γ

 − ∆ ≥ ∆ ∆∆ − ∆ + ∆ ≤ ∆∆ ∆ ≤∆

 

The easiest way to set up the lattice is to set 2 2/t r γ∆ = ∆  (last line in 

(43)).  As a result, the middle probability (i.e. middle term in (42)) is 0 and the 

up probability can be solved for (by matching the mean of the interest rate 

process) as follows: 

(44) 
( )1

1
2

jr t

t

θ α

γ

 − ∆  +   ∆
 

Given that the probability must be between 0 and 1, it must hold that: 

(45) 
( )

1 1
jr t

t

θ α

γ

− ∆
− < <

∆
 

which defines the upper and lower bounds for the interest rate: 

/ /t t
jr

θ γ θ γ
α α

+ ∆ + ∆− < < .  Note that, as Hull and White (1990a) point out, this 

constraint is caused by mean reversion.  Without mean reversion (i.e. 0α = ), 

then the interest rate is unbounded. 

Hence, effectively the finite difference model is degenerated into a binomial 

model with equal up and down probabilities. 

Note that the interest rate process and the firm value process are 

correlated.  Hence, it is impossible to build an explicit finite difference lattice in 

two dimensions.  As a result, we follow Scott (1997) where the interest rate 

process is built with an explicit method and the firm value process is build with 

an implicit method.33  To do so, we first must orthogonize the two processes. 

                                            
33 In other words, when either the drift or the diffusion of the underlying asset process is 
stochastic, the explicit method will fail. 
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Define ( / ) lndR dr d Vργ σ= − .  By doing so, ln 0dRd V = .  The dR  process is 

similar to the dr  as a Gaussian mean-reverting process except for the mean and 

variance as follows: 

(46) ( )
( ) ( )

2

[ ] [ ] [ln ]

1
( )

2

1

2

dR dr V

r dt r dt

r dt

ργ

σ

ργ
θ α σ

σ

ργ
θ ργσ α

σ

= −

= − − −

 = + − + 
 

E E E

 

and 

(47) ( )

( )

2 2 2 2 2

2 2

[ ] [ ] ln 2 ln

2

1

dR dr d V dr d V

dt

dt

ργ ργ

σ σ

γ ρ γ ρ γ

γ ρ

   = + − −      
= + −

= −

V V V E

 

As a result, the explicit finite difference algorithm for the dR  process is 

similar to the dr  process with the simple substitution that 
2

2 2(1 )
Rt

γ ρ

∆
−

∆ = . 

The binomial lattice for R  and lnV  can be visualized in the following 

diagram.  The vertical dimension is the log of the firm value; the bottom 

dimension is time, and the dimension of the right is the transformed interest rate.  

Given that R  and lnV  are orthogonal, we can simply set up the lattice for R  

first.  Once the lattice of R  is determined, we can then use the implicit method 

described in Hull (2000), as the red, blue and green lines demonstrate, to 

compute the firm asset values backwards. 

The implicit method is described clearly in Hull (2000).  The inversion of 

the matrix is an easy recursive calculation (tridiag) that can be found in various 

numerical libraries, such as Numerical Recepie. 
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lnV  

time 

 R  

 

The convergence is demonstrated below.  The call option value in this 

setting has a closed-form solution, derived by Rabinovitch (1989), as follows: 

(48) , , ,,( ) ( )t T t t T t Tt TC V N d P KN d+ −= −  

where  

, ,
,

,

ln ln ½t t T t T
t T

t T

V P
d

ξ

ξ
± − ±

=  

and 

( ) ( ) ( )
2

( ) 2 ( ) ( ) 2
, 2

2 1 1
1 1 2 1 ( )

2
T t T t T t

t T T t e e T t e T tα α αγ ρσγ
ξ σ

α α α α α

− − − − − −   
= − − − + − + − − − + −   
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We present the convergence of the model in the case of a European call 

option when the interest rate follows the Vasicek model using the following 

parameter values: 34 

α  0.25

θ  0.005
γ  0.03

0r  0.02

T  0.5

0V  50

K  50
ρ  0.5

The Rabinovitch value of the call option is $5.85 and in 1000 steps, the bi-

variate lattice converges to this value.35 
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8.4 Regression Results 

y = a + b1 spread + b2 spread^2 + c1 rate + c2 rate^2 + d1 vol + d2 vol^2 

where 

 Coefficients
Standard 

Error t Stat

                                            
34 In the Vasicek model, θ αµ λγ= −  where µ  is the level of mean-reversion and λ  is the market 
price of risk.  In here we set 0.02µ =  and 0λ = . 
35 We have also tested other correlation values and uniformly at 1000 steps the bi-variate lattice 
converges at the second decimal place. 
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a 98.285 0.048 2039.037

b1 457.329 0.705 648.927

c1 -53.096 0.412 -128.902

d1 -20.418 0.771 -26.490

b2 -2363.420 13.631 -173.390

c2 121.361 2.451 49.515

d2 -199.905 3.125 -63.966

adj R2 0.9859

 

y = a + b1 spread + b2 spread^2 + b3 spread^3 + c1 rate + c2 rate^2 + c3 

rate^3 + d1 vol + d2 vol^2 + d3 vol^3 

where 

 Coefficients
Standard 
Error t Stat 

a 88.732 0.061 1455.441

b1 382.088 0.521 733.792

c1 -136.623 0.539 -253.707

d1 272.802 1.657 164.648

b2 -3152.383 7.421 -424.769

c2 1231.374 6.406 192.211

d2 -2743.940 13.950 -196.692

b3 48739.439 301.602 161.602

c3 -3575.876 19.443 -183.916

d3 6973.638 36.378 191.702

adj R2 0.9968

 


