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1. Main results

The Poisson-Voronoi mosaic is a classical and prominent example of a random mosaic
and is used in a wide range of fields, including astronomy, biology, material sciences, and
telecommunications. If Pλ is a Poisson point process on Q := [−1/2, 1/2]d whose intensity
measure has density λκ( · ) with respect to the Lebesgue measure (d ≥ 2, λ ∈ (0,∞) and
κ is a continuous function on Q bounded away from zero and infinity), the Voronoi cell
v(x) := v(x,Pλ) associated with x ∈ Pλ is the set of all z ∈ Q such that the distance
between z and x is less than the distance between z and any other point of Pλ. Clearly,
v(x) is a random convex polytope and the collection of all v(x) with x ∈ Pλ partitions
Q and is called the Poisson-Voronoi mosaic of Q.

Let A ⊂ Q be a full-dimensional admissible set whose boundary has positive and finite
(d − 1)-dimensional Hausdorff measure. Admissible sets, formally defined in Section 2,
include in particular, convex sets, sets of positive reach, differentiable manifolds with
smooth boundary as well as certain finite unions of such sets. Given such A ⊂ Q, the
Poisson-Voronoi approximation PVλ(A) of A is the union of all Voronoi cells v(x) with
x ∈ A, i.e.,

PVλ(A) :=
∪

x∈Pλ∩A

v(x) .
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2 C. Thäle and J.E. Yukich

Typically A is an unknown set having unknown geometric characteristics such as volume
or surface area. Notice that PVλ(A) is a random polyhedral approximation of A, which
closely approximates A as λ becomes large. One might expect that the volume and surface
area of PVλ(A), respectively denoted by Vλ(A) and Sλ(A), also closely approximate the
volume and surface area of A. Our first goal is to show that this is indeed the case,
though the surface area asymptotics involve a universal correction factor. For sets A
which are convex or which have a smooth boundary, first-order asymptotics have been
previously established in [9, 21, 25, 31]; second-order asymptotics for sets A having a
smooth boundary are given in [31], while [28] provides second-order inequalities in case
that A is a convex set. We extend the limit theory of these papers and obtain first- and
second-order asymptotics whenever A belongs to the more general class of admissible
sets. In particular we show that the variance asymptotics for Vλ(A) are proportional to
the κ-weighted surface content of A, resolving a conjecture implicit in Remark 2.2 of
[25]. The approach relies on a general and far-reaching Steiner-type formula from [10],
together with stabilization properties of geometric functionals of the Poisson-Voronoi
mosaic.

In the sequel, we write f(λ) ∼ c g(λ) for real-valued functions f and g and constants
c ∈ [0,∞) if lim

λ→∞
f(λ)/g(λ) = c. Throughout, we denote the s-dimensional Hausdorff

measure by Hs, s ∈ [0,∞). Furthermore, we say that ∂A contains a subset Γ of differ-
entiability class C2 with Hd−1(Γ) ∈ (0,∞) if Γ ⊂ ∂A is an open and twice differentiable
(d−1)-dimensional sub-manifold in Rd in the usual sense of differential geometry. Finally,
for γ ∈ R we define the κ-weighted surface content

Hd−1
κ,γ (∂A) :=

∫
∂A

κ(x)1−γ/d Hd−1(dx) .

Observe that Hd−1
κ,γ (∂A) reduces to the usual surface content Hd−1(∂A) of ∂A if either

γ = d and κ is arbitrary or κ ≡ 1 and γ ∈ R is arbitrary.

Theorem 1.1. There are constants c1, c2 ∈ (0,∞) depending only on the dimension d
such that

EVλ(A)− V (A) ∼ c1 λ
− 1

d Hd−1(∂A) and ESλ(A) ∼ c2 Hd−1
κ,d−1(∂A) .

Moreover, there are constants c3, c4,1, c4,2 ∈ [0,∞) depending only on d such that

Var[Vλ(A)] ∼ c3 λ
−1− 1

d Hd−1(∂A)

and
Var[Sλ(A)] ∼ λ−1+ 1

d

(
c4,1Hd−1

κ,2(d−1)(∂A) + c4,2Hd−1
κ2,d−1(∂A)

)
.

If ∂A contains a subset Γ of differentiability class C2 with Hd−1(Γ) ∈ (0,∞), and if
κ ≡ 1, then c3 and c4 := c4,1 + c4,2 are strictly positive.

Next, we turn to other metric parameters of the Poisson-Voronoi approximation, which
can be handled by our general set-up. To this end, for ℓ ∈ {0, . . . , d − 1} denote by
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Poisson-Voronoi approximation 3

skelℓ(PVλ(A)) the union of all ℓ-dimensional faces belonging to ∂(PVλ(A)), the boundary

of PVλ(A), and let H
(ℓ)
λ (A) be the ℓ-dimensional Hausdorff measure of skelℓ(PVλ(A)).

More formally, if Fℓ(P ) stands for the collection of ℓ-dimensional faces of a polytope P ,
then

H
(ℓ)
λ (A) :=

∑
x∈Pλ
x∈A

∑
f∈Fℓ(v(x))

f⊂∂(PVλ(A))

H(ℓ)(f) .

Note that H
(d−1)
λ (A) coincides with Sλ(A) considered in Theorem 1.1.

Theorem 1.2. Let ℓ ∈ {0, . . . , d − 1}. Then there are constants c5 ∈ (0,∞) and
c6,1, c6,2 ∈ [0,∞) depending only on d and ℓ such that

EH
(ℓ)
λ (A) ∼ c5 λ

1− 1
d−

ℓ
d Hd−1

κ,ℓ (∂A)

and
Var[H

(ℓ)
λ (A)] ∼ λ1− 1

d−
2ℓ
d

(
c6,1 Hd−1

κ,2ℓ(∂A) + c6,2 Hd−1
κ2,ℓ(∂A)

)
.

If ∂A contains a subset Γ of differentiability class C2 with Hd−1(Γ) ∈ (0,∞), and if
κ ≡ 1, then c6 := c6,1 + c6,2 is strictly positive.

With the exception of H
(0)
λ (A), the number of vertices on ∂(PVλ(A)), we have investi-

gated only metric parameters of the Poisson-Voronoi approximation, namely the volume,
the surface area and the Hausdorff measure of lower-dimensional skeletons. On the other
hand, the combinatorial complexity of PVλ(A) is also of interest. For example, it is nat-
ural to ask how many ℓ-dimensional faces (ℓ ∈ {0, . . . , d − 1}) belong to ∂(PVλ(A)). In
contrast to volume and surface area, combinatorial parameters of the Poisson-Voronoi
approximation have apparently not been studied in the literature. The general theory
developed in Section 2 allows us to investigate such parameters. To state the result,

for ℓ ∈ {0, . . . , d − 1} we let f
(ℓ)
λ (A) be the number of ℓ-dimensional faces belonging to

∂(PVλ(A)). Note that f
(0)
λ (A) = H

(0)
λ (A).

Theorem 1.3. Let ℓ ∈ {0, . . . , d − 1}. Then there are constants c7 ∈ (0,∞) and
c8,1, c8,2 ∈ [0,∞) depending only on the dimension d and on ℓ such that

E f
(ℓ)
λ (A) ∼ c7 λ

1− 1
d Hd−1

κ,0 (∂A)

and
Var[f

(ℓ)
λ (A)] ∼ λ1− 1

d

(
c8,1 Hd−1

κ,0 (∂A) + c8,2 Hd−1
κ2,0(∂A)

)
.

If ∂A contains a subset Γ of differentiability class C2 with Hd−1(Γ) ∈ (0,∞), and if
κ ≡ 1, then c8 := c8,1 + c8,2 is strictly positive.
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4 C. Thäle and J.E. Yukich

Next, we consider certain functionals of Voronoi cells intersecting only a part of the
boundary of A. Formally, given an admissible set A and A0 ⊂ ∂A such that Hd−1(A0) ∈
(0,∞), define the Poissson-Voronoi zone PVZλ(A0) of A0 by

PVZλ(A0) :=
∪

x∈Pλ
v(x)∩A0 ̸=∅

v(x) .

Given ℓ ∈ {0, . . . , d − 1}, let f̂
(ℓ)
λ (A0) denote the number of ℓ-dimensional faces of

PVZλ(A0). We emphasize that this construction is very similar to the construction of
a zone in a hyperplane arrangement, see [16]. Following these classical ideas we define

the complexity of PVZλ(A0) as Coλ(A0) := f̂
(0)
λ (A0) + . . . + f̂

(d−1)
λ (A0). The zone the-

orem in discrete geometry (see Theorem 6.4.1 in [16]) asserts that the complexity of a
zone of an arbitrary hyperplane arrangement is of surface-order. Our next result shows a
similar surface-order behaviour for the expectation and the variance in case of a random
Poisson-Voronoi zone.

Theorem 1.4. There are constants c9 ∈ (0,∞) and c10,1, c10,2 ∈ [0,∞) depending only
on d such that

ECoλ(A0) ∼ c9 λ
1− 1

d Hd−1
κ,0 (A0)

and
Var[Coλ(A0)] ∼ λ1− 1

d

(
c10,1 Hd−1

κ,0 (A0) + c10,2 Hd−1
κ2,0(A0)

)
.

If A0 contains a subset Γ of differentiability class C2 with Hd−1(Γ) ∈ (0,∞), and if
κ ≡ 1, then c10 := c10,1 + c10,2 is strictly positive.

Another application of our results concerns the iterated Poisson-Voronoi approxima-
tion, defined recursively as follows:

PV
(1)
λ (A) := PVλ(A) and PV

(n)
λ (A) := PVnλ(PV

(n−1)
λ (A))

for integers n ≥ 1 (note that the intensity used in the nth iteration is nλ, where λ > 0 is

fixed). By V
(n)
λ , S

(n)
λ and f

ℓ,(n)
λ we denote the volume, the surface area and the number

of ℓ-dimensional faces (ℓ ∈ {0, . . . , d−1}) of the nth iterated Poisson-Voronoi approxima-

tion, respectively. Moreover, by H
ℓ,(n)
λ we indicate the ℓ-dimensional Hausdorff measure

of the ℓ-skeleton of PV
(n)
λ (A), ℓ ∈ {0, . . . , d}. Note that our construction of the iterated

Poisson-Voronoi approximation is close to that of so-called aggregate mosaics introduced
in [29]. The expectation analysis of functionals of the iterated Poisson-Voronoi mosaic
yields the following result. Variance asymptotics are less tractable and we shall omit
them. For simplicity, we shall assume that the Poisson point process Pλ is homogeneous
with κ ≡ 1.
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Theorem 1.5. Suppose that κ ≡ 1 and let c1 and c2 be the constants from Theorem
1.1, c5 the constant from Theorem 1.2, and c7 the constant from Theorem 1.3. Put
c2,n := 1 + c2 + c22 + . . .+ cn−1

2 for integers n ≥ 1. Then

EV
(n)
λ − V (A) ∼ c1 c2,n λ

− 1
d Hd−1(∂A) ,

ES
(n)
λ − S(A) ∼ c2 c2,n λ

− 1
d Hd−1

κ,d−1(∂A) ,

EH
ℓ,(n)
λ ∼ c5 c2,n λ

1− 1
d−

ℓ
d Hd−1

κ,ℓ (∂A) ,

E f
ℓ,(n)
λ ∼ c7 c2,n λ

1− 1
d Hd−1

κ,0 (∂A) .

Remarks. (i) Theorem 1.1 (related work). The set PVλ(A) was introduced in [13]
where it was shown that lim

λ→∞
Vol(A∆Aλ) = 0 almost surely, but only when d = 1.

This almost sure limit was extended in [21] to all dimensions d ≥ 1. When Pλ

denotes a homogeneous Poisson point process on Rd having intensity λ, we have
that Vλ(A) is an unbiased estimator of V (A) (cf. [25]), which makes PVλ(A) of
interest in image analysis, non-parametric statistics, and quantization; see also
Section 1 of [13] and Section 1 of [9].

(ii) Invariance of limits with respect to geometry. The common thread linking our re-
sults is that the first- and second-order asymptotic behavior of our functionals are
geometry independent. By this we mean that the mean and variance asymptotics
are not influenced by the precise geometric structure of the given admissible set A,
but are rather controlled only by the κ-weighted surface content of A.

(iii) The constants in Theorems 1.1 – 1.5. The explicit dependency of the constants
ci, i ≥ 1, in Theorems 1.1 – 1.5 on the dimension d and the parameter ℓ is given
explicitly in the general results of Section 2, especially the upcoming limits (2.16)
and (2.17). More precisely, let Phom

1 be a homogeneous Poisson point process on
Rd of unit intensity and put Rd−1

+ := Rd−1 × R+. Let

PV(Rd−1
+ ) :=

∪
x∈Phom

1 ∩Rd−1
+

v(x)

be the Poisson-Voronoi approximation of Rd−1
+ . Then the general results show that

the expectation and variance asymptotics are controlled by the κ-weighted surface
content of A as well as by the expected behavior of metric and combinatorial
parameters of the simpler object PV(Rd−1

+ ). Finding explicit numerical values for
the constants ci, i ≥ 1, arising in expectation and variance asymptotics is a separate
problem which we do not tackle here.

(iv) Extensions of Theorems 1.1 – 1.5. By Theorem 2.1 below, the expectation asymp-
totics in Theorems 1.1 – 1.5 may be upgraded to a weak law of large numbers
holding in the L1- and L2-sense.

imsart-bj ver. 2014/10/16 file: TYRev2.tex date: May 1, 2015



6 C. Thäle and J.E. Yukich

(v) General surface-order results. Although Theorems 1.1 – 1.5 only deal with statistics
of the Poisson-Voronoi approximation, we emphasize that they follow from general
theorems (presented in Section 2 below) for general surface-order stabilizing func-
tionals. These general theorems are applicable in a wider context, establishing, for
example, expectation and variance asymptotics for the number of maximal points
in a random sample, as described in Remark (iii) after Theorem 2.2.

The rest of this paper is structured as follows. In Section 2 we make precise our
framework, in particular we introduce the class of admissible sets and score functions.
We also state there two general theorems which yield Theorems 1.1 – 1.5. Their proofs
form the content of Section 3, while Section 4 contains the proofs of Theorems 1.1 – 1.5.
Section 5 establishes the asserted variance lower bounds in Theorems 1.1 – 1.4.

2. Framework and general theorems

Let Pλ denote a Poisson point process on Rd for some d ≥ 2 whose intensity measure
has density λκ with respect to the Lebesgue measure on Rd, where λ ∈ (0,∞) but now
κ is a bounded function on Rd not necessarily bounded away from zero. Furthermore,
let A ⊂ Rd be a closed set such that its boundary ∂A has finite (d − 1)-dimensional
Hausdorff measure. We consider in this section general statistics of the form∑

x∈Pλ

ξ(x,Pλ, ∂A) , (2.1)

where ξ is a certain score function, which associates to a point x ∈ Pλ a real number,
which is allowed to depend on the surrounding point configuration Pλ as well as on the
set A via its boundary ∂A. To introduce a re-scaled version and to simplify notation we
use the abbreviation ξλ(x,Pλ, ∂A) := ξ(λ1/dx, λ1/dPλ, λ

1/d(∂A)) and define

Hξ(Pλ, ∂A) :=
∑
x∈Pλ

ξλ(x,Pλ, ∂A) . (2.2)

The focus of this paper is on score functions which depend on the geometry of the set
A in that ξ(x,Pλ, ∂A) decays with the distance of x to ∂A. Moreover, we require ξ to
satisfy a weak spatial dependency condition.

To make the framework precise we first introduce terminology, including the collection
A(d) of admissible sets A ⊂ Rd as well as the collection Ξ of admissible score functions.
The reader may wonder about our choice of admissible sets. The admissible sets described
below have the attractive feature that their so-called extended support measures are ‘well-
behaved’ and satisfy a Steiner-type formula (2.3), which is a far reaching consequence of
the classic Steiner formula. This key formula, proved in [10], essentially replaces the co-
area formula applicable in the surface-order asymptotics of functionals of sets A having
a smooth boundary of bounded curvature [31].
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Poisson-Voronoi approximation 7

A Steiner-type formula. Let A ⊂ Rd be a non-empty closed set and denote by
exo(A) the exoskeleton of A, that is, the set of all x ∈ Rd \A which do not have a unique
nearest point in A. Then Theorem 1G in [8] says that Hd(exo(A)) = 0. Thus, Hd-almost
every point x in Rd \A has a unique nearest point in A, denoted by πA(x). The (reduced)
normal bundle N(A) ⊂ Rd × Sd−1 of A is given by

N(A) :=

{(
πA(x),

x− πA(x)

∥x− πA(x)∥

)
: x ∈ Rd \

(
A ∪ exo(A)

)}
,

where here and below ∥ · ∥ stands for the usual Euclidean distance and Sd−1 stands for
the Euclidean unit sphere in Rd. Lemma 2.3 in [10] implies that N(A) is a countably
(d− 1)-rectifiable subset of Rd × Sd−1 in the sense of Federer [7, Paragraph 3.2.14].

Let A be as above. The reach function of A is a strictly positive function on N(A)
defined as

δ(A, x, n) := inf{r ≥ 0 : x+ rn ∈ exo(A)}

for all (x, n) ∈ N(A). The reach of A is

reach(A) := inf{δ(A, x, n) : (x, n) ∈ N(A)}

with the convention that reach(A) = +∞ if δ(A, x, n) = +∞ for all (x, n) ∈ N(A). The
set A is said to be of positive reach if reach(A) ∈ (0,+∞]. In particular, if A is convex,
then reach(A) = +∞, and vice versa. We also remark that any compact d-manifold with
C2-smooth boundary has positive reach, cf. [10].

If A∗ denotes the closure of the complement of A, we see that N(∂A) := N(A)∪N(A∗)
and we define the extended normal bundle of A as Ne(A) := N(A) ∪ TN(A∗), where T
is the reflection map T : Rd × Sd−1 → Rd × Sd−1, (x, n) 7→ (x,−n). Further, denote the
reach function of A in this context by δ+(A, · , · ) ∈ [0,+∞] and define the interior reach
function δ−(A, x, n) := −δ(A∗, x,−n) ∈ [−∞, 0] for (x, n) ∈ Rd × Sd−1.

From Theorem 5.2 in [10] we know that for each A as above there exist uniquely
determined signed measures ν0, . . . , νd−1 on Rd × Sd−1, the so-called extended support
measures of A, vanishing outside of Ne(A), such that the Steiner-type formula∫

Rd\∂A
f(x) dx =

d−1∑
j=0

ωd−j

∫
Ne(A)

∫ δ+(A,x,n)

δ−(A,x,n)

rd−j−1 f(x+ rn) drνj(d(x, n)) (2.3)

holds for any non-negative measurable bounded function f : Rd → R with compact
support. Here, for integers j ≥ 0, ωj = jκj := 2πj/2/Γ(j/2) stands for the surface
content of the j-dimensional unit sphere. The signed measures ν0, . . . , νd−1 encode in
some sense the singularities of the boundary of A. Although this is not visible in our
notation, we emphasize that the measures ν0, . . . , νd−1 depend on A.

Admissible sets. Following [10], we denote by

∂+A := {x ∈ ∂A : (x, n) ∈ N(A) for some n ∈ Sd−1}
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8 C. Thäle and J.E. Yukich

the positive boundary of A and define Nor(A, x) := {n ∈ Sd−1 : (x, n) ∈ N(A)} for
x ∈ ∂+A. The normal cone at x ∈ ∂+A is then nor(A, x) := {an : a ≥ 0, n ∈ Nor(A, x)}
and we put

∂++A := {x ∈ ∂+A : dim(nor(A, x)) = 1} , (2.4)

where dim(B) denotes the dimension of the affine hull of a set B ⊂ Rd. Clearly, ∂++A is
the disjoint union of ∂1A and ∂2A, where

∂kA = {x ∈ ∂++A : card(Nor(A, x)) = k} , k ∈ {1, 2} . (2.5)

Let us recall from [14] that a closed set A ⊂ Rd is called gentle if

(i) Hd−1(Ne(A) ∩ (B × Sd−1)) < ∞ for all bounded Borel sets B ⊂ Rd,
(ii) for Hd−1-almost all x ∈ ∂A there are non-degenerate balls B1 and B2 containing x

and satisfying B1 ⊂ A and int(B2) ⊂ Rd \A, where int(B2) stands for the interior
of B2.

These assumptions ensure, for example thatHd−1(∂A\∂+A) = 0, cf. Equation (5) in [14].
The positive boundary of any closed subset of Rd is (Hd−1, d−1)-rectifiable [10] and thus
the boundary of every gentle set is (Hd−1, d−1)-rectifiable, too. In other words, there are
Lipschitz maps fi : Rd−1 → Rd, i = 1, 2, . . . such that Hd−1(∂A \∪i≥1fi(Rd−1)) = 0, see
e.g. [7, Paragraph 3.2.14]. In particular, at Hd−1-almost every x ∈ ∂A there is a unique
tangent hyperplane denoted by Tx := Tx(∂A).

Moreover, we recall from [14] that the extended support measures νj of gentle sets
have locally finite total variation measures |νj | for all j ∈ {0, . . . , d − 1}. In particular,
|νj |(Ne(A)) < ∞ if A is compact.

We now define the class A(d) of admissible sets to be the class of compact sets A ⊂ Rd

which are gentle, regular closed and satisfy Hd−1(∂2A) = 0. (Recall that a set is reg-
ular closed if it coincides with the closure of its interior.) Here, the assumption that
Hd−1(∂2A) = 0 simplifies the structure of the measure νd−1, to be exploited later. Regu-
larity excludes sets with lower-dimensional ‘tentacles’ attached (e.g. a ball with attached
line segments).

The class of gentle and compact sets is rather general and the support measures νj of
such sets simplify to well known objects in special situations. We introduce the following
classes of sets:

• Kd is the class of convex bodies in Rd, i.e., compact convex sets A ⊂ Rd with
non-empty interior,

• Rd is the convex ring, consisting of finite unions of convex bodies in Rd,
• Md denotes the class of compact d-dimensional manifolds in Rd with twice differ-
entiable boundary,

• Pd is the family of compact sets A ⊂ Rd with positive reach having non-empty
interior,

• UPd denotes the class of all subsets A = A1 ∪ . . . ∪ An ⊂ Rd, n ≥ 1, for sets
A1, . . . , An ∈ Pd and such that

∩
i∈I Ai ∈ Pd for any I ⊂ {1, . . . , n}.
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Poisson-Voronoi approximation 9

These classes satisfy the inclusions: Kd ⊂ Pd, Kd ⊂ Rd, Pd ⊂ UPd, Md ⊂ Pd and Rd ⊂
UPd. If A ∈ Kd then the extended support measures νj are related to the generalized
curvature measures of A considered in convex geometry, cf. [26]. A similar comment
applies if A ∈ Pd is a set with positive reach, for which curvature measures have been
introduced in [6]. In both cases it holds that ∂+A = ∂A. If A ∈ Kd then A satisfies
Hd−1(∂2A) = 0. The set classes Kd and Pd only contain gentle sets. For the set classesRd

and UPd curvature measures are defined by additive extension, while for Md curvature
measures are defined via classical differential-geometric methods, see Section 3 in [10] for
a detailed discussion. Moreover, for sets A ∈ UPd we have that Hd−1(∂A \ ∂+A) = 0
(see [10, p. 251]). Furthermore, if A ∈ Rd is regular closed, then A is gentle according
to [14, Proposition 2]. Additionally, many UPd-sets (namely those admitting a so-called
non-osculating representation) are gentle by Proposition 3 in [14].

Admissible score functions. We next consider the collection Ξ of admissible score
functions. By this we mean the collection of all real-valued Borel measurable functions
ξ(x,X , ∂A) defined on triples (x,X , ∂A), where X ⊂ Rd is locally finite, x ∈ X , A ∈ A(d),
and such that ξ is translation and rotation invariant. By the latter two properties we
respectively mean that ξ(x,X , ∂A) = ξ(x + z,X + z, ∂A + z) and that ξ(x,X , ∂A) =
ξ(ϑx, ϑX , ϑ(∂A)) for all z ∈ Rd, rotations ϑ ∈ SO(d) and input (x,X , ∂A). If x /∈ X , we
abbreviate ξ(x,X ∪ {x}, ∂A) by ξ(x,X , ∂A).

We recall now the concept of a stabilizing functional which was introduced in [22, 23,
24] after earlier works [12, 15]; see also the surveys [27, 30]. Roughly speaking, a functional
stabilizes if its value at a given point only depends on a local random neighborhood and
is unaffected by changes in point configurations outside of it. Following [31] we need to
go a step further in the standard framework to account for the dependency of functionals
ξ ∈ Ξ on surfaces.

To make this precise, denote by Br(x) the Euclidean ball of radius r ∈ (0,∞) and
centre x ∈ Rd and by Phom

τ a homogeneous Poisson point processes on Rd of intensity
τ ∈ (0,∞). Say that ξ ∈ Ξ is homogeneously stabilizing if for all τ ∈ (0,∞) and all
(d − 1)-dimensional hyperplanes H, there is an almost surely finite random variable
R := R(ξ,Phom

τ ,H) depending on ξ, Phom
τ and H, the so-called radius of stabilization,

such that
ξ(0,Phom

τ ∩BR(0), H) = ξ(0, (Phom
τ ∩BR(0)) ∪ A, H) (2.6)

for all locally finite sets A ⊂ BR(0)
c, where 0 stands for the origin in Rd. Given (2.6),

the definition of ξ extends to Poisson input on all of Rd, that is

ξ(0,Phom
τ ,H) = lim

r→∞
ξ(0,Phom

τ ∩Br(0),H) .

Given A ∈ A(d), say that ξ is exponentially stabilizing with respect to the pair
(Pλ, ∂A) if for all x ∈ Rd there is a random variable R := R(ξ, x,Pλ, ∂A), also called a
radius of stabilization, taking values in [0,∞) with probability one, such that

ξλ(x,Pλ ∩Bλ−1/dR(x), ∂A) = ξλ(x, (Pλ ∩Bλ−1/dR(x)) ∪ A, ∂A) (2.7)
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10 C. Thäle and J.E. Yukich

for all locally finite A ⊂ Rd \Bλ−1/dR(x), and the tail probability satisfies

lim sup
t→∞

1

t
log sup

λ>0,x∈Rd

P[R(ξ, x,Pλ, ∂A) > t] < 0 .

Surface-order growth for the sums (2.2) involves finiteness of the integrated score
ξλ(x+rλ−1/dn,Pλ, ∂A) over r ∈ R. Thus, it is natural to require the following condition,
see [31]. Given A ∈ A(d) and p ∈ [1,∞), say that ξ satisfies the p-th moment condition
with respect to ∂A if there is a bounded integrable function Gξ,p := Gξ,p,∂A : R → R+

with
∫∞
−∞ rd−1(Gξ,p(r))1/p dr < ∞ and such that for all r ∈ R we have

sup
z∈Rd∪∅

sup
(x,n)∈Ne(A)

sup
λ>0

E |ξλ(x+ rλ−1/dn,Pλ ∪ z, ∂A)|p ≤ Gξ,p(|r|) . (2.8)

Given A ∈ A(d), recall for Hd−1-almost all x ∈ ∂A that Tx := Tx(∂A) is the unique
hyperplane tangent to ∂A at x. For x ∈ ∂A, we put Hx := T0(∂A − x). The score ξ is
said to be well approximated by Pλ input on half-spaces if for all A ∈ A(d), almost all
x ∈ ∂A, and all w ∈ Rd, we have

lim
λ→∞

E |ξ(w, λ1/d(Pλ − x), λ1/d(∂A− x))− ξ(w, λ1/d(Pλ − x),Hx)| = 0 . (2.9)

General theorems giving first- and second-order asymptotics. The results as-
serted in Section 1 are consequences of general limit theorems giving expectation and
variance asymptotics for the statistics (2.2). We first describe the general theory and
then, in Section 4, show how to deduce the assertions of Section 1. The general limit
theorems given here extend Theorems 1.1 and 1.2 in [31] to the class of admissible sets
and they yield the first- and second-order asymptotics for statistics of other surfaces, as
discussed in Remark (iii) below.

For a score function ξ ∈ Ξ we put

µ(ξ, ∂A) :=

∫
∂1A

∫ ∞

−∞
Eξ(0+ sn,Phom

κ(x),R
d−1)κ(x) dsHd−1(dx) , (2.10)

where n is the unique unit normal at 0 with respect to Rd−1. We now state a general
result giving expectation asymptotics for sums of score functions. Let C(∂A) denote the
set of functions on Rd which are continuous at all points x ∈ ∂A.

Theorem 2.1. Let A ∈ A(d) and κ ∈ C(∂A). Suppose that ξ ∈ Ξ is homogeneously
stabilizing (2.6), satisfies the moment condition (2.8) for some p ∈ [1,∞), and is well
approximated by Pλ input on half-spaces as at (2.9). Then for m ∈ {1, 2}, we have the
following weak law of large numbers:

lim
λ→∞

λ−(d−1)/d Hξ(Pλ, ∂A) = µ(ξ, ∂A) in Lm . (2.11)
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Next, we turn to variance asymptotics and define for x, x′ ∈ Rd, τ ∈ (0,∞), and all
(d− 1)-dimensional hyperplanes H,

cξ(x, x′;Phom
τ ,H) :=E ξ(x,Phom

τ ∪ {x′},H)ξ(x′,Phom
τ ∪ {x},H)

− E ξ(x,Phom
τ ,H)E ξ(x′,Phom

τ , H) .

Moreover, define σ2(ξ, ∂A) by

σ2(ξ, ∂A) := µ(ξ2, ∂A)+∫
∂1A

∫
Rd−1

∫ ∞

−∞

∫ ∞

−∞
cξ(0+ rn, p+ sn;Phom

κ(x),R
d−1)κ(x)2dsdrdpHd−1(dx) .

(2.12)

The following general result gives variance asymptotics for sums of score functions.

Theorem 2.2. Let A ∈ A(d) and κ ∈ C(∂A). We assume that ξ ∈ Ξ is homogeneously
stabilizing (2.6), exponentially stabilizing (2.7), satisfies the moment condition (2.8) for
some p ∈ (2,∞) and is well approximated by Pλ input on half-spaces as at (2.9). Then

lim
λ→∞

λ−(d−1)/d Var[Hξ(Pλ, ∂A)] = σ2(ξ, ∂A) . (2.13)

Some of the applications presented in Section 1 require the limit theory for the non
re-scaled sums

∑
x∈Pλ

ξ(x,Pλ, ∂A). To state the result in this case, call a score function
ξ homogeneous of order γ ∈ R if for all a ∈ (0,∞),

ξ(ax, aX , a(∂A)) = aγ ξ(x,X , ∂A) .

When ξ is homogeneous of order γ it follows that∑
x∈Pλ

ξ(x,Pλ, ∂A) = λ−γ/d Hξ(Pλ, ∂A) .

Homogeneity, together with the distributional identity Pκ(x)
D
= κ(x)−1/d P1 gives

µ(ξ, ∂A) =

∫ ∞

−∞
Eξ(0+ sn,Phom

1 ,Rd−1) ds

∫
∂1A

κ(x)1−γ/d Hd−1(dx)

=

∫ ∞

−∞
Eξ(0+ sn,Phom

1 ,Rd−1) ds · Hd−1
κ,γ (∂A) (2.14)

and

σ2(ξ, ∂A) =

∫ ∞

−∞
Eξ2(0+ sn,Phom

1 ,Rd−1) ds

∫
∂1A

κ(x)1−2γ/d Hd−1(dx)

+

∫
Rd−1

∫ ∞

−∞

∫ ∞

−∞
cξ(0+ rn, p+ sn;Phom

1 ,Rd−1) dsdrdp

∫
∂1A

κ(x)2−2γ/d Hd−1(dx)
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12 C. Thäle and J.E. Yukich

=

∫ ∞

−∞
Eξ2(0+ sn,Phom

1 ,Rd−1) ds · Hd−1
κ,2γ(∂A)

+

∫
Rd−1

∫ ∞

−∞

∫ ∞

−∞
cξ(0+ rn, p+ sn;Phom

1 ,Rd−1) dsdrdp · Hd−1
κ2,γ(∂A) .

(2.15)

Consequently, with µ(ξ, ∂A) and σ2(ξ, ∂A) as in (2.14) and (2.15) respectively, we have
under the conditions of Theorems 2.1 and 2.2 that

lim
λ→∞

λ−(d−1−γ)/d
∑
x∈Pλ

ξ(x,Pλ, ∂A) = µ(ξ, ∂A) (2.16)

in Lm for m ∈ {1, 2}, and

lim
λ→∞

λ−(d−1−2γ)/d Var
∑
x∈Pλ

ξ(x,Pλ, ∂A) = σ2(ξ, ∂A) . (2.17)

Remarks. (i) Convergence of random measures. The methods presented here also
yield expectation and variance asymptotics for integrals of the empirical measures∑

x∈Pλ

ξλ(x,Pλ, ∂A)δx

against elements of C(∂A) (here, δx stands for the unit-mass Dirac measure at x).
The details of this extension are straightforward and may be found in e.g. [30],
which deals with volume-order asymptotics for sums of score functions.

(ii) Central limit theorems. Say that ξ decays exponentially fast with respect to the
distance to ∂A if for all p ∈ [1,∞) the function Gξ,p defined at (2.8) satisfies

lim sup
|u|→∞

|u|−1 logGξ,p(|u|) < 0 . (2.18)

Let Φ( · ) denote the distribution function of a standard normal random variable. If
ξ ∈ Ξ decays exponentially fast as in (2.18) and if ξ satisfies the moment condition
(2.8) with p = 3, then by Theorem 1.3 of [31], the statistics (2.2) satisfy a central
limit theorem

sup
x∈R

∣∣∣P[Hξ(Pλ, ∂A)− EHξ(Pλ, ∂A)√
Var[Hξ(Pλ, ∂A)]

]
− Φ(x)

∣∣∣ ≤ r(λ)

with rate function

r(λ) := c(log λ)3d+1λ(d−1)/d(Var[Hξ(Pλ, ∂A)])3/2 ,

where c > 0 is a constant not depending on λ. In particular, if σ2(ξ, ∂A) is strictly
positive, then r(λ) = c(log λ)3d+1λ−(d−1)/2d. This is the case for the examples in
Section 1, provided that κ ≡ 1 and that ∂A contains a C2-smooth subset with
positive Hd−1-measure.
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(iii) Further applications of general results. Theorems 2.1 and 2.2 have applications to
statistics of surfaces going beyond those arising in Poisson-Voronoi approximation.
For instance, these general theorems provide the limit theory for functionals of
surfaces of germ-grain models, including for example the limit theory for the number
of exposed tangent points to Boolean models, as described in Section 3.2 of [19].
Another application of the general theory involves the number of maximal points in
a sample, which goes as follows. A point x ∈ Pλ is called maximal if the Minkowski
sum (R+)

d⊕x contains no other point of Pλ besides x, i.e., if ((R+)
d⊕x)∩Pλ = {x}.

The number Mλ of maximal points of Pλ has attracted considerable interest in the
literature, see [1, 2, 3, 5, 11, 31]. These works restrict to domains A that are either
piecewise linear, convex or smooth. We may use Theorems 2.1 and 2.2 to unify
and extend these results to domains A which are admissible sets, as illustrated
by the following statement, whose proof follows from modifications of the proof
of Theorem 2.5 in [31] and is left to the reader. Let κ be a density supported on
A := {(u, v) ∈ Rd−1 × R : u ∈ D, 0 ≤ v ≤ f(u)}, where D ⊂ Rd−1 and f : D → R,
and assume that A is an admissible set, i.e., A ∈ A(d). We further assume that the
partial derivatives of f exist a.e. and are bounded away from zero and infinity. If Pλ

is a Poisson point process whose intensity measure has density λκ with respect to
Lebesgue measure then there are constants c11 ∈ (0,∞) and c12 ∈ [0,∞) depending
only on d, κ and A such that

EMλ ∼ c11λ
1− 1

d and Var[Mλ] ∼ c12λ
1− 1

d .

3. Proofs of Theorems 2.1 and 2.2

To keep the paper self-contained, we give three preparatory lemmas pertaining to the
re-scaled scores ξλ, λ > 0. These are re-formulations of Lemmas 3.1 – 3.3 in [31], which
we adopt to our more general set-up. The following lemmas do not require continuity of
κ but instead use that a.e. x ∈ Rd is a Lebesgue point of κ, that is to say

1

εd

∫
Bε(x)

|κ(y)− κ(x)| dy

tends to zero as ε ↓ 0. Given x ∈ ∂1A, with ∂1A defined at (2.5), recall that Hx :=
T0(∂A− x) is the unique tangent hyperplane to ∂A− x at 0 with unit normal n(x). Let
0x denote a point at the origin of Hx.

Lemma 1. Fix A ∈ A(d). Assume that ξ is homogeneously stabilizing as at (2.6),
satisfies the moment condition (2.8) for some p ∈ (1,∞) and is well approximated by Pλ

input on half-spaces (2.9). Then for all x ∈ ∂1A, w ∈ Rd, and r ∈ R we have

lim
λ→∞

E ξλ(x+ rλ−1/dn(x) + λ−1/dw,Pλ, ∂A) = E ξ(0x + rn(x) + w,Phom
κ(x), Hx) . (3.1)
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14 C. Thäle and J.E. Yukich

Lemma 2. Fix A ∈ A(d). Assume that ξ is homogeneously stabilizing as at (2.6),
satisfies the moment condition (2.8) for some p ∈ (2,∞), and is well approximated by
Pλ input on half-spaces (2.9). Given x ∈ ∂1A, v ∈ Rd, and r ∈ R, we put for λ ∈ (0,∞),

Xλ := ξλ(x+ rλ−1/dn(x),Pλ ∪ {x+ rλ−1/dn(x) + λ−1/dv}, ∂A) ,

Yλ := ξλ(x+ rλ−1/dn(x) + λ−1/dv,Pλ ∪ {x+ rλ−1/dn(x)}, ∂A) ,

X := ξ(0x + rn(x),Phom
κ(x) ∪ {0x + rn(x) + v},Hx) ,

Y := ξ(0x + rn(x) + v,Phom
κ(x) ∪ {0x + rn(x)},Hx) .

Then lim
λ→∞

E [XλYλ] = E [XY ].

Lemma 3. Fix A ∈ A(d). Let ξ be exponentially stabilizing as at (2.7) and assume the
moment condition (2.8) holds for some p ∈ (2,∞). Then there is a constant C ∈ (0,∞)
such that for all w, v ∈ Rd and λ ∈ (0,∞), we have∣∣E ξλ(w,Pλ ∪ {w + λ−1/dv}, ∂A)ξλ(w + λ−1/dv,Pλ ∪ {w}, ∂A)

− E ξλ(w,Pλ, ∂A)E ξλ(w + λ−1/dv,Pλ, ∂A)
∣∣

≤ C(E ξλ(w,Pλ ∪ {w + λ−1/dv}, ∂A)p)1/p

× (E ξλ(w + λ−1/dv,Pλ ∪ {w}, ∂A)p)1/p exp(−C−1∥v∥) .

In particular, there is a constant c ∈ (0,∞) such that if w = x+ rλ−1/dn(x), then∣∣E ξλ(w,Pλ ∪ {w + λ−1/dv}, ∂A)ξλ(w + λ−1/dv,Pλ ∪ {w}, ∂A)

− E ξλ(w,Pλ, ∂A)E ξλ(w + λ−1/dv,Pλ, ∂A)
∣∣ ≤ cGξ,p(|r|)1/p exp(−c−1∥v∥) .

Proof. The first asserted inequality follows as in either Lemma 4.2 of [20] or Lemma
4.1 of [4]. The second assertion follows from the first assertion together with the moment
condition (2.8).

Given these auxiliary lemmas, we may now prove the general results.

Proof of Theorem 2.1. To show (2.11), it is enough to show the expectation asymp-
totics

lim
λ→∞

λ−(d−1)/d E
∑
x∈Pλ

ξλ(x,Pλ, ∂A) = µ(ξ, ∂A) (3.2)

and then follow the method of proof of Theorem 1.1 of [31] to deduce Lm-convergence
for m ∈ {1, 2}.
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To show (3.2), we first apply the Mecke identity [26, Theorem 3.2.5] for Poisson point
processes to obtain

λ−(d−1)/d E
∑
x∈Pλ

ξλ(x,Pλ, ∂A) = λ−(d−1)/d

∫
Rd

Eξλ(x,Pλ, ∂A)λκ(x) dx

= λ1/d

∫
Rd

Eξλ(x,Pλ, ∂A)κ(x) dx ;

recall that we write ξλ(x,Pλ, ∂A) instead of ξλ(x,Pλ ∪ {x}, ∂A) if x /∈ Pλ. We now use
the Steiner-type formula (2.3) to re-write the last integral as

λ1/d
d−1∑
j=0

ωd−j

∫
Ne(A)

∫
T (x,n)

rd−j−1 Eξλ(x+ rn,Pλ, ∂A)κ(x+ rn) dr νj(d(x, n)) ,

where for fixed (x, n) ∈ Ne(A), T (x, n) := [δ−(A, x, n), δ+(A, x, n)]. Upon the substitu-
tion r = λ−1/dr′ we obtain that λ−(d−1)/d E

∑
x∈Pλ

ξλ(x,Pλ, ∂A) equals

d−1∑
j=0

ωd−jλ
−(d−1−j)/d

∫
Ne(A)

∫
λ1/dT (x,n)

(r′)d−j−1 Eξλ(x+ λ−1/dr′n,Pλ, ∂A)

× κ(x+ λ−1/dr′n) dr′ νj(d(x, n)) .

(3.3)

To simplify the notation, write r for r′. By the moment assumption (2.8) with p = 1,
we conclude that, for each j ∈ {0, . . . , d − 1}, the integrand is bounded by the product
|r|d−j−1 Gξ,1(|r|) ∥κ∥∞, implying that∣∣∣∣∣

∫
Ne(A)

∫
λ1/dT (x,n)

rd−j−1 Eξλ(x+ λ−1/drn,Pλ, ∂A)κ(x+ λ−1/drn) dr νj(d(x, n))

∣∣∣∣∣
≤

∫
Ne(A)

∫ ∞

−∞
rd−j−1 Gξ,1(|r|) ∥κ∥∞ dr |νj |(d(x, n))

= ∥κ∥∞ |νj |(Ne(A))

∫ ∞

−∞
rd−j−1 Gξ,1(|r|)) dr .

The integral
∫∞
−∞ rd−j−1 Gξ,1(|r|)) dr is finite by assumption. Moreover, ∥κ∥∞ < ∞ by

assumption and |νj |(Ne(A)) < ∞ since A ∈ A(d). Consequently, taking the limit in (3.3)
as λ → ∞, it follows by the dominated convergence theorem that only the term j = d−1
remains:

lim
λ→∞

λ−(d−1)/d E
∑
x∈Pλ

ξλ(x,Pλ, ∂A)

= 2

∫
Ne(A)

∫ ∞

−∞
lim
λ→∞

Eξλ(x+ λ−1/drn,Pλ, ∂A)

× κ(x+ λ−1/drn)1(r ∈ λ1/dT (x, n)) dr νd−1(d(x, n)) .

(3.4)

imsart-bj ver. 2014/10/16 file: TYRev2.tex date: May 1, 2015



16 C. Thäle and J.E. Yukich

Here, we use the identity ω1 = 2 and we also use that lim
λ→∞

λ1/dT (x, n) = (−∞,∞), which

holds by construction of Ne(A), where the exoskeleton has been excluded. By continuity
of κ on ∂A, we have lim

λ→∞
κ(x+ λ−1/drn) = κ(x). Finally, consider the limit

lim
λ→∞

Eξλ(x+ λ−1/drn,Pλ, ∂A) .

To identify it, we use translation invariance and the definition of ξλ, and write

ξλ(x+ λ−1/drn,Pλ, ∂A) = ξλ(0x + λ−1/drn,Pλ − x, ∂A− x)

= ξ(0x + rn, λ1/d(Pλ − x), λ1/d(∂A− x)) .

The measure νd−1 concentrates, according to the discussion around Proposition 4.1 of
[10, Section 4], on the subset ∂A++ of the boundary ∂A where the normal cone is one
dimensional; recall (2.4). Moreover, since A ∈ A(d), the measure νd−1 in fact concentrates
on the subset ∂1A ⊂ ∂++A (see (2.5)), that is to say, on points of the boundary having
a unique normal vector or tangent hyperplane as in the case of a smooth surface.

Since ξ is well approximated by input on half-spaces, Lemma 1 implies for all (x, n) ∈
Ne(A) with x ∈ ∂1A, that the expectation of the latter expression converges to

lim
λ→∞

E ξ(0x + rn, λ1/d(Pλ − x), λ1/d(∂A− x)) = Eξ(0x + rn,Phom
κ(x),Hx) .

Thus, we obtain from (3.4),

lim
λ→∞

λ−(d−1)/dE
∑
x∈Pλ

ξλ(x,Pλ, ∂A)

= 2

∫
Ne(A)

∫ ∞

−∞
Eξ(0x + rn,Phom

κ(x),Hx)κ(x) dr νd−1(d(x, n)) .

(3.5)

Now, we simplify the last integral and show that it coincides with µ(ξ, ∂A), as given
in (3.2). First, recall that there is a unique unit normal vector n(x) at each x ∈ ∂1A and
define a measure µd−1 on N(A) by

µd−1( · ) =
1

2

∫
∂1A

1((x, n(x)) ∈ · )Hd−1(dx) .

Since A ∈ A(d) it follows by Corollary 2.5 and Proposition 4.1 in [10] that

µd−1( · ) =
1

2

∫
N(A)

1((x, n) ∈ · )H0(x, n)Hd−1(d(x, n)) ,

where H0(x, n) is a certain function depending on the so-called generalized principal
curvatures of A, see Equations (2.13) and (2.24) in [10]. Next, write∫

Ne(A)

f(x, n) νd−1(d(x, n)) =

∫
N(A)

f(x, n)µd−1(d(x, n))

+

∫
T (N(A∗))

f(x, n)µd−1(d(x, n))−
∫
N(A)∩T (N(A∗))

f(x, n)µd−1(d(x, n)) .
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Poisson-Voronoi approximation 17

According to the discussion before Theorem 5.2 in [10], given a measurable function f on
Rd × Sd−1, we can split the integral over Ne(A) in (3.5) into three parts. The projection
map π1 : N(A) → Rd, (x, n) 7→ x has Jacobian also given by H0(x, n) for Hd−1-almost
all (x, n) ∈ N(A), see [10, Section 3]. Combining these facts with the area formula [7,
Paragraph 3.2.3] applied to π1 in each of the three resulting integrals, which can be
combined to a single integral over ∂1A, we find that

2

∫
Ne(A)

∫ ∞

−∞
Eξ(0x + rn,Phom

κ(x),Hx)κ(x) dr νd−1(d(x, n))

=

∫
∂1A

∫ ∞

−∞
Eξ(0x + rn(x),Phom

κ(x),Hx)κ(x)H0(x, n(x))H0(x, n(x))
−1 drHd−1(dx)

=

∫
∂1A

∫ ∞

−∞
Eξ(0x + rn(x),Phom

κ(x),Hx)κ(x) drHd−1(dx) ,

where we also have used the explicit representation of the measure µd−1 as well as the
fact that Hd−1(∂A++ \ ∂1A) = 0, which holds because A ∈ A(d). Since ξ is invariant
under rotations we may replace Hx by Rd−1 and 0x + rn(x) by 0 + rn to obtain (3.2)
from (3.4), as desired. �

Proof of Theorem 2.2. Applying the Mecke formula for Poisson point processes we
get

λ−(d−1)/dVar[Hξ(Pλ, ∂A)] = λ1/d

∫
Rd

E ξλ(x,Pλ, ∂A)2κ(x) dx (3.6)

+λ1+1/d

∫
Rd

∫
Rd

I1 κ(x)κ(w) dw dx ,

where

I1 := E ξλ(x,Pλ ∪ {w}, ∂A)ξλ(w,Pλ ∪ {x}, ∂A)− E ξλ(x,Pλ, ∂A)E ξλ(w,Pλ, ∂A) .

The proof of Theorem 2.1 shows that the first integral in (3.6) converges to∫
∂1A

∫ ∞

−∞
Eξ(0x + rn(x),Phom

κ(x),R
d−1)2 κ(x) drHd−1(dx) = µ(ξ2, ∂A) .

To complete the proof we show that the second integral in (3.6) converges to the quadru-
ple integral in (2.12). We re-write the integral with respect to x according to the general-
ized Steiner formula (2.3), using the notation already introduced in the proof of Theorem
2.1. Furthermore, for all (x, n) ∈ Ne(A), let H(x, n) denote the hyperplane orthogonal
to n and containing x. Given (x, n) ∈ Ne(A), we re-write the integral with respect to w
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18 C. Thäle and J.E. Yukich

as the iterated integral over H(x, n) and R. This gives

λ1+1/d

∫
Rd

∫
Rd

I1 κ(x)κ(w) dxdw

= λ1+1/d
d−1∑
j=1

ωd−j

∫
(x,n)∈Ne(A)

∫
r∈T (x,n)

∫
v∈H(x,n)

∫
s∈R

rd−1−j I2

× κ(x+ rn)κ((x+ rn) + (v + sn)) dsdvdrνj(d(x, n))

with I2 equal to

E ξλ(x+ rn,Pλ ∪ {(x+ rn) + (v + sn)}, ∂A)ξλ((x+ rn) + (v + sn),Pλ ∪ {x+ rn}, ∂A)

− E ξλ(x+ rn,Pλ, ∂A)E ξλ((x+ rn) + (v + sn),Pλ, ∂A) .

We change variables by putting s = λ−1/ds′, r = λ−1/dr′ and v = λ−1/dv′. This trans-
forms the differential λ1+1/d dsdvdrνj(d(x, n)) into

ds′dv′dr′νj(d(x, n)) , j ∈ {1, . . . , d− 1}

and I2 into I3 given by

I3 := E ξλ(x+ λ−1/dr′n,Pλ ∪ {(x+ λ−1/dr′n) + (λ−1/dv′ + λ−1/ds′n)}, ∂A)

× ξλ((x+ λ−1/dr′n) + (λ−1/dv′ + λ−1/ds′n),Pλ ∪ {x+ λ−1/dr′n}, ∂A)

− E ξλ(x+ λ−1/dr′n,Pλ, ∂A)E ξλ((x+ λ−1/dr′n) + (λ−1/dv′ + λ−1/ds′n),Pλ, ∂A) .

To simplify the notation we shall write s, r and v for s′, r′ and v′, respectively. Then

λ1+1/d

∫
Rd

∫
Rd

I1 κ(x)κ(w) dxdw

=

d−1∑
j=1

λ−(d−1−j)/dωd−j

∫
Ne(A)

∫
λ1/dT (x,n)

∫
H(x,n)

∫
R
rd−1−j I3

× κ(x+ λ−1/drn)κ((x+ λ−1/drn) + (λ−1/dv + λ−1/dsn)) dsdvdrνj(d(x, n)) .

(3.7)

By the second part of Lemma 3, the factor |I3| in (3.7) is dominated uniformly in λ by
an integrable function of (x, n) ∈ Ne(A), s ∈ R, v ∈ H(x, n) and r ∈ R. More precisely,

|I3| ≤ cGξ,p(|r|)1/p exp
(
− c−1

√
∥v∥2 + s2

)
,
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where the constant c is independent of all arguments. Thus for each j ∈ {1, . . . , d − 1},
we have∣∣∣ ∫

Ne(A)

∫
λ1/dT (x,n)

∫
H(x,n)

∫
R
rd−1−j I3

× κ(x+ λ−1/drn)κ((x+ λ−1/drn) + (λ−1/dv + λ−1/dsn))) dsdvdrνj(d(x, n))
∣∣∣

≤ c ∥κ∥2∞
∫
Ne(A)

∫ ∞

−∞

∫
Rd−1

∫
R
rd−1−jGξ,p(|r|)1/p exp(−c−1

√
∥v∥2 + s2)

dsdvdrνj(d(x, n))

≤ c ∥κ∥2∞|νj |(Ne(A))

∫ ∞

−∞

∫
Rd−1

∫
R
rd−1−jGξ,p(|r|)1/p exp(−c−1

√
∥v∥2 + s2) dsdvdr .

Notice that |νj |(Ne(A)) and the triple integral are finite by the assumption that A ∈ A(d)
and the moment condition (2.8), respectively. As in the proof of Theorem 2.1 we have
lim
λ→∞

λ1/dT (x, n) = (−∞,∞). Taking the limit, as λ → ∞, in (3.7) and applying the

dominated convergence theorem, we see that only the term j = d − 1 remains. By
Fubini’s theorem and Lemma 2, this gives

lim
λ→∞

λ1+1/d

∫
Rd

∫
Rd

I1 κ(x)κ(w) dxdw

= 2

∫
Ne(A)

∫
Rd−1

∫ ∞

−∞

∫ ∞

−∞
cξ(0x + rn, v + sn;Phom

κ(x),R
d−1)κ(x)2 dsdrdvνd−1(d(x, n)) .

We can now use the same arguments as in the proof of Theorem 2.1 to show that the
integral reduces to the quadruple integral in (2.12). This yields (2.13), as desired.

4. Proof of Theorems 1.1 – 1.5

We shall deduce Theorems 1.1 – 1.5 from the general Theorems 2.1 and 2.2. In each case
it suffices to express the relevant statistic as a sum of score functions and to show that
the score function satisfies the conditions of the general theorems. We anticipate that the
expectation formula (2.10) could be evaluated explicitly for some of the score functions
described below. The proof of the positivity of the constants appearing in the variance
expressions is postponed to Section 5.
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20 C. Thäle and J.E. Yukich

Proof of Theorem 1.1. We first prove the asserted results for the volume functional
Vλ(A), with A ∈ A(d). For locally finite X ⊂ Rd, x ∈ X , define the score

ξ(1)(x,X , ∂A) :=

 Vol(v(x) ∩Ac) if v(x) ∩ ∂A ̸= ∅, x ∈ A
−Vol(v(x) ∩A) if v(x) ∩ ∂A ̸= ∅, x ∈ Ac

0 if v(x) ∩ ∂A = ∅ ,
(4.1)

where v(x) := v(x,X ) is the Voronoi cell of x based on the point configuration X . In view
of the limits appearing in our main results we also need to define scores on hyperplanes,
i.e., on Rd−1. We thus put

ξ(1)(x,X ,Rd−1) :=

 Vol(v(x) ∩ Rd−1
+ ) if v(x) ∩ Rd−1 ̸= ∅, x ∈ Rd−1

−
−Vol(v(x) ∩ Rd−1

− ) if v(x) ∩ Rd−1 ̸= ∅, x ∈ Rd−1
+

0 if v(x) ∩ Rd−1 = ∅ ,
(4.2)

where we recall Rd−1
+ := Rd−1 × [0,∞) and Rd−1

− := Rd−1 × (−∞, 0]. These definitions
ensure that

Vλ(A)−Vol(A) =
∑
x∈Pλ

ξ(1)(x,Pλ, ∂A) = λ−1
∑
x∈Pλ

ξ
(1)
λ (x,Pλ, ∂A) ,

where we use that ξ(1) is homogenous of order d. We wish to deduce the volume asymp-
totics for Vλ(A) by applying the limits (2.16) and (2.17) with γ = d and with ξ set to
ξ(1). It suffices to show that the score ξ(1) is homogeneously stabilizing (2.6), exponen-
tially stabilizing as at (2.7), satisfies the moment condition (2.8) for p = 1 and some
p ∈ (2,∞), and is well approximated by Pλ input on half-spaces as at (2.9). The first
three conditions have been established several times in the literature; see the proof of
Theorem 2.2 of [31].

To show that ξ(1) is well approximated by Pλ input on half-spaces as at (2.9), it suffices
to slightly modify the proof of the analogous result in Theorem 2.2 of [31]. For the sake
of completeness, we provide the details as follows.

By definition of A(d), almost all points of ∂A belong to ∂1A and it so suffices to
show (2.9) for a fixed y ∈ ∂1A. Translating y to the origin, letting Pλ denote a Poisson
point process on Rd, letting ∂A denote ∂A − y, and using rotation invariance of ξ(1), it
is enough to show for all w ∈ Rd that

lim
λ→∞

E |ξ(1)(w, λ1/dPλ, λ
1/d∂A)− ξ(1)(w, λ1/dPλ,Rd−1)| = 0 ,

where Rd−1 is the unique hyperplane tangent to ∂A at the origin. Without loss of gener-
ality, we assume, locally around the origin, that ∂A ⊂ Rd−1

− . Fix ε > 0 and w ∈ Rd. We
note that there is a constant L ∈ (0,∞) such that

sup
λ>0

(E [ξ(1)(w, λ1/dPλ, λ
1/d∂A)2])1/2 ≤ L

and
sup
λ>0

(E [ξ(1)(w, λ1/dPλ,Rd−1)2])1/2 ≤ L .
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Let ṽ(w, λ1/dPλ) be the union of v(w, λ1/dPλ) and all the Voronoi cells adjacent to
v(w, λ1/dPλ) in the Voronoi mosaic of Pλ. For all r ∈ (1,∞) consider the event

E1(λ,w, r) := {diam(ṽ(w, λ1/dPλ)) ≤ r} , (4.3)

where diam( · ) stands for the diameter of the argument set. Lemma 2.2 of [18] shows there
is r0 := r0(ε, L) such that for r ∈ [r0,∞) and λ large we have P(E1(λ,w, r)

c) ≤ (ε/2L)2.
It follows by the Cauchy-Schwarz inequality that

lim
λ→∞

E |(ξ(1)(w, λ1/dPλ, λ
1/d∂A)− ξ(1)(w, λ1/dPλ,Rd−1))1(E1(λ,w, r0)

c)| ≤ ε .

By the triangle inequality and the arbitrariness of ε it is therefore enough to show that

lim
λ→∞

E |(ξ(1)(w, λ1/dPλ, λ
1/d∂A)− ξ(1)(w, λ1/dPλ,Rd−1))1(E1(λ,w, r0))| ≤ ε . (4.4)

By the way that y was chosen, 0 is a point in ∂1A and thus has a unique normal vector.
We first assume w ∈ Rd−1

− ; the arguments with w ∈ Rd−1
+ are nearly identical. Moreover,

we may assume w ∈ λ1/dA for λ large. Consider the (possibly degenerate) solid

∆λ(w) := ∆λ(w, r0) := (Rd−1
− \ λ1/dA) ∩Br0(w) . (4.5)

Recalling that ∂A is (Hd−1, d−1) rectifiable, it follows that almost all of ∂A is contained
in a union of C1 sub-manifolds of Rd [7, Theorem 3.2.29]. Since 0 is a point of ∂1A,
it follows that the maximal ‘height’ hλ(w, r0) of the solid ∆λ(w, r0) with respect to
the hyperplane Rd−1 satisfies lim

λ→∞
hλ(w, r0) = 0 for fixed w and r0 (see also the linear

approximation properties of rectifiable sets summarized in Chapter 15 of [17]). Hence

Vol(∆λ(w, r0)) = O(hλ(w, r0) · rd−1
0 )

and so for large λ we have Vol(∆λ(w, r0)) ≤ ε. On the event E1(λ,w, r0), the difference
of the volumes v(w, λ1/dPλ)∩λ1/dAc and v(w, λ1/dPλ)∩Rd−1

+ is at most Vol(∆λ(w, r0)).
Thus for large λ we get

E |(ξ(1)(w, λ1/dPλ, λ
1/d∂A)− ξ(1)(w, λ1/dPλ,Rd−1))1(E1(λ,w, r0))|

≤ Vol(∆λ(w, r0)) ≤ ε ,

which gives (2.9) as desired.
We now prove the asserted results for the surface area functional Sλ(A). As in [31],

given X locally finite and an admissible set A ⊂ Rd, define for x ∈ X ∩A the area score
ξ(2)(x,X , ∂A) to be the Hd−1-measure of the (d− 1)-dimensional faces of v(x) belonging
to the boundary of

∪
x∈X∩A v(x) (if there are no such faces or if x /∈ X ∩ A, then put

ξ(2)(x,X , ∂A) to be zero). Similarly, for x ∈ X ∩ Rd−1
− , put ξ(2)(x,X ,Rd−1) to be the

Hd−1-measure of the (d − 1)-dimensional faces of v(x) belonging to the boundary of
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x∈X∩Rd−1

−
v(x), otherwise ξ(2)(x,X ,Rd−1) is zero. We note that ξ(2) is homogenous of

order d− 1 and that
Sλ(A) =

∑
x∈Pλ

ξ(2)(x,Pλ, ∂A) .

We wish to deduce the first- and second-order limit behavior of Sλ(A) by applying the
limits (2.16) and (2.17) with γ = d− 1 and with ξ set to ξ(2).

It is easy to see and well-known that the score ξ(2) is homogeneously stabilizing (2.6),
exponentially stabilizing (2.7), and satisfies the moment condition (2.8) for all p ≥ 1; see
for example the proof of Theorem 2.4 of [31]. To see that ξ(2) is well approximated by
Pλ input on half-spaces (2.9), it suffices to follow the proof of Theorem 2.4 of [31]. For
sake of completeness we include the details as follows.

Fix ε > 0 and w ∈ Rd. By the moment bounds on ξ(2) and the Cauchy-Schwarz
inequality, it is enough to show the following counterpart to (4.4), namely to show that

lim
λ→∞

E |(ξ(2)(w, λ1/dPλ, λ
1/d∂A)− ξ(2)(w, λ1/dPλ,Rd−1))1(E1(λ,w, r0))| ≤ Cε1/2,

(4.6)
where E1(λ,w, r0) is as at (4.3), and where, as above, the origin is a point of ∂1A − y.
Define

E0(λ,w, r0) := {λ1/dPλ ∩∆λ(w, r0) = ∅} ,
where ∆λ(w, r0) is as at (4.5). The intensity measure of λ1/dPλ is upper bounded by
||κ||∞, yielding for large λ that

P[E0(λ,w, r0)
c] ≤ 1− exp(−||κ||∞Vol(∆λ(w, r0))) ≤ ||κ||∞ε , (4.7)

where we used that Vol(∆λ(w, r0)) ≤ ε.
The two score functions ξ(2)(w, λ1/dPλ, λ

1/d∂A) and ξ(2)(w, λ1/dPλ,Rd−1) coincide on
the event E1(λ,w, r0)∩E0(λ,w, r0). Indeed, on this event it follows that f is a face of a
boundary cell of λ1/dAλ iff f is a face of a boundary cell of the Poisson-Voronoi mosaic
of Rd−1

− . (If f is a face of the boundary cell v(w, λ1/dPλ), w ∈ λ1/dA, then f is also a face

of v(z, λ1/dPλ) for some z ∈ λ1/dAc. If λ1/dPλ ∩∆λ(w, r0) = ∅, then z must belong to
Rd−1

+ , showing that f is face of a boundary cell of the Poisson-Voronoi mosaic of Rd−1
− .

The reverse implication is shown similarly.)
On the other hand, since

E
[
(ξ(2)(w, λ1/dPλ, λ

1/d∂A)− ξ(2)(w, λ1/dPλ,Rd−1))21(E1(λ,w, r0))
]
= O(1) ,

and since by (4.7) we have P[E0(λ,w, r0)
c] ≤ ||κ||∞ε, it follows by the Cauchy-Schwarz

inequality that, as λ → ∞,

E |(ξ(2)(w, λ1/dPλ, λ
1/d∂A)− ξ(2)(w, λ1/dPλ,Rd−1))1(E1(λ,w, r0))|

= E |(ξ(2)(w, λ1/dPλ, λ
1/d∂A)− ξ(2)(w, λ1/dPλ,Rd−1))

× 1(E1(λ,w, r0))1(E0(λ,w, r0)
c)|

≤ C(||κ||∞ε)1/2 .

(4.8)
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Therefore (4.6) holds and so ξ(2) is well approximated by Pλ input on half-spaces as at
(2.9), as desired.

Proof of Theorem 1.2. Let us first recall that the Poisson-Voronoi mosaic is a nor-
mal mosaic, see [26]. This means that with probability one each ℓ-dimensional face in
skelℓ(PVλ(A)) arises as the intersection of exactly d− ℓ+ 1 Voronoi cells.

Now, given X locally finite, x ∈ X , and an admissible A ⊂ Rd, define ξ(3,ℓ)(x,X , ∂A)
as

ξ(3,ℓ)(x,X , ∂A) :=
1

d− ℓ+ 1

∑
f∈Fℓ(v(x))

f⊂∂(PVλ(A))

H(ℓ)(f)

and zero otherwise. Then,

H
(ℓ)
λ (A) =

∑
x∈Pλ
x∈A

ξ(3,ℓ)(x,Pλ, ∂A) = λ−ℓ/d
∑
x∈Pλ

ξ
(3,ℓ)
λ (x,Pλ, ∂A) ,

where we used that ξ(3,ℓ) is homogeneous of order ℓ. We wish to deduce the first- and

second-order limit behaviour of H
(ℓ)
λ (A) by applying the limits (2.16) and (2.17) with

γ = ℓ and with ξ set to ξ(3,ℓ).
The proof that ξ(3,ℓ) is homogeneously stabilizing (2.6), exponentially stabilizing (2.7),

and satisfies the moment condition (2.8) for all p ≥ 1 follows nearly verbatim the proof
that ξ(2) has these properties. Indeed the radius of stabilization for ξ(3,ℓ) coincides with
that of ξ(2).

To see that ξ(3,ℓ) is well approximated by Pλ input on half-spaces as at (2.9), we
may follow the proof that ξ(2) is well approximated by Pλ input on half-spaces. Notice
that on the event E1(λ,w, r0) ∩ E0(λ,w, r0), the scores ξ(3,ℓ)(w, λ1/dPλ, λ

1/d∂A) and
ξ(3,ℓ)(w, λ1/dPλ,Rd−1) coincide. As in (4.8) we obtain

E |(ξ(3,ℓ)(w, λ1/dPλ, λ
1/d∂A)− ξ(3,ℓ)(w, λ1/dPλ,Rd−1))1(E1(λ,w, r0))|

= E |(ξ(3,ℓ)(w, λ1/dPλ, λ
1/d∂A)− ξ(3,ℓ)(w, λ1/dPλ,Rd−1))

× 1(E1(λ,w, r0))1(E0(λ,w, r0)
c)| ≤ C(||κ||∞ε)1/2 .

This gives that ξ(3,ℓ) satisfies (2.9) as desired.

Proof of Theorem 1.3. Given X locally finite, x ∈ X , and A ∈ A(d), let us define
the score ξ(4,ℓ)(x,X , ∂A) to be the number of ℓ-dimensional faces of v(x) := v(x,X )
belonging to ∂(PVλ(A)). Define ξ(4,ℓ)(x,X ,Rd−1) similarly. Then

f ℓ
λ(A) =

∑
x∈Pλ

ξ
(4,ℓ)
λ (x,Pλ, ∂A) .

We shall show that ξ(4,ℓ) satisfies the hypotheses of Theorems 2.1 and 2.2 and thus deduce
Theorem 1.3 from (2.16) and (2.17) with ξ set to ξ(4,ℓ) and γ set to zero (notice that ξ(4,ℓ)
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is homogeneous of order 0). For brevity write ξ(4) for ξ(4,ℓ) for fixed ℓ ∈ {0, . . . , d − 1}.
Now, ξ(4) is homogeneously and exponentially stabilizing since its radius of stabilization
coincides with that for the volume score ξ(1) defined in the proof of Theorem 1.1. The
number N (ℓ)(x,Pλ) of ℓ-dimensional faces of a Poisson-Voronoi cell v(x) has moments of
all orders and therefore the moment condition (2.8) holds because

|ξ(4)λ (x+ λ−1/drn,Pλ ∪ {z}, ∂A)|
≤ N (ℓ)(x+ λ−1/drn,Pλ ∪ {z})1(v(λ1/dx+ rn, λ1/dPλ) ∩ ∂A ̸= ∅)

for (x, n) ∈ Ne(A). The expectation of the last factor decays uniformly fast in r, giving
that ξ(4) satisfies the moment condition (2.8) for all p ≥ 1.

The arguments in the proof of Theorem 1.1 showing that the surface area score ξ(2)

is well approximated by Pλ input on half-spaces extend to show that ξ(4) is likewise well
approximated by Pλ input on half-spaces. The guiding idea is that with high probability,
we have that f is a face of a Voronoi cell v(w) belonging to the Poisson-Voronoi approx-
imation of λ1/d(A− y) if and only if it belongs to the Poisson-Voronoi approximation of
Rd−1

+ . Indeed, this happens on the high probability event that the region ‘between’ the
boundary of the Poisson-Voronoi approximation of A and Rd−1 in the neighbourhood of
w, must be devoid of points, see the proof of Theorem 1.1. Thus ξ(4,ℓ) satisfies all the
hypotheses of Theorems 2.1 and 2.2 and this concludes the proof of Theorem 1.3.

Proof of Theorem 1.4. Given X locally finite, x ∈ X , an admissible A ⊂ Rd,
and A0 ⊂ ∂A, put ξ(5,ℓ)(x,X , A0) to be the number of ℓ-dimensional faces of v(x) if
v(x) ∩A0 ̸= ∅ and zero otherwise. Define ξ(5,ℓ)(x,X ,Rd−1) similarly. Now, put

ξ(5)(x,X , A0) :=

d−1∑
l=0

ξ(5,ℓ)(x,X , A0)

and notice that
Coλ(A0) =

∑
x∈Pλ

ξ(5)(x,Pλ, A0) .

We shall show that ξ(5,ℓ) satisfies the hypotheses of Theorems 2.1 and 2.2 and thus deduce
Theorem 1.4 from (2.16) and (2.17) with ξ set to ξ(5) and γ set to zero (notice that ξ(5)

is homogeneous of order 0). The score function ξ(5) is homogeneously stabilizing as at
(2.6), exponentially stabilizing as at (2.7), and satisfies the moment condition (2.8) for
all p ≥ 1. This is because each ξ(5,ℓ) with ℓ ∈ {0, . . . , d− 1} has this property. Also, since
each ξ(5,ℓ) is well approximated by Pλ input on half-spaces for each ℓ ∈ {0, . . . , d − 1},
it follows that ξ(5) enjoys this property as well. Thus ξ(5) satisfies the hypotheses of
Theorems 2.1 and 2.2, concluding the proof of Theorem 1.4.

Proof of Theorem 1.5. We start with the iterated volume V
(n)
λ . Conditioned on

PV
(1)
λ the first asymptotic equivalence of Theorem 1.1 yields

E [V
(2)
λ − V

(1)
λ |PV(1)

λ ] ∼ c1 λ
− 1

d Hd−1(∂(PV
(1)
λ )) .
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Taking expectations and recalling the equivalence ESλ(A) ∼ c2Hd−1(∂A), we obtain

EV
(2)
λ − V (A) ∼ c1 λ

− 1
d (c2 + 1)Hd−1(∂A) .

Next,

EV
(3)
λ − V (A) = EE [V

(3)
λ − V

(2)
λ |PV(2)

λ ] + EE [V
(2)
λ − V

(1)
λ |PV(1)

λ ] + EV
(1)
λ − V (A)

∼ c1λ
− 1

d c22Hd−1(∂A) + c1 λ
− 1

d c2Hd−1(∂A) + c1 λ
− 1

dHd−1(∂A)

= c1 c2,2λ
− 1

dHd−1(∂A) .

Recursively continuing this way proves the desired claim, namely

EV
(n)
λ − V (A) ∼ c1 c2,n λ

− 1
d Hd−1(∂A) .

The asymptotic equivalences for ES
(n)
λ , EH

ℓ,(n)
λ and E f

ℓ,(n)
λ follow similarly.

5. Variance lower bounds

We complete the proofs of Theorems 1.1 – 1.4 by proving positivity of the constants
appearing in the variance expressions. The assumption that ∂A contains a C2-smooth
subset with positive (d− 1)-dimensional Hausdorff measure is essential for our following
arguments, but we conjecture that this condition can be relaxed. For example, in [28]
the author establishes upper and lower bounds on Var[Vλ(A)] for any compact convex
set A having non-empty interior, without additional smoothness assumptions. However,
it is unclear (to us) whether the methods of [28] extend to the more general class of
admissible sets A(d) as well as to the other Poisson-Voronoi statistics considered in
Theorems 1.1–1.4.

In what follows we use the standard Landau notation. More precisely, for two functions
f, g : [0,∞) → R we write

- f = o(g) if for all c ∈ (0,∞) there exists λ0 > 0 such that for all λ ≥ λ0,
|f(λ)| ≤ c |g(λ)|,

- f = O(g) if there exists c ∈ (0,∞) and λ0 > 0 such that for all λ ≥ λ0, |f(λ)| ≤
c |g(λ)|, and

- f = Ω(g) if there exists c ∈ (0,∞) and λ0 > 0 such that for all λ ≥ λ0, |f(λ)| ≥
c g(λ).

Positivity of c3 and c4. Positivity of c3 is shown in Theorem 2.3 of [31] and it remains
to consider c4. For this, recall that Γ ⊂ ∂A is C2-smooth, with Hd−1(Γ) ∈ (0,∞). Recall-
ing A ⊂ Q, subdivide Q into cubes of edge length l(λ) := (⌊λ1/d⌋)−1. The number L(λ)
of cubes having non-empty intersection with Γ satisfies L(λ) = Ω(λ(d−1)/d), as otherwise
the cubes would partition Γ into o(λ(d−1)/d) sets, each of Hd−1-measure O((λ−1/d)d−1),
which when λ → ∞ gives Hd−1(Γ) = 0, a contradiction.
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We find a sub-collection Q1, . . . , QM of the L(λ) cubes such that d(Qi, Qj) ≥ 2
√
d l(λ)

for all i, j ≤ M , and M = Ω(λ(d−1)/d), where d(Qi, Qj) stands for the distance between

Qi and Qj . Rotating and translating Qi, 1 ≤ i ≤ M, by a distance at most (
√
d/2) l(λ), if

necessary, we obtain a collection Q̃1, . . . , Q̃M of disjoint cubes (with faces not necessarily
parallel to a coordinate plane) such that

• d(Q̃i, Q̃j) ≥
√
d l(λ) for all i, j ≤ M,

• Γ contains the centre of each Q̃i, here denoted xi, 1 ≤ i ≤ M .

By the assumed differentiability of Γ, Γ∩ Q̃i is well approximated locally around each xi

by the hyperplane Ti := Txi tangent to Γ at xi. By the C2-assumption, the approximation

is uniform over all 1 ≤ i ≤ M . Making a further rotation of Q̃i, if necessary, we may
assume that Ti partitions Q̃i into congruent rectangular solids. Let Ti coincide with the
hyperplane Rd−1. Without loss of generality we assume ∂A ⊂ Rd−1 × (−∞, 0], that is
∂A is ‘beneath’ Ti.

We now exhibit a configuration of Poisson points Pλ which has strictly positive prob-
ability and for which Sλ(A) has variability bounded below by Ω(λ−(d−1)/dHd−1(Γ)). Let

ϵ := ϵ(λ) := l(λ)/28 and sub-divide each Q̃i, 1 ≤ i ≤ M, into 28d sub-cubes of edge length

ϵ. Sub-cubes within Hausdorff distance 4ϵ of ∂Q̃i are called ‘boundary’ sub-cubes; if a
sub-cube is not a boundary sub-cube then we call it an interior sub-cube. If each bound-
ary sub-cube in Q̃i contains a point from Pλ, then the geometry of the Voronoi cells with
centres in Q̃i and distant more than 4ϵ from ∂Q̃i is not altered by point configurations
outside Q̃i (see e.g. [21]).

We assume that xi coincides with the origin and we recall that ∂A ⊂ Rd−1 × (−∞, 0]
so that points near ∂A may be parametrized by a pair in Rd−1 × (−∞, 0]). By 2(Zd−1)
we mean the set of all points in Rd−1 having integer coordinates of even parity. Consider
the sub-cubes Q̃i having the following properties:

(a) the boundary sub-cubes each contain at least one point from Pλ,
(b) Pλ ∩Bϵ/100((ϵj,±ϵ)) consists of a singleton for j ∈ 2(Zd−1), |j| ≤ 10, or

(b’) Pλ ∩ Bϵ/100((ϵj, ϵ/100)) consists of a singleton for j ∈ 2(Zd−1), |j| ≤ 10 and also

Pλ∩Bϵ/100((ϵj,−ϵ/100)) consists of a singleton for j = 0 and j ∈ 2(Zd−1)+1, |j| ≤
10,

(c) Pλ puts no other points in Q̃i.

(We remark that the choice of the constants 28 and 100 is arbitrary and that we could
have used any sufficiently large number.) Events (b) and (b’) happen with the same
probability, which is small but bounded away from zero uniformly in λ, since κ ≡ 1.

Re-labelling if necessary, let I := {1, . . . ,K} be the indices of cubes Q̃i having prop-

erties (a)-(c). It is easily checked that the probability a given Q̃i, 1 ≤ i ≤ M, satisfies
property (a) is strictly positive, uniformly in λ. This is also true for properties (b)-(c),
showing that

EK = Ω(λ(d−1)/d) . (5.1)

Abusing notation, let Q :=
∪K

i=1 Q̃i and put Qc := [0, 1]d \ Q. Let Fλ be the σ-algebra
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determined by the random set I, the positions of points of Pλ in all boundary sub-cubes,
and the positions of points Pλ in Qc. Let Ui, 1 ≤ i ≤ M, be the union of the interior sub-
cubes in Q̃i. If d = 2, we notice that if (b) happens, then the surface ∂Aλ ∩ Ui contains
nearly horizontal edges and the total length of these edges is generously bounded above
by 30ϵ. Indeed, if (b) happens, the 11 cells centered at the points in Pλ∩Bϵ/100((ϵj,−ϵ)),
j ∈ {0,±2,±4, . . . ,±10}, contribute to ∂(PVλ(A)) a length roughly bounded by the
width of Ui plus some negligible corrections. On the other hand, if (b′) happens then
∂Aλ ∩ Ui contains 10 sharp peaks, with abscissas roughly equal to {±1,±3, . . . ,±9}. In
fact, it is easily checked that ∂Aλ ∩ Ui contains at least 18 ‘long’, nearly vertical edges
of length at least 2ϵ, giving a total edge length of at least 36ϵ. A similar situation holds
in higher dimensions d ≥ 3.

Conditional on Fλ,Hd−1(∂Aλ∩Q̃i) has variability Ω(ϵ2(d−1)) = Ω(λ−2+2/d), uniformly
in i ∈ I, that is

Var[Hd−1(∂Aλ ∩ Q̃i)|Fλ] = Ω(λ−2+2/d) , i ∈ I . (5.2)

By the conditional variance formula,

Var[Sλ(A)] = Var[ESλ(A)|Fλ]] + E [Var[Sλ(A)|Fλ]]

≥ E [Var[Sλ(A))|Fλ]]

= E [Var[Hd−1(∂Aλ ∩Q) +Hd−1(∂Aλ ∩Qc)|Fλ]] .

Given Fλ, the Poisson-Voronoi mosaic of Pλ admits variability only inside Q, that is to
say, given Fλ, we have Hd−1(∂Aλ ∩Qc) is constant. Thus

Var[Sλ(A)] ≥ E [Var[Hd−1(∂Aλ ∩Q)|Fλ]]

= E [Var[
∑
i∈I

Hd−1(∂Aλ ∩ Q̃i)|Fλ]]

= E
∑
i∈I

Var[Hd−1(∂Aλ ∩ Q̃i)|Fλ] , (5.3)

since, given Fλ, Hd−1(∂Aλ ∩ Q̃i), i ∈ I, are independent. By (5.1) and (5.2), we have

Var[Sλ(A)] ≥ c λ−2+2/d E [K] = Ω(λ−(d−1)/d)

with some finite constant c ∈ (0,∞), concluding the proof that c4 is positive.

Positivity of c6 and c8. The general idea is to show that configuration (b’) generates
a surface which has more variability (both in terms of complexity and measure) than the
surface generated by configuration (b). The details go as follows. For ℓ ∈ {0, 1, . . . , d−1}
and i ∈ I, put Sℓ,i := (skelℓ(PVλ(A))) ∩ Ui, noting that ∂(PVλ(A)) ∩ Ui = Sd−1,i

(recall the notation introduced in the discussion around Equation (5.1)). Let Sℓ,i(b) be
the ℓ-dimensional skeleton arising from configuration (b) and define Sℓ,i(b

′) similarly.
Henceforth without loss of generality we fix i = 1 and write Sℓ for Sℓ,1. Observe that
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Sd−1(b) consists of a single (d − 1)-dimensional facet f which is nearly a hypercube of
dimension d − 1 (and nearly a horizontal edge when d = 2). Also, Sd−2(b) is the union
of 2(d− 1) faces, each of which is nearly a hypercube of dimension d− 2.

On the other hand, Sd−1(b
′) is the union of (d − 1)-dimensional facets Fj , 1 ≤ j ≤

2(d − 1), whose union forms the boundary of a solid hyper-pyramid in Rd whose base
is a translate, up to a negligible perturbation, of Sd−1(b). The boundary of the surface

∪2(d−1)
j=1 Fj is of dimension d− 2 and is the union of 2(d− 1) faces, each of which is nearly

a hypercube of dimension d − 2. In fact, the boundary of the surface ∪2(d−1)
j=1 Fj is a

translate, also up to a negligible perturbation, of Sd−2(b); we thus denote the boundary

of ∪2(d−1)
j=1 Fj by S̃d−2(b

′). In other words we have that

Sd−1(b) = Sd−2(b) ∪ (intf)

and

Sd−1(b
′) = S̃d−2(b

′) ∪
( 2(d−1)∪

j=1

Fj \ S̃d−2(b)
)
.

Now, Sd−2(b) and S̃d−2(b
′) are indistinguishable from the viewpoint of their combinatorial

complexity, as measured by their lower-dimensional skeletons. Moreover, they are nearly
indistinguishable from a measure theoretic point of view, since the Hℓ-measure of their
ℓ-skeletons nearly coincide (modulo negligible corrections). On the other hand, the open

facet intf differs significantly from ∪2(d−1)
j=1 Fj \ S̃d−2(b) in terms of both combinatorial

complexity and measure. Indeed, the Hℓ-measure of the ℓ-skeleton of the latter (facets
of a pyramid) is strictly larger than the Hℓ-measure of intf (the base of the pyramid).
Likewise, for ℓ ∈ {0, 1, . . . , d−2}, the single facet intf has no ℓ-dimensional faces, whereas

∪2(d−1)
j=1 Fj \S̃d−2(b) has a non-zero number of ℓ-dimensional faces. These arguments apply

to all skeletons Sd−1,i(b), i ∈ I. By following nearly verbatim the arguments showing that
c4 is positive, we get that c6 and c8 are positive.

Positivity of c10. We have that Coλ(A0) is defined in terms of f
(ℓ)
λ (A), ℓ ∈ {0, 1, . . . , d−

1}, and it suffices to note that configuration (b’) leads to a complexity which is strictly
larger than the complexity arising from configuration (b). We now follow the arguments
that c4 is strictly positive.
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