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Multivariate second order Poincaré inequalities
for Poisson functionals
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Abstract

Given a vector F = (F1, . . . , Fm) of Poisson functionals F1, . . . , Fm, we investigate
the proximity between F and an m-dimensional centered Gaussian random vector
NΣ with covariance matrix Σ ∈ Rm×m. Apart from finding proximity bounds for the
d2- and d3-distances, based on classes of smooth test functions, we obtain proximity
bounds for the dconvex-distance, based on the less tractable test functions comprised
of indicators of convex sets. The bounds for all three distances are shown to be of the
same order, which is presumably optimal. The bounds are multivariate counterparts of
the univariate second order Poincaré inequalities and, as such, are expressed in terms
of integrated moments of first and second order difference operators. The derived
second order Poincaré inequalities for indicators of convex sets are made possible by
a new bound on the second derivatives of the solution to the Stein equation for the
multivariate normal distribution. We present applications to the multivariate normal
approximation of first order Poisson integrals and of statistics of Boolean models.

Keywords: Stein’s method; multivariate normal approximation; second order Poincaré inequal-
ity; Malliavin calculus; smoothing; Poisson process.
AMS MSC 2010: Primary 60F05, Secondary 60D05.
Submitted to EJP on July 10, 2018, final version accepted on November 5, 2019.

1 Introduction and main results

1.1 Overview

Roughly speaking, a first order Poincaré inequality for a random variable F measures
the closeness of F to its mean. A second order Poincaré inequality [5] measures the
closeness of F to a Gaussian random variable, where distance is given by some specified
metric on the space of distribution functions. The paper [16] establishes second order
Poincaré inequalities for Poisson functionals F , with bounds given in terms of integrated
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Multivariate second order Poincaré inequalities for Poisson functionals

moments of first and second order difference operators, which are an outcome of the
research on the Malliavin-Stein method for Poisson functionals in the recent years;
see, for example, [7, 23, 30] and the book [22]. The bounds from [16] can be usefully
applied to yield rates of normal convergence for various functionals of Poisson processes,
including those represented as a sum of stabilizing score functions [15]. The rates are
presumably optimal as they coincide with rates of convergence in the classical central
limit theorem.

The goal of this paper is to establish second order Poincaré inequalities for Poisson
functionals in the multivariate setting, providing multivariate counterparts to the univari-
ate results of [16]. The proofs combine Malliavin calculus on Poisson spaces with Stein’s
method of multivariate normal approximation. Optimal rates of normal convergence
depend on good bounds on the terms occurring in a certain smoothing lemma. A main
contribution of this paper is to provide such bounds via a new estimate on the second
derivatives of the solution to the Stein equation for the multivariate normal distribution,
which could be helpful for the multivariate normal approximation of other types of
random vectors as well and, thus, might be of independent interest. It is shown that this
approach yields the same (presumably optimal) rates of multivariate normal convergence
for the dconvex-distance based on non-smooth test functions as well as for the d2- and
d3-distances based on smooth test functions (see Subsection 1.2 for definitions of the
distances).

We start by making our terms precise and recalling the univariate set-up. Let η be a
Poisson process over a measurable space (X,F) with a σ-finite intensity measure λ (see
e.g. [17] for more details on Poisson processes). One can think of η as a random element
in the space N of all σ-finite counting measures equipped with the σ-field generated
by the mappings ν 7→ ν(A), A ∈ F . We call a random variable F a Poisson functional
if there is a measurable map f : N → R such that F = f(η) almost surely. For such a
Poisson functional F the difference operator is given by

DxF := f(η + δx)− f(η), x ∈ X, (1.1)

where δx denotes the Dirac measure of x. We say that F belongs to the domain of the
difference operator, i.e., F ∈ domD, if EF 2 <∞ and∫

X

E (DxF )2 λ(dx) <∞. (1.2)

Iterating the definition of the difference operator, one obtains

D2
x1,x2

F := Dx1
(Dx2

F ) = f(η + δx1
+ δx2

)− f(η + δx1
)− f(η + δx2

) + f(η), x1, x2 ∈ X.

It is natural to investigate the proximity between the distribution of F and that of a
standard Gaussian random variable N . To compare two random variables Y and Z or,
more precisely, their distributions, one can use the Kolmogorov distance

dK(Y,Z) := sup
u∈R
|P(Y ≤ u)− P(Z ≤ u)|, (1.3)

which is the supremum norm of the difference of the distribution functions of Y and Z,
or the Wasserstein distance

dW (Y,Z) := sup
h∈Lip(1)

|Eh(Y )− Eh(Z)|,

where Lip(1) stands for the set of functions h : R → R with Lipschitz constant at
most one. Note that the dK -distance is always defined, while the dW -distance requires
finiteness of E |Y | and E |Z|.
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When F ∈ domD, EF = 0, and VarF = 1, the main results of [16] establish the
inequalities

dW (F,N) ≤ τ1 + τ2 + τ3 (1.4)

and

dK(F,N) ≤ τ1 + τ2 + τ3 + τ4 + τ5 + τ6, (1.5)

where τ1, . . . , τ6 are integrals over moments involving only DF and D2F (see Subsection
1.2 in [16] for exact formulas). The proximity bounds (1.4) and (1.5), whose proofs rely
on previous Malliavin-Stein bounds in [23] and [7, 30], respectively, are second order
Poincaré inequalities, as described in [16]. The reason for this name is that the ‘first
order’ Poincaré inequality

VarF ≤
∫
X

E (DxF )2 λ(dx)

for F ∈ domD bounds the variance in terms of the first difference operator, whereas the
first and the second difference operator control the closeness to Gaussianity in (1.4) and
(1.5). The term second order Poincaré inequality was coined in [5] in a similar Gaussian
framework, where one has the first two derivatives instead of the first two difference
operators.

For many Poisson functionals F the second order Poincaré inequalities (1.4) and (1.5)
may be evaluated since the first two difference operators have a clear interpretation via
the operation of adding additional points. This is the advantage of these findings over
Malliavin-Stein bounds for normal approximation of Poisson functionals which either
require the knowledge of the chaos expansion of F (see, for example, [7, 12, 23, 30])
or which involve bounds expressed in terms of gradient operators and conditional
expectations as in [25].

Inequality (1.5) yields rates of normal approximation for some classic problems in
stochastic geometry and some non-linear functionals of Poisson-shot-noise processes
[16], as well as for functionals of convex hulls of random samples in a smooth convex
body, statistics of nearest neighbors graphs, the number of maximal points in a random
sample, and estimators of surface area and volume arising in set approximation [15].
The rates of convergence for these examples are presumably optimal.

Often one is not only interested in the behavior of a single Poisson functional but
in that of a vector F = (F1, . . . , Fm) of Poisson functionals F1, . . . , Fm with m ∈ N. In
this situation, one can compare F with an m-dimensional centered Gaussian random
vector NΣ with covariance matrix Σ ∈ Rm×m. We are not only interested in the weak
convergence of the vector F of Poisson functionals to a limit random vectorNΣ, which can
be deduced from the univariate case by the Cramer-Wold technique, but in quantitative
bounds for the proximity between F and NΣ. In other words, we seek the multivariate
counterparts of (1.4) and (1.5).

In this paper F and NΣ are compared with respect to distances based on smooth
and non-smooth test functions. One of our main achievements is to show that for each
distance, the bounds are of the same, presumably optimal, order. In general, it is
more intricate to deal with non-smooth test functions when one uses Stein’s method
for multivariate normal approximation. For some bounds for smooth test functions
having the same order as in the univariate case we refer to [6, Chapter 12] and the
references therein. For non-smooth test functions, even obtaining the rate n−1/2 in the
classical central limit theorem for sums of n i.i.d. random vectors via Stein’s method is
challenging [1, 11]. The abstract multivariate normal approximation results in terms
of the dependence structure in [27] and [6, Chapter 12] and in terms of exchangeable
pairs in [26] contain at least additional logarithmic factors compared to what one would
expect from the case of smooth test functions or from the univariate case. Recently,

EJP 24 (2019), paper 130.
Page 3/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP386
http://www.imstat.org/ejp/


Multivariate second order Poincaré inequalities for Poisson functionals

these logarithms were removed in [9] and [10] (see also [8]), using the dependence
structure and Stein couplings, respectively. However, it seems that none of these findings
could be applied to systematically achieve the normal approximation bounds for Poisson
functionals given by our main results.

1.2 Statement of main results

Let us now give a precise formulation of our results. We start with distances defined
in terms of smooth test functions, namely the d2- and the d3-distances. Let H(2)

m be the
set of all C2-functions h : Rm → R such that

|h(x)− h(y)| ≤ ‖x− y‖, x, y ∈ Rm, and sup
x∈Rm

‖Hessh(x)‖op ≤ 1,

where Hessh denotes the Hessian matrix of h and ‖ · ‖op stands for the operator norm

of a matrix. By H(3)
m we denote the class of all C3-functions h : Rm → R such that the

absolute values of the second and third partial derivatives are bounded by one. Using
this notation, we define, for m-dimensional random vectors Y and Z,

d2(Y, Z) := sup
h∈H(2)

m

|Eh(Y )− Eh(Z)|

if E ‖Y ‖,E ‖Z‖ <∞ and

d3(Y, Z) := sup
h∈H(3)

m

|Eh(Y )− Eh(Z)|

if E ‖Y ‖2,E ‖Z‖2 <∞.
The paper [23] was the first to combine Stein’s method and the Malliavin calculus to

obtain normal approximation of Poisson functionals. In [24], the univariate main result
of [23] for the dW -distance is extended to vectors of Poisson functionals and the d2- and
the d3-distances are considered. Evaluating these multivariate Malliavin-Stein bounds in
the same way one evaluates in [16] the univariate bounds from [23] and [7, 30] to derive
(1.4) and (1.5), one obtains the following multivariate second order Poincaré inequalities.

Theorem 1.1. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals F1, . . . , Fm
∈ domD with EFi = 0, i ∈ {1, . . . ,m}. Define

γ1 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
)1/2

×
(
E (Dx1

Fj)
2(Dx2

Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ2 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
)1/2

×
(
E (D2

x1,x3
Fj)

2(D2
x2,x3

Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ3 :=

m∑
i=1

∫
X

E |DxFi|3 λ(dx)

and let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive semi-definite. Then

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+mγ1 +
m

2
γ2 +

m2

4
γ3. (1.6)
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If, additionally, Σ is positive definite, then

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2op

m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2‖Σ−1‖op‖Σ‖1/2op γ1

+ ‖Σ−1‖op‖Σ‖1/2op γ2 +

√
2πm2

8
‖Σ−1‖3/2op ‖Σ‖opγ3.

(1.7)

Note that γ1, γ2, and γ3 have a structure similar to that of τ1, τ2, and τ3 in (1.4) and
(1.5) and coincide with them up to some constant factors for m = 1.

Let us now compare Theorem 1.1 with related results in the literature. The bounds
in [24] are formulated in terms of the difference operator D and the inverse Ornstein-
Uhlenbeck generator L−1 and do not, in general, readily lend themselves to off-the-shelf
use. In contrast, bounds such as (1.6) and (1.7) involving only difference operators are
often tractable, as seen in our applications section and also in the companion paper [32].
Theorem 8.1 of [12] provides a bound on d3(F,NΣ), which relies on the findings of [24],
though this bound requires knowledge of the entire Wiener-Itô chaos expansion for each
of the components of F and consequently may also be less useful than (1.6). When the
components of F belong to a special class of Poisson U -statistics, which admit a finite
chaos expansion with explicitly known kernels, the paper [18] uses the results of [24] to
establish bounds for the d3-distance between F and a Gaussian random vector. In [3],
the findings from [24] are generalized by comparing a vector of Poisson functionals with
a random vector composed of Gaussian and Poisson random variables.

The paper [14] derives multivariate second order Poincaré inequalities for functionals
of Rademacher sequences. The considered d4-distance is based on test functions such
that the sup-norms of the first four partial derivatives are bounded by one.

To some extent (1.6) and (1.7) can be seen as multivariate counterparts of (1.4).
Indeed, as is the case with dW , the distances d2 and d3 are based on continuous test
functions, although the exact definitions involving C2- and C3-functions are distinct
from the multivariate Wasserstein distance obtained by using test functions h : Rm → R

having Lipschitz constants at most one.

The Kolmogorov distance (1.3) is arguably more interesting than the Wasserstein
distance (and the d2- and the d3-distances for m = 1), as it has a clearer interpretation
as the supremum norm of the difference of the distribution functions, though it is
often harder to deal with because the underlying test functions are discontinuous.
The straightforward multivariate analog to the univariate Kolmogorov distance for two
m-dimensional random vectors Y = (Y1, . . . , Ym) and Z = (Z1, . . . , Zm) would be

dK(Y,Z) := sup
u1,...,um∈R

|P(Y1 ≤ u1, . . . , Ym ≤ um)− P(Z1 ≤ u1, . . . , Zm ≤ um)|, (1.8)

which is again the supremum norm of the difference of the distribution functions of Y and
Z. In (1.8) one only takes into account rectangular solids aligned with coordinate planes,
so that for a rotation A ∈ Rm×m the distance between AY and AZ could be different
from the distance between Y and Z. Although convergence in the distance given in (1.8)
still implies weak convergence, one would like to have invariance under rotation. To
resolve this issue, one considers the following standard multivariate counterpart to the
Kolmogorov distance (1.3), defined for m-dimensional random vectors Y and Z by

dconvex(Y, Z) := sup
h∈Im

|Eh(Y )− Eh(Z)|,

where Im is the set of all indicator functions of measurable convex sets in Rm.
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For a vector F = (F1, . . . , Fm), m ∈ N, of Poisson functionals F1, . . . , Fm ∈ domD with
EFi = 0, i ∈ {1, . . . ,m}, we use the abbreviations DxF := (DxF1, . . . , DxFm) for x ∈ X,
D2
x,yF := (D2

x,yF1, . . . , D
2
x,yFm) for x, y ∈ X, and

γ4 :=

( m∑
i,j=1

∫
X

E (DxFi)
4 λ(dx) + 6

∫
X2

(
E (D2

x,yFi)
4
)1/2(

E (DxFj)
4
)1/2

λ2(d(x, y))

+ 3

∫
X2

(
E (D2

x,yFi)
4
)1/2(

E (D2
x,yFj)

4
)1/2

λ2(d(x, y))

)1/2

γ5 :=

(
3

m∑
i,j=1

∫
X3

(
E1{D2

x1,yF 6= 0, D2
x2,yF 6= 0}

(
‖Dx1

F‖+ ‖D2
x1,yF‖

)3/4
×
(
‖Dx2F‖+ ‖D2

x2,yF‖
)3/4|Dx1Fi|3/2 |Dx2Fi|3/2

)2/3
×
(
E |Dx1

Fj |3|Dx2
Fj |3

)1/3
λ3(d(x1, x2, y))

+

m∑
i,j=1

∫
X3

(
E
(
‖Dx1F‖+ ‖D2

x1,yF‖
)3/2(‖Dx2F‖+ ‖D2

x2,yF‖
)3/2)1/3

×
(

45

2

(
E |D2

x1,yFi|
3|D2

x2,yFi|
3
)1/3(

E |Dx1
Fj |3|Dx2

Fj)
3
)1/3

+
9

2

(
E |D2

x1,yFi|
3 |D2

x2,yFi|
3
)1/3(

E |D2
x1,yFj |

3|D2
x2,yFj |

3
)1/3)

λ3(d(x1, x2, y))

)1/3

γ6 :=

(
3

m∑
i,j=1

∫
X3

(
E1{D2

x1,yF 6= 0, D2
x2,yF 6= 0}

(
‖Dx1

F‖2 + ‖D2
x1,yF‖

2
)3/4

×
(
‖Dx2F‖2 + ‖D2

x2,yF‖
2
)3/4|Dx1Fi|3/2 |Dx2Fi|3/2

)2/3
×
(
E |Dx1

Fj |3|Dx2
Fj |3

)1/3
λ3(d(x1, x2, y))

+

m∑
i,j=1

∫
X3

(
E
(
‖Dx1F‖2 + ‖D2

x1,yF‖
2
)3/2(‖Dx2F‖2 + ‖D2

x2,yF‖
2
)3/2)1/3

×
(

135

8

(
E |D2

x1,yFi|
3|D2

x2,yFi|
3
)1/3(

E |Dx1
Fj |3|Dx2

Fj |3
)1/3

+
27

8

(
E |D2

x1,yFi|
3 |D2

x2,yFi|
3
)1/3(

E |D2
x1,yFj |

3|D2
x2,yFj |

3
)1/3)

λ3(d(x1, x2, y))

)1/4

,

where 0 stands for the origin in Rm.

The following multivariate second order Poincaré inequality for the dconvex-distance
constitutes our main finding. The inequality is the multivariate counterpart to the
bound for the Kolmogorov distance at (1.5) established in [16] and it closely resembles
those for the d2- and d3-distances at (1.6) and (1.7). For a positive definite matrix
Σ ∈ Rm×m let Σ1/2 be the positive definite matrix in Rm×m such that Σ1/2Σ1/2 = Σ and
let Σ−1/2 := (Σ1/2)−1.

Theorem 1.2. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals F1, . . . , Fm
∈ domD with EFi = 0, i ∈ {1, . . . ,m}, and let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive
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definite. Then

dconvex(F,NΣ) ≤ 941m5 max{‖Σ−1/2‖op, ‖Σ−1/2‖3op}

×max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|, γ1, γ2, γ3, γ4, γ5, γ6

}
(1.9)

with γ1, γ2, and γ3 as in Theorem 1.1 and with γ4, γ5, and γ6 defined as above.

Several existing results for the multivariate normal approximation of general random
vectors in the dconvex-distance or generalizations of it [6, 9, 10, 27] all require some
almost sure boundedness assumptions; in our set-up this would amount to requiring
that |DxFi| is almost surely bounded for x ∈ X and i ∈ {1, . . . ,m}. One of the main
achievements of Theorem 1.2 is that no such assumption is required. For results without
an almost sure boundedness assumption we refer to [8, Chapter 3] and, with weaker
rates of convergence, to [26, Corollary 3.1].

A second main achievement of Theorem 1.2 is that there are no logarithmic terms
in the bound (1.9) (see the discussion at the end of Subsection 1.1). The Malliavin-Stein
method is used in [20] to establish bounds in the dW -distance for the multivariate normal
approximation of functionals of Gaussian processes. In [13], a similar bound with an
additional logarithm is derived for the dconvex-distance. As with Theorem 1.2, the latter
result does not require any boundedness assumptions. Moreover, we expect that one
can use our proof technique to remove the logarithm from the result in [13]. For a
subclass of functionals of Gaussian processes, namely multiple Wiener-Itô integrals, one
may even establish rates of multivariate normal approximation with respect to the total
variation distance [21]. This bound also involves additional logarithmic factors and its
proof relies on controlling the relative entropy, an approach which differs from Stein’s
method.

Clearly, if the random vector NΣ is replaced by a normal random vector whose
covariance matrix consists of entries Cov(Fi, Fj), then the term

∑m
i,j=1 |σij −Cov(Fi, Fj)|

in the bounds of our main theorems disappears.
In Theorem 1.2 we require that the covariance matrix Σ of the approximating Gaus-

sian random vector NΣ is positive definite. Otherwise, NΣ would be concentrated
on some lower-dimensional linear subspace of Rm. If now F were to belong to any
given lower dimensional subspace of Rm with probability zero, then we would have
dconvex(F,NΣ) ≥ 1. In such situations, one could have weak convergence without conver-
gence in dconvex.

1.3 Examples and applications

At first sight, the bounds in our general results appear unwieldy. However for many
functionals of interest, we may readily bound the integrated moments of difference
operators and the terms γ1, . . . , γ6 simplify. We illustrate this by four examples, which
indicate that our bounds yield presumably optimal rates of convergence.

We start with the following analog to the classical central limit theorem for sums of
i.i.d. random vectors, where we consider the sum of a Poisson distributed number of i.i.d.
random vectors. Here, as in Theorems 1.1 and 1.2, we implicitly assume that the normal
approximation bounds all involve finite quantities, as otherwise there is nothing to prove.
The proof of the following result is postponed to Subsection 4.1.

Corollary 1.3. Given a Poisson distributed random variable Y with mean s > 0 and a
sequence of i.i.d. centered random vectors (Xn)n∈N in Rm, which are independent of Y ,
define

Zs :=
1√
s

Y∑
n=1

Xn and Σ := (Cov(X
(i)
1 , X

(j)
1 ))i,j∈{1,...,m}.
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(a) It is the case that

d3(Zs, NΣ) ≤ m2

4

m∑
i=1

E |X(i)
1 |3

1√
s
.

(b) When Σ is positive definite we have

d2(Zs, NΣ) ≤
√

2πm2

8
‖Σ−1‖3/2op ‖Σ‖op

m∑
i=1

E |X(i)
1 |3

1√
s
.

(c) When Σ is positive definite we have

dconvex(F,NΣ) ≤ 941m11/2 max{‖Σ−1/2‖op, ‖Σ−1/2‖3op}

×max

{ m∑
i=1

E |X(i)
1 |3,

√√√√ m∑
i=1

E (X
(i)
1 )4

}
1√
s
.

(1.10)

Since one can rewrite Zs as a sum of a fixed number of i.i.d. random vectors, one can
also apply the classical multivariate central limit theorem. In [1, 11, 28] corresponding
Berry-Esseen inequalities for the dconvex-distance are derived, which provide in the
case of Corollary 1.3 rates of convergence of the order 1/

√
s as well. These findings

are even stronger since they require for the dconvex-distance only finite third moments,
while we require finite fourth moments. The stricter assumptions in Corollary 1.3 might
come from the fact that the proofs of the underlying results for more general Poisson
functionals are not optimized for the considered special case. Since Zs is a vector of first
order Poisson integrals, Corollary 1.3 follows from a more general theorem in Subsection
4.1, which is obtained by applying our main results to first order Poisson integrals.

As a second example, for fixed m ∈ N, we consider vectors Fs = (F1,s, . . . , Fm,s),
s > 0, of square integrable Poisson functionals F1,s, . . . , Fm,s with underlying Poisson
processes ηs, s > 0, having intensity measures µs, s > 0, of the form µs = sµ with a fixed
finite measure µ, e.g., homogenous Poisson processes on the d-dimensional unit cube
[0, 1]d with increasing intensity. Moreover, we denote by Σs the covariance matrix of
Fs and assume that (Σs)s>0 converges to a matrix Σ ∈ Rm×m. Under some additional
assumptions on the difference operators our main results imply the following result,
proved in Subsection 4.3.

Corollary 1.4. Let Fs, s > 0, be as above and assume that Σ is positive definite and that
there are constants a, b, ε ∈ (0,∞) such that, for i ∈ {1, . . . ,m} and s > 0,

E |DxFi,s|6+ε ≤ a

s3+ε/2
, µ-a.e. x ∈ X, (1.11)

E |D2
x1,x2

Fi,s|6+ε ≤ a

s3+ε/2
, µ2-a.e. (x1, x2) ∈ X2, (1.12)

and

s

∫
X

P(D2
x,yFi,s 6= 0)

ε
36+6ε µ(dy) ≤ b, µ-a.e. x ∈ X. (1.13)

Then there exist constants s0, C3, C2, Cconvex ∈ (0,∞) depending on a, b, ε, m, µ(X), Σ,
and (Σs)s>0 such that

d3(Fs, NΣs
) ≤ C3√

s
, d2(Fs, NΣs

) ≤ C2√
s
, and dconvex(Fs, NΣs

) ≤ Cconvex√
s

for s ≥ s0.
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The rates of convergence in Corollary 1.4 are of the order s−1/2 for all distances.
The set-up of Corollary 1.4, in which one re-scales by the square root of the intensity
parameter and in which the (6 + ε)-th moments of the un-rescaled difference operators
are bounded, frequently occurs in problems in stochastic geometry; see e.g. [15, 16].

The third example is the situation where, before centering, the components of F
have representations s−1/2

∑
x∈ηsg∩Ai

ξ
(i)
s (x, ηsg), i ∈ {1, . . . ,m}, with s ∈ [1,∞), where

Ai, i ∈ {1, . . . ,m}, are bounded subsets of Rd, ηsg is a Poisson process in Rd whose

intensity measure has density sg with respect to the Lebesgue measure, and where ξ(i)
s ,

i ∈ {1, . . . ,m}, are stabilizing score functions. Then the companion paper [32], which
can be seen as a multivariate counterpart to some of the findings in [15], shows that the
right-hand sides of (1.6), (1.7), and (1.9) reduce to O(

∑m
i,j=1 |σij−Cov(Fi, Fj)|)+O(s−1/2)

under some assumptions on (ξ
(i)
s )s≥1, i ∈ {1, . . . ,m}, Ai, i ∈ {1, . . . ,m}, and g. This means

that the approximation error consists of a term taking into account the difference of the
covariances and a term of order s−1/2, which also occurs in the univariate case (see [15]).
In Section 3 of [32], these findings are applied to obtain quantitative multivariate central
limit theorems for statistics of k-nearest neighbors graphs and random geometric graphs
as well as for statistics arising in topological data analysis and entropy estimation.

A fourth example concerns the intrinsic volumes of Boolean models, a prominent
problem from stochastic geometry. Let Vd(W ) be the volume of the compact convex
observation window W ⊂ Rd. If one compares the vector of intrinsic volumes of the
Boolean model in W with a centered Gaussian random vector having exactly the same
covariance matrix and if one increases the inradius of W , then our main results lead to
the rate of normal convergence Vd(W )−1/2; see Subsection 4.2.

In the last three examples the rates of convergence s−1/2 and Vd(W )−1/2, respectively,
are comparable to n−1/2 in the uni- and multivariate central limit theorems for the i.i.d.
case and, thus, presumably optimal.

Among these examples, we will consider the first order Poisson integrals generalizing
the situation of Corollary 1.3 and the intrinsic volumes of Boolean models in more detail
in Subsections 4.1 and 4.2, while Corollary 1.4 is a consequence of a theorem derived in
Subsection 4.3.

1.4 Proof techniques

Let us now informally comment on the method of proof. The proofs of Theorems 1.1
and 1.2 are based on the Malliavin calculus on the Poisson space and Stein’s method for
multivariate normal approximation. In particular we apply a smoothing technique, which
we discuss in this subsection. Assume we aim to compare an m-dimensional random
vector Y = (Y1, . . . , Ym) with an m-dimensional centered Gaussian random vector NI
with the identity matrix I ∈ Rm×m as covariance matrix (we assume Σ = I for simplicity)
in terms of a measurable test function h : Rm → R. The idea of Stein’s method for
multivariate normal approximation (see e.g. [6, 11]) is now to use the identity

Eh(Y )− Eh(NI) = E

m∑
i=1

Yi
∂fh
∂yi

(Y )− ∂2fh
∂y2

i

(Y ),

where fh : Rm → R is a solution of the multivariate Stein equation

m∑
i=1

yi
∂f

∂yi
(y)− ∂2f

∂y2
i

(y) = h(y)− Eh(NI), y ∈ Rm. (1.14)

Under some smoothness assumptions on h one can give formulas for fh (see, for example,
Lemma 2.6 in [6]). However for non-smooth h such as indicator functions of convex sets,
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it appears unclear how to deal with fh. This problem is resolved by considering instead
of h some smoothed C∞ version ht,I of h, which depends on a smoothing parameter
t ∈ (0, 1). Of course one makes some error by replacing the test functions defining the
dconvex-distance by their smoothed versions, but a smoothing lemma allows us to bound
this error by some constant multiple of

√
t.

Thus it remains to find upper bounds for |Eht,I(Y ) − Eht,I(NI)| as a function of
t ∈ (0, 1). We sketch how this goes as follows. Given h : Rm → R measurable and
bounded and t ∈ (0, 1) we introduce the smoothed function

ht,I(y) :=

∫
Rm

h(
√
tz +

√
1− ty)ϕI(z) dz, y ∈ Rm, (1.15)

where ϕI denotes the density of NI . The function ft,h,I : Rm → R given by

ft,h,I(y) :=
1

2

∫ 1

t

1

1− s

∫
Rm

(h(
√
sz +

√
1− sy)− h(z))ϕI(z) dz ds, y ∈ Rm, (1.16)

is a solution of the Stein equation (1.14) with h replaced by ht,I ; see [11, p. 726] and [6,
p. 337]. Moreover, when ‖h‖∞ := supx∈Rm |h(x)| ≤ 1, it follows (see e.g. the first display
on p. 1498 in [24]) that, for a vector F = (F1, . . . , Fm), m ∈ N, of Poisson functionals
F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m},

|Eht,I(F )−Eht,I(NI)| =
∣∣∣∣ m∑
i=1

E
∂2ft,h,I
∂y2

i

(F )−
m∑
k=1

E

∫
X

Dx
∂ft,h,I
∂yk

(F )(−DxL
−1Fk)λ(dx)

∣∣∣∣,
where Dx is the difference operator given in (1.1) and L−1 is the inverse Ornstein-
Uhlenbeck generator defined in the Appendix. A main idea behind the proof of Theorem
1.2 is to show that the bound for the right-hand side of the above involves the term√∑m

i,j=1E

(
∂2ft,h,I

∂yi∂yj
(F )

)2

and then to use

sup
h∈Im

E

m∑
i,j=1

(
∂2ft,h,I
∂yi∂yj

(F )

)2

≤M2(log t)2dconvex(F,NI) + 530m17/6 (1.17)

for all t ∈ (0, 1) and i, j ∈ {1, . . . ,m} where M2 ≤ m2. By choosing t appropriately we
may deduce Theorem 1.2. The inequality (1.17) is not restricted to a vector F of Poisson
functionals, but holds for arbitrary random vectors Y in Rm, as described in Proposition
2.3. Thus, we expect that it might be helpful for other applications of Stein’s method for
multivariate normal approximation.

In our main results we provide explicit constants, which are sometimes very large. In
part, this is caused by some generous estimates in our proofs, used to obtain relatively
short bounds valid for all choices of m and to simplify the proofs. We expect that one
could obtain better constants for many instances if one goes back to our proofs and uses
the particular stucture of the functionals and the choice of m.

1.5 Structure of the paper

This paper is organized as follows. The next section provides a smoothing lemma and
bounds on solutions of the multivariate Stein equation, including the afore-mentioned
Proposition 2.3. Section 3, which draws on the auxiliary results of Section 2, is devoted
to the proofs of our main results. Section 4 deals with the application of our findings
to first order Poisson integrals and intrinsic volumes of Boolean models. Moreover, we
further evaluate our results for the case of marked Poisson processes – a result which
will be used in the companion paper [32]. In the Appendix we recall the definitions of
the Malliavin operators as well as some results from Malliavin calculus on the Poisson
space that are used in Section 3.
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2 Smoothing and the multivariate Stein equation

2.1 A smoothing lemma for the dconvex-distance

Let m ∈ N be fixed in the sequel. Let ϕΣ denote the density of an m-dimensional
centered Gaussian random vector NΣ having a positive definite covariance matrix Σ =

(σij)i,j∈{1,...,m} ∈ Rm×m. Recall that Σ1/2 and Σ−1/2 are the positive definite matrices in
Rm×m such that Σ1/2Σ1/2 = Σ and Σ−1/2 = (Σ1/2)−1.

The following result from [11, p. 725] (see also [2, Corollary 3.2]) is used repeatedly.
For x ∈ Rm and a Borel set B ⊆ Rm we define d(x,B) := infy∈B ‖x− y‖.
Lemma 2.1. For A ⊆ Rm convex and r > 0,

P(d(NI , ∂A) ≤ r) ≤ 2
√
mr.

Given measurable and bounded h : Rm → R, positive definite Σ ∈ Rm×m, and
t ∈ (0, 1) we introduce the smoothed version

ht,Σ(y) :=

∫
Rm

h(
√
tz +

√
1− ty)ϕΣ(z) dz = Eh(

√
tNΣ +

√
1− ty), y ∈ Rm,

of h, extending (1.15) to general Σ. The following so-called smoothing lemma (see
Lemma 2.11 in [11], Lemma 11.4 in [2], or Lemma 12.1 of [6]) allows one to bound the
dconvex-distance to the m-dimensional centered Gaussian random vector NΣ with positive
definite covariance matrix Σ ∈ Rm×m in terms of smooth test functions. Lemma 2.2 is
the starting point for proving (1.9).

Lemma 2.2. For an m-dimensional random vector Y , t ∈ (0, 1), and positive definite
Σ ∈ Rm×m we have

dconvex(Y,NΣ) ≤ 4

3
sup
h∈Im

|Eht,Σ(Y )− Eht,Σ(NΣ)|+ 20√
2
m

√
t

1− t
.

Proof. We first establish that the asserted bound holds when Σ is replaced by I. Indeed
this is the statement of [11, Lemma 2.11] with ε =

√
t, ∆ = 2

√
m (see [11, p. 725] as well

as [2, Corollary 3.2]) and am ≤ 2
√

2m (which follows from Markov’s inequality) there.

Next, to show that this bound holds for positive definite Σ ∈ Rm×m, it suffices to
notice that we have

dconvex(Y,NΣ) = dconvex(Y,Σ1/2NI) = dconvex(Σ−1/2Y,NI)

and

sup
h∈Im

|Eht,Σ(Y )− Eht,Σ(NΣ)| = sup
h∈Im

|Eht,I(Σ−1/2Y )− Eht,I(NI)|.

To verify the second identity, notice that for any h ∈ Im the functions h ◦ Σ1/2 : Rm 3
x 7→ h(Σ1/2x) and h ◦ Σ−1/2 : Rm 3 x 7→ h(Σ−1/2x) also belong to Im,

ht,Σ(x) = Eh(
√
tNΣ+

√
1− tx) = Eh◦Σ1/2(

√
tNI+

√
1− tΣ−1/2x) = (h◦Σ1/2)t,I(Σ

−1/2x),

and similarly (h ◦ Σ−1/2)t,Σ(x) = ht,I(Σ
−1/2x).

2.2 Bounds on the derivatives of the solution to Stein’s equation for multivari-
ate normal approximation

We extend the definition of ft,h,I at (1.16) to include indices with general covariance
matrix Σ. This goes as follows. For h : Rm → R measurable and bounded, Σ =
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(σij)i,j∈{1,...,m} ∈ Rm×m positive definite, and t ∈ (0, 1), the function ft,h,Σ : Rm → R

given by

ft,h,Σ(y) :=
1

2

∫ 1

t

1

1− s

∫
Rm

(h(
√
sz +

√
1− sy)− h(z))ϕΣ(z) dz ds, y ∈ Rm,

is a solution of the Stein equation

ht,Σ(y)− Eht,Σ(NΣ) =

m∑
i=1

yi
∂f

∂yi
(y)−

m∑
i,j=1

σij
∂2f

∂yi∂yj
(y), y ∈ Rm,

see [11, p. 726] and [6, p. 337] for Σ = I as well as [19, Lemma 1] and [20, Lemma 3.3]
for general Σ. Some calculations show that, for i, j, k ∈ {1, . . . ,m} and y ∈ Rm,

∂ft,h,Σ
∂yi

(y) = −1

2

∫ 1

t

1
√
s
√

1− s

∫
Rm

h(
√
sz +

√
1− sy)

∂ϕΣ

∂yi
(z) dz ds,

∂2ft,h,Σ
∂yi∂yj

(y) =
1

2

∫ 1

t

1

s

∫
Rm

h(
√
sz +

√
1− sy)

∂2ϕΣ

∂yi∂yj
(z) dz ds, (2.1)

and

∂3ft,h,Σ
∂yi∂yj∂yk

(y) = −1

2

∫ 1

t

√
1− s
s3/2

∫
Rm

h(
√
sz +

√
1− sy)

∂3ϕΣ

∂yi∂yj∂yk
(z) dz ds. (2.2)

By h ◦ Σ1/2 we denote the function Rm 3 y 7→ h(Σ1/2y). It follows from the definition of
ft,h,Σ that, for y ∈ Rm,

ft,h,Σ(y) =
1

2

∫ 1

t

1

1− s
E [h(

√
sNΣ +

√
1− sy)− h(NΣ)] ds

=
1

2

∫ 1

t

1

1− s
E [h ◦ Σ1/2(

√
sNI +

√
1− sΣ−1/2y)− h ◦ Σ1/2(NI)] ds

= ft,h◦Σ1/2,I(Σ
−1/2y).

(2.3)

Since ϕΣ(z) = ϕI(Σ
−1/2z)/

√
det(Σ) for z ∈ Rm, we have that, for i, j, k ∈ {1, . . . ,m} and

z ∈ Rm,

∂3ϕΣ

∂yi∂yj∂yk
(z) =

1√
det(Σ)

m∑
u,v,w=1

(Σ−1/2)ui(Σ
−1/2)vj(Σ

−1/2)wk
∂3ϕI

∂yu∂yv∂yw
(Σ−1/2z),

which yields together with a short computation

m∑
i,j,k=1

(
∂3ϕΣ

∂yi∂yj∂yk
(z)

)2

≤
‖Σ−1‖3op
det(Σ)

m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(Σ−1/2z)

)2

. (2.4)

From the above formulas for the derivatives of ft,h,Σ one can deduce that

sup
y∈Rm

∣∣∣∣∂2ft,h,Σ(y)

∂yi∂yj

∣∣∣∣ ≤ m2‖Σ−1‖op‖h‖∞| log t|, t ∈ (0, 1),

and

sup
y∈Rm

∣∣∣∣ ∂3ft,h,Σ
∂yi∂yj∂yk

(y)

∣∣∣∣ ≤ 6m3‖Σ−1‖3/2op ‖h‖∞
1√
t
, t ∈ (0, 1). (2.5)

Sup norm bounds on the derivatives of ft,h,Σ go hand-in-hand with the following more
useful second moment bound. It is a key to controlling the right-hand side of the
smoothing inequality in Lemma 2.2, an essential part of the proof of Theorem 1.2.
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Proposition 2.3. Let Y be an m-dimensional random vector, let Σ ∈ Rm×m be positive
definite, and define

M2 :=
1

4

m∑
i,j=1

(∫
Rm

∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣dz)2

≤ m2. (2.6)

Then

sup
h∈Im

E

m∑
i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(Y )

)2

≤ ‖Σ−1‖2op(M2(log t)2dconvex(Y,NΣ) + 530m17/6)

for all t ∈ (0, 1).

We prepare the proof of Proposition 2.3 with the following lemmas.

Lemma 2.4. For any α ∈ (0, 1),

sup
A⊆Rm convex

E
1

d(NI , ∂A)α
≤ 1 + 2

√
m

α

1− α
.

Proof. For any convex A ⊆ Rm we have that

E
1

d(NI , ∂A)α
=

∫ ∞
0

P(d(NI , ∂A)−α ≥ u) du =

∫ ∞
0

P(d(NI , ∂A) ≤ u−1/α) du

≤ 1 +

∫ ∞
1

P(d(NI , ∂A) ≤ u−1/α) du

≤ 1 + 2
√
m

∫ ∞
1

u−1/α du = 1 + 2
√
m

α

1− α
,

where we used Lemma 2.1 for the last inequality.

Lemma 2.5. For any positive definite Σ ∈ Rm×m and i, j ∈ {1, . . . ,m},∫
Rm

∂2ϕΣ

∂yi∂yj
(z) dz = 0.

Proof. As noted at display (12.72) of [6] we have that the integral of the mixed derivative
∂2ϕΣ

∂yi∂yj
(z) is the mixed derivative of x 7→

∫
Rm ϕΣ(z+x) dz evaluated at x = 0. The integral

is one, so the derivative vanishes.

Lemma 2.6. For all h ∈ Im and t ∈ (0, 1),

max
i,j∈{1,...,m}

E

(
∂2ft,h,I
∂yi∂yj

(NI)

)2

≤ 530m5/6.

Proof. Put h := 1{· ∈ A} for some measurable convex set A ⊆ Rm. Then, for i, j ∈
{1, . . . ,m} and y ∈ Rm, it follows from (2.1) that

∂2ft,h,I
∂yi∂yj

(y) =
1

2

∫ 1

t

1

s

∫
Rm

1{
√
sz +

√
1− sy ∈ A} ∂

2ϕI
∂yi∂yj

(z) dz ds

=
1

2

∫ 1

t

1

s

∫
Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz ds.

For s ∈ (0, 1) and y ∈ Rm let rs,y := d(0, ∂
(

1√
s
(A −

√
1− sy)

)
) = 1√

s
d(
√

1− sy, ∂A). If

0 /∈ 1√
s
(A−

√
1− sy), we have∣∣∣∣ ∫

Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣ ≤ ∫
Rm\Bm(0,rs,y)

∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣dz,
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where Bm(x, r) denotes the closed ball with center x ∈ Rm and radius r ≥ 0. If
0 ∈ 1√

s
(A−

√
1− sy), Lemma 2.5 implies that∣∣∣∣ ∫

Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣
=

∣∣∣∣ ∫
Rm

1{z /∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣ ≤ ∫
Rm\Bm(0,rs,y)

∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣dz.
Letting φ be the density of a standard Gaussian random variable, we have, for all a ∈ R,

|φ′(a)| = 1√
2π
|a|e−a

2/2 ≤ 1√
2π
|ae−a

2/4|︸ ︷︷ ︸
≤1

e−a
2/4 ≤

√
2√

4π
e−a

2/4

and

|φ′′(a)| = 1√
2π
|a2 − 1|e−a

2/2 ≤ 1√
2π
|(a2 − 1)e−a

2/4|︸ ︷︷ ︸
≤2

e−a
2/4 ≤ 23/2

√
4π
e−a

2/4.

We obtain ∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣ ≤ 23/2ϕIi,j (z), z ∈ Rm,

where Ii,j is the identity matrix I where the i-th and the j-th diagonal element are
replaced by 2. Consequently, we have∣∣∣∣ ∫

Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣ ≤ 23/2P(‖NIi,j‖ ≥ rs,y).

The Markov inequality yields

P(‖NIi,j‖ ≥ rs,y) ≤
E ‖NIi,j‖1/3

r
1/3
s,y

≤
s1/6(E ‖NIi,j‖2)1/6

d(
√

1− sy, ∂A)1/3
≤ 21/6m1/6s1/6

(1− s)1/6d(y, ∂A/
√

1− s)1/3
.

Hence, we obtain∣∣∣∣∂2ft,h,I
∂yi∂yj

(y)

∣∣∣∣ ≤ 22/3m1/6

∫ 1

t

1

s5/6(1− s)1/6

1

d(y, ∂A/
√

1− s)1/3
ds, y ∈ Rm.

The Cauchy-Schwarz inequality leads to(
∂2ft,h,I
∂yi∂yj

(y)

)2

≤ 24/3m1/3

∫ 1

t

1

s5/6(1− s)1/3
ds

∫ 1

t

1

s5/6

1

d(y, ∂A/
√

1− s)2/3
ds, y ∈ Rm.

Numerical integration shows that the first integral may be generously bounded by 7 so
that we obtain, together with Lemma 2.4,

E

(
∂2ft,h,I
∂yi∂yj

(NI)

)2

≤ 7 · 24/3m1/3

∫ 1

t

1

s5/6
E

1

d(NI , ∂A/
√

1− s)2/3
ds

≤ 7 · 24/3m1/3

∫ 1

t

1

s5/6
ds sup

A′⊆Rm convex
E

1

d(NI , ∂A′)2/3

≤ 42 · 24/3m1/3(1 + 4
√
m)

≤ 530m5/6,

which completes the proof of Lemma 2.6.
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Proof of Proposition 2.3. First we prove the assertion for the special case Σ = I. For
i, j ∈ {1, . . . ,m} we have

E

(
∂2ft,h,I
∂yi∂yj

(Y )

)2

= E

(
1

2

∫ 1

t

1

s

∫
Rm

h(
√
sz +

√
1− sY )

∂2ϕI
∂yi∂yj

(z) dz ds

)2

=
1

4

∫ 1

t

∫ 1

t

1

s1s2

∫
Rm

∫
Rm

Eh(
√
s1z1 +

√
1− s1Y )h(

√
s2z2 +

√
1− s2Y )

× ∂2ϕI
∂yi∂yj

(z1)
∂2ϕI
∂yi∂yj

(z2) dz2 dz1 ds2 ds1

=
1

4

∫ 1

t

∫ 1

t

1

s1s2

∫
Rm

∫
Rm

Eh(
√
s1z1 +

√
1− s1NI)h(

√
s2z2 +

√
1− s2NI)

× ∂2ϕI
∂yi∂yj

(z1)
∂2ϕI
∂yi∂yj

(z2) dz2 dz1 ds2 ds1

+
1

4

∫ 1

t

∫ 1

t

1

s1s2

∫
Rm

∫
Rm

(
Eh(
√
s1z1 +

√
1− s1Y )h(

√
s2z2 +

√
1− s2Y )

− Eh(
√
s1z1 +

√
1− s1NI)h(

√
s2z2 +

√
1− s2NI)

)
× ∂2ϕI
∂yi∂yj

(z1)
∂2ϕI
∂yi∂yj

(z2) dz2 dz1 ds2 ds1

= E

(
∂2ft,h,I
∂yi∂yj

(NI)

)2

+Rij ,

where Rij denotes the second four-fold integral in the penultimate equation. It follows
from Lemma 2.6 that

E

m∑
i,j=1

(
∂2ft,h,I
∂yi∂yj

(NI)

)2

≤ 530m17/6.

For h ∈ Im we have that

hz1,z2,s1,s2 : Rm 3 y 7→ h(
√
s1z1 +

√
1− s1y)h(

√
s2z2 +

√
1− s2y)

is the indicator function of a measurable convex set, whence

m∑
i,j=1

|Rij | ≤M2(log t)2dconvex(Y,NI).

Combining the previous estimates completes the proof of Proposition 2.3 for the special
case Σ = I.

For a positive definite Σ ∈ Rm×m it follows from (2.3) that, for y ∈ Rm,

Hess ft,h,Σ(y) = Σ−1/2 Hess ft,h◦Σ1/2,I(Σ
−1/2y)Σ−1/2.

Using the Hilbert-Schmidt norm ‖A‖H.S. :=
√∑m

i,j=1 a
2
ij of a matrix A = (aij)i,j∈{1,...,m} ∈

Rm×m and the relation ‖AB‖H.S. ≤ ‖A‖op‖B‖H.S. for A,B ∈ Rm×m, we obtain

E

m∑
i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(Y )

)2

= E ‖Hess ft,h,Σ(Y )‖2H.S.

= E ‖Σ−1/2 Hess ft,h◦Σ1/2,I(Σ
−1/2Y )Σ−1/2‖2H.S.
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≤ ‖Σ−1/2‖4opE ‖Hess ft,h◦Σ1/2,I(Σ
−1/2Y )‖2H.S.

= ‖Σ−1‖2opE
m∑

i,j=1

(
∂2ft,h◦Σ1/2,I

∂yi∂yj
(Σ−1/2Y )

)2

.

Now the special case proven above (for Σ = I) and the observation that

dconvex(Σ−1/2Y,NI) = dconvex(Y,NΣ)

complete the proof of Proposition 2.3.

3 Proofs of the main results

Throughout this section we assume that the reader is familiar with Malliavin calculus
on the Poisson space. The Appendix provides the essential definitions and properties of
Malliavin operators needed in the sequel.

3.1 Proof of Theorem 1.1

The starting point for the proofs for the d3- and the d2-distance are the following
quantitative bounds for the normal approximation of Poisson functionals, which were
derived in [24, Theorem 4.2] and [24, Theorem 3.3] by a combination of Malliavin
calculus with the interpolation method and Stein’s method, respectively (see also [4,
Section 6]). For a definition of the inverse Ornstein-Uhlenbeck generator L−1 we refer
to [16, 24] or the Appendix.

Proposition 3.1. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals
F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m}, let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be
positive semi-definite, and put

β1 :=

√√√√ m∑
i,j=1

E

(
σij −

∫
X

DxFi(−DxL−1Fj)λ(dx)

)2

β2 :=

∫
X

E

( m∑
i=1

|DxFi|
)2 m∑

j=1

|DxL
−1Fj |λ(dx).

Then

d3(F,NΣ) ≤ m

2
β1 +

1

4
β2.

If, additionally, Σ is positive definite, then

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2op β1 +

√
2π

8
‖Σ−1‖3/2op ‖Σ‖opβ2.

The main difficulty in evaluating these bounds is to control the behavior of the terms
involving L−1, which will be done in the same way as in [16]. The following proposition
collects two estimates from [16, Lemma 3.4 and Proposition 4.1], which will play a
crucial role in the sequel. This proposition and Proposition 3.4 are consequences of
Mehler’s formula (see [16, Section 3]).

Proposition 3.2. (a) For a square integrable Poisson functional F and p ≥ 1,

E |DxL
−1F |p ≤ E |DxF |p, λ-a.e. x ∈ X

and
E |D2

x,yL
−1F |p ≤ E |D2

x,yF |p, λ2-a.e. (x, y) ∈ X2.
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(b) For F,G ∈ domD with EF = EG = 0,

E

(
Cov(F,G)−

∫
X

DxF (−DxL
−1G)λ(dx)

)2

≤ 3

∫
X3

[
E (D2

x1,x3
F )2(D2

x2,x3
F )2

]1/2[
E (Dx1G)2(Dx2G)2

]1/2
λ3(d(x1, x2, x3))

+

∫
X3

[
E (Dx1

F )2(Dx2
F )2

]1/2[
E (D2

x1,x3
G)2(D2

x2,x3
G)2

]1/2
λ3(d(x1, x2, x3))

+

∫
X3

[
E (D2

x1,x3
F )2(D2

x2,x3
F )2

]1/2[
E (D2

x1,x3
G)2(D2

x2,x3
G)2

]1/2
λ3(d(x1, x2, x3)).

Combining Proposition 3.1 and Proposition 3.2 yields the proof of Theorem 1.1, which
goes as follows.

Proof of Theorem 1.1. From the triangle inequality we obtain

β1 ≤
m∑

i,j=1

|σij − Cov(Fi, Fj)|+

√√√√ m∑
i,j=1

E

(
Cov(Fi, Fj)−

∫
X

DxFi(−DxL−1Fj)λ(dx)

)2

.

An application of Proposition 3.2(b) yields that, for i, j ∈ {1, . . . ,m},

E

(
Cov(Fi, Fj)−

∫
X

DxFi(−DxL
−1Fj)λ(dx)

)2

≤ 3

∫
X3

[
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
]1/2[

E (Dx1Fj)
2(Dx2Fj)

2
]1/2

λ3(d(x1, x2, x3))

+

∫
X3

[
E (Dx1

Fi)
2(Dx2

Fi)
2
]1/2[

E (D2
x1,x3

Fj)
2(D2

x2,x3
Fj)

2
]1/2

λ3(d(x1, x2, x3))

+

∫
X3

[
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
]1/2[

E (D2
x1,x3

Fj)
2(D2

x2,x3
Fj)

2
]1/2

λ3(d(x1, x2, x3))

so that

β1 ≤
m∑

i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2. (3.1)

It follows from Hölder’s inequality and Proposition 3.2(a) that

β2 ≤ m
∫
X

m∑
i=1

(
E |DxFi|3

)2/3 m∑
j=1

(
E |DxL

−1Fj |3
)1/3

λ(dx)

≤ m
∫
X

m∑
i=1

(
E |DxFi|3

)2/3 m∑
j=1

(
E |DxFj |3

)1/3
λ(dx)

≤ m
∫
X

m1/3

( m∑
i=1

E |DxFi|3
)2/3

m2/3

( m∑
j=1

E |DxFj |3
)1/3

λ(dx)

= m2

∫
X

m∑
i=1

E |DxFi|3 λ(dx) = m2γ3.

Now Proposition 3.1 completes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2

Throughout this subsection we use several Malliavin operators, namely the already
introduced difference operator D, the inverse Ornstein-Uhlenbeck generator L−1, and
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the Skorohod integral δ. Recall that we denote the domain of D by domD and we define
dom δ similarly. For definitions we refer to the Appendix.

We prepare the proof of Theorem 1.2 by the following lemma.

Lemma 3.3. For an m-dimensional random vector Y , a measurable convex set A ⊆ Rm,
a positive definite matrix Σ ∈ Rm×m, and w ≥ 0,

P(d(Y, ∂A) ≤ w) ≤ 2
√
m‖Σ−1/2‖opw + 2dconvex(Y,NΣ).

Proof. Using the abbreviations Aw := {y ∈ Rm : d(y,A) ≤ w} and A−w := {y ∈ A :

d(y, ∂A) > w}, we obtain

P(d(Y, ∂A) ≤ w) = P(Y ∈ Aw)− P(Y ∈ A−w)

= P(NΣ ∈ Aw)− P(NΣ ∈ A−w) + P(Y ∈ Aw)− P(NΣ ∈ Aw)

+ P(NΣ ∈ A−w)− P(Y ∈ A−w).

Since Aw and A−w are measurable and convex, we have

max
B∈{Aw,A−w}

∣∣P(Y ∈ B)− P(NΣ ∈ B)
∣∣ ≤ dconvex(Y,NΣ)

so that

P(d(Y, ∂A) ≤ w) ≤ P(NΣ ∈ Aw \A−w) + 2dconvex(Y,NΣ)

= P(d(NΣ, ∂A) ≤ w) + 2dconvex(Y,NΣ).

Note that

d(NI ,Σ
−1/2∂A) = sup

y∈Σ−1/2∂A

‖NI − y‖ = sup
y∈Σ−1/2∂A

‖Σ−1/2(Σ1/2NI − Σ1/2y)‖

= sup
y∈∂A

‖Σ−1/2(Σ1/2NI − y)‖

≤ ‖Σ−1/2‖op sup
y∈∂A

‖Σ1/2NI − y‖ = ‖Σ−1/2‖opd(Σ1/2NI , ∂A).

Together with Lemma 2.1, we see that

P(d(NΣ, ∂A) ≤ w) ≤ P(d(NI ,Σ
−1/2∂A) ≤ ‖Σ−1/2‖opw) ≤ 2

√
m‖Σ−1/2‖opw,

which completes the proof.

The next proposition is an abstract formulation of one of the main ideas of the proof
of Proposition 3.2(b) (see also [17, Lemma 21.4]).

Proposition 3.4. For a measurable function h : X2 ×N→ [0,∞), a Poisson functional
G ∈ domD, and p, q ∈ (0,∞) with 1/p+ 1/q = 1,∫

X

E

(∫
X

h(x, y, η)|DxL
−1G|λ(dx)

)2

λ(dy)

≤
∫
X3

(
Eh(x1, y, η)ph(x2, y, η)p

)1/p (
E |Dx1G|q|Dx2G|q

)1/q
λ3(d(x1, x2, y))

and ∫
X

E

(∫
X

h(x, y, η)|D2
x,yL

−1G|λ(dx)

)2

λ(dy)

≤ 1

4

∫
X3

(
Eh(x1, y, η)ph(x2, y, η)p

)1/p (
E |D2

x1,yG|
q|D2

x2,yG|
q
)1/q

λ3(d(x1, x2, y)).
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Proof. It follows from [16, Corollary 3.3] that

|DxL
−1G| ≤

∫ 1

0

|PsDxG|ds, λ-a.e. x ∈ X, P-a.s.,

and

|D2
x,yL

−1G| ≤
∫ 1

0

s |PsD2
x,yG|ds, λ2-a.e. (x, y) ∈ X2, P-a.s.

For the definition of the operator Ps we refer to [16, Equation (3.1)] or [17, Equation
(20.2)]. Now [17, Lemma 21.4] yields the desired inequalities. Actually [17, Lemma
21.4] deals only with p = q = 2, but by using Hölder’s inequality instead of the Cauchy-
Schwarz inequality in the last two steps of its proof, one can extend it to p, q ∈ (0,∞)

with 1/p+ 1/q = 1.

Proof of Theorem 1.2. In the following five-part proof we may assume that γ1, ..., γ6 <∞
since otherwise there is nothing to prove. Throughout let h : Rm → R be the indicator
function of a measurable convex set K ⊆ Rm.

The idea of the proof goes as follows. Put

γ := ‖Σ−1‖op max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|, γ1, γ2, γ3, γ4, γ5, γ6

}
. (3.2)

We first establish the bound

|Eht,Σ(F )− Eht,Σ(NΣ)| ≤
∣∣∣∣J1 −

m∑
i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )

∣∣∣∣+ |J2,1|+ |J2,2| (3.3)

where J1, J2,1, and J2,2 are given below. We then show that the three terms on the right
hand side of (3.3) are each bounded by products of powers of γ and factors such as 1/

√
t,

| log t|
√
dconvex(F,NΣ), or 1/

√
t · dconvex(F,NΣ), and then choose t appropriately. Put

J̃ := J1 −
m∑

i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F ).

An intermediate step shows that the terms |J̃ | and |J21| are each bounded by a product

involving
√
E
∑m
i,j=1

(∂2ft,h,Σ

∂yi∂yj
(F )
)2

, which, after applying Proposition 2.3, leads to the

previously mentioned bounds.

Part (i): A key decomposition. As noted in Subsection 1.4, it follows from p. 1498 in [24]
that

|Eht,Σ(F )− Eht,Σ(NΣ)|

=

∣∣∣∣ m∑
i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )−
m∑
k=1

E

∫
X

Dx
∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx)

∣∣∣∣.
The fundamental theorem of calculus yields

m∑
k=1

E

∫
X

Dx
∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx)

=

m∑
k=1

E

∫
X

∫ 1

0

m∑
j=1

∂2ft,h,Σ
∂yj∂yk

(F + uDxF )DxFj(−DxL
−1Fk) duλ(dx)
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=

m∑
j,k=1

E

∫
X

∂2ft,h,Σ
∂yj∂yk

(F )DxFj(−DxL
−1Fk)λ(dx)

+

m∑
j,k=1

E

∫
X

∫ 1

0

(
∂2ft,h,Σ
∂yj∂yk

(F + uDxF )− ∂2ft,h,Σ
∂yj∂yk

(F )

)
DxFj(−DxL

−1Fk) duλ(dx)

=: J1 + J2.

Further applications of the fundamental theorem of calculus lead to

J2 =

m∑
j,k=1

E

∫
X

∫ 1

0

(
∂2ft,h,Σ
∂yj∂yk

(F + uDxF )− ∂2ft,h,Σ
∂yj∂yk

(F )

)
DxFj(−DxL

−1Fk) duλ(dx)

=

m∑
i,j,k=1

E

∫
X

∫ 1

0

∫ 1

0

∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )uDxFiDxFj(−DxL
−1Fk) dv duλ(dx)

=

m∑
i,j,k=1

E

∫
X

∫ 1

0

∫ 1

0

∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )uDxFiDxFj(−DxL
−1Fk) dv duλ(dx)

+
m∑

i,j,k=1

E

∫
X

∫ 1

0

∫ 1

0

(
∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )− ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )

)
× uDxFiDxFj(−DxL

−1Fk) dv duλ(dx)

=
1

2

m∑
j,k=1

E

∫
X

(
∂2ft,h,Σ
∂yj∂yk

(F +DxF )− ∂2ft,h,Σ
∂yj∂yk

(F )

)
DxFj(−DxL

−1Fk)λ(dx)

+

m∑
i,j,k=1

E

∫
X

∫ 1

0

∫ 1

0

(
∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )− ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )

)
× uDxFiDxFj(−DxL

−1Fk) dv duλ(dx)

=: J2,1 + J2,2,

which gives (3.3).

Part (ii): A bound for J̃ . Recalling the definition of β1 in Proposition 3.1 and applying
the Cauchy-Schwarz inequality, we obtain

|J̃ | ≤

√√√√E m∑
i,j=1

(
σij −

∫
X

DxFj(−DxL−1Fk)λ(dx)

)2
√√√√E m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

= β1

√√√√E m∑
i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

.

(3.4)

Now Proposition 2.3 leads to√√√√E m∑
i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

≤ ‖Σ−1‖op
(√

M2| log t|
√
dconvex(F,NΣ) + 24m17/12

)
. (3.5)

Combining inequalities (3.1), (3.4), and (3.5) yields

|J̃ | ≤‖Σ−1‖op
(√

M2| log t|
√
dconvex(F,NΣ) + 24m17/12

)
×
( m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2

)
.

(3.6)
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Part (iii): A bound for J2,1. We start by rewriting J2,1 as

J2,1 =
1

2

m∑
j,k=1

E

∫
X

Dx
∂2ft,h,Σ
∂yj∂yk

(F )DxFj(−DxL
−1Fk)λ(dx).

All third partial derivatives of ft,h,Σ are bounded by some constant (recall (2.5)), and
thus

∂2ft,h,Σ
∂yj∂yk

(F ) ∈ domD, j, k ∈ {1, . . . ,m}.

From Lemma A.4 and the computation for E δ(DFj(−DL−1Fk))2 below, one deduces that
DFj(−DL−1Fk) ∈ dom δ. It follows from integration by parts (see Lemma A.3) and the
Cauchy-Schwarz inequality that

2|J2,1| =
∣∣∣∣ m∑
j,k=1

E
∂2ft,h,Σ
∂yj∂yk

(F )δ(DFj(−DL−1Fk))λ(dx)

∣∣∣∣
≤
(
E

m∑
j,k=1

(
∂2ft,h,Σ
∂yj∂yk

(F )

)2)1/2( m∑
j,k=1

E δ(DFj(−DL−1Fk))2

)1/2

.

By Proposition 2.3 the first factor is bounded by(
E

m∑
j,k=1

(
∂2ft,h,Σ
∂yj∂yk

(F )

)2)1/2

≤ ‖Σ−1‖op
(√

M2| log t|
√
dconvex(F,NΣ) + 24m17/12

)
.

For the summands in the second factor it follows from Lemma A.4 that

E δ(DFj(−DL−1Fk))2

≤
∫
X

E (DxFj)
2(−DxL

−1Fk)2 λ(dx) +

∫
X2

E
(
Dy(DxFj(−DxL

−1Fk))
)2
λ2(d(x, y))

≤ 1

2

∫
X

E (DxFj)
4 + E (−DxL

−1Fk)4 λ(dx)

+ 3

∫
X2

E (D2
x,yFj)

2(−DxL
−1Fk)2 + E (DxFj)

2(−D2
x,yL

−1Fk)2

+ E (D2
x,yFj)

2(−D2
x,yL

−1Fk)2 λ2(d(x, y)),

where we used the arithmetic geometric mean inequality a1a2 ≤ 1
2 (a2

1 + a2
2) for a1, a2 ∈

(0,∞) as well as Lemma A.1 and Jensen’s inequality. It follows from Proposition 3.2(a)
and the Cauchy-Schwarz inequality that

E δ(DFj(−DL−1Fk))2

≤ 1

2

∫
X

E (DxFj)
4 + E (DxFk)4 λ(dx)

+ 3

∫
X2

(
E (D2

x,yFj)
4
)1/2(

E (DxFk)4
)1/2

+
(
E (DxFj)

4
)1/2(

E (D2
x,yFk)4

)1/2
+
(
E (D2

x,yFj)
4
)1/2(

E (D2
x,yFk)4

)1/2
λ2(d(x, y)).

Since γ4 < ∞, the right-hand side is finite, which implies that assumptions (A.2) and
(A.3) are satisfied and, thus, justifies the previous applications of Lemma A.3 and Lemma
A.4. Finally, combining the previous estimates yields

|J2,1| ≤
1

2
‖Σ−1‖op(

√
M2| log t|

√
dconvex(F,NΣ) + 24m17/12)γ4. (3.7)
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Multivariate second order Poincaré inequalities for Poisson functionals

Part (iv): A bound for J2,2. The bound for |J2,2| is more involved and goes as follows.
First, note that the triangle inequality and (2.2) imply that

|J2,2| ≤
m∑

i,j,k=1

E

∫
X

∫ 1

0

∫ 1

0

∣∣∣∣ ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )− ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )

∣∣∣∣
× u|DxFiDxFj DxL

−1Fk|dv duλ(dx)

≤
m∑

i,j,k=1

E

∫
X

∫ 1

0

∫ 1

0

1

2

∫ 1

t

∫
Rm

√
1− s
s3/2

×
∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
×
∣∣∣∣ ∂3ϕΣ

∂yi∂yj∂yk
(z)

∣∣∣∣u|DxFiDxFj DxL
−1Fk|dz dsdv duλ(dx).

Using the abbreviation

Uijk := sup
z∈Rm,
s,u∈[0,1]

E

∫
X

∫ 1

0

∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
× |DxFiDxFj DxL

−1Fk|dv λ(dx)

for i, j, k ∈ {1, . . . ,m} and the Cauchy-Schwarz inequality, we obtain

|J2,2| ≤
1

2
√
t

m∑
i,j,k=1

∫
Rm

∣∣∣∣ ∂3ϕΣ

∂yi∂yj∂yk
(z)

∣∣∣∣dz Uijk
≤ 1

2
√
t

∫
Rm

( m∑
i,j,k=1

(
∂3ϕΣ

∂yi∂yj∂yk
(z)

)2)1/2

dz

( m∑
i,j,k=1

U2
ijk

)1/2

.

By (2.4) and substitution the first integral satisfies the bound∫
Rm

( m∑
i,j,k=1

(
∂3ϕΣ

∂yi∂yj∂yk
(z)

)2)1/2

dz

≤ ‖Σ
−1‖3/2op√
det(Σ)

∫
Rm

( m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(Σ−1/2z)

)2)1/2

dz = M3‖Σ−1‖3/2op

with

M3 :=

∫
Rm

( m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(z)

)2)1/2

dz

so that

|J2,2| ≤M3‖Σ−1‖3/2op

1

2
√
t

( m∑
i,j,k=1

U2
ijk

)1/2

. (3.8)

The Cauchy-Schwarz inequality yields that

M3 =

∫
Rm

( m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(z)

1

ϕI(z)

)2)1/2

ϕI(z) dz

≤
( m∑
i,j,k=1

∫
Rm

(
∂3ϕI

∂yi∂yj∂yk
(z)

1

ϕI(z)

)2

ϕI(z) dz

)1/2

.
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Together with the observation that, for a standard univariate Gaussian random variable
N with density φ,

E [(φ′(N)/φ(N))2] = E [N2] = 1

E [(φ′′(N)/φ(N))2] = E [(N2 − 1)2] = E [N4 − 2N2 + 1] = 2

E [(φ′′′(N)/φ(N))2] = E [(N3 − 3N)2] = E [N6 − 6N4 + 9N2] = 6

this implies that
M3 ≤

√
6m3/2. (3.9)

Next we bound Uijk for fixed i, j, k ∈ {1, . . . ,m}. We define r(DxF ) := 1
‖DxF‖DxF .

Using the substitution w = v‖DxF‖ for the first term, we obtain

Uijk ≤ sup
z∈Rm,
s,u∈[0,1]

E

∫
X

∫ ‖DxF‖

0

∣∣h(
√
sz +

√
1− s(F + uwr(DxF )))

− h(
√
sz +

√
1− s(F + wr(DxF )))

∣∣
× 1{‖DxF‖ ≤ 1} |DxFi|

‖DxF‖
|DxFj | |DxL

−1Fk|dwλ(dx)

+ sup
z∈Rm,
s,u∈[0,1]

E

∫
X

∫ 1

0

∣∣h(
√
sz +

√
1− s(F + uvDxF ))

− h(
√
sz +

√
1− s(F + vDxF ))

∣∣
× 1{‖DxF‖ ≥ 1}|DxFi| |DxFj | |DxL

−1Fk|dv λ(dx)

=: U
(1)
ijk + U

(2)
ijk .

Recall that h(·) = 1{· ∈ K} for a measurable convex set K ⊆ Rm. We have that

U
(2)
ijk ≤ E

∫
X

1{‖DxF‖ ≥ 1}|DxFi| |DxFj | |DxL
−1Fk|λ(dx)

≤ E
∫
X

‖DxF‖ |DxFi| |DxFj | |DxL
−1Fk|λ(dx)

≤
m∑
`=1

E

∫
X

|DxF`| |DxFi| |DxFj | |DxL
−1Fk|λ(dx)

≤ 1

4

( m∑
`=1

∫
X

E (DxF`)
4 λ(dx) +m

∫
X

E (DxFi)
4 + E (DxFj)

4 + E (DxFk)4 λ(dx)

)
,

where we used the arithmetic geometric mean inequality and Proposition 3.2(a) in the
last step. This implies √√√√ m∑

i,j,k=1

(U
(2)
ijk)2 ≤

m∑
i,j,k=1

U
(2)
ijk ≤ m

2γ2
4 . (3.10)

Next we bound
∑m
i,j,k=1(U

(1)
ijk)2. We shall do this with the aid of Proposition 3.4 and

the Poincaré inequality. By way of preparation, define Ks,z := 1√
1−s (K −

√
sz). Then∣∣h(

√
sz +

√
1− s(F + uwr(DxF )))− h(

√
sz +

√
1− s(F + wr(DxF )))

∣∣
=
∣∣1{F + uwr(DxF ) ∈ Ks,z} − 1{F + wr(DxF ) ∈ Ks,z}

∣∣
≤ 1{d(F, ∂Ks,z) ≤ w}.
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Thus, we have that

U
(1)
ijk ≤ sup

z∈Rm,s∈[0,1]

E

∫
X

∫ 1

0

1{d(F, ∂Ks,z) ≤ w}1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|dwλ(dx)

≤ sup
z∈Rm,s∈[0,1]

∫ 1

0

P(d(F, ∂Ks,z) ≤ w)E

∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx) dw

+ sup
z∈Rm,s∈[0,1]

∫ 1

0

E1{d(F, ∂Ks,z) ≤ w}

×
∣∣∣∣ ∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

− E
∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

∣∣∣∣dw
=: R

(1)
jk +R

(2)
jk .

Now Lemma 3.3, the arithmetic geometric mean inequality, and Proposition 3.2(a) imply
that

R
(1)
jk ≤

∫ 1

0

(
2
√
m‖Σ−1/2‖opw + 2dconvex(F,NΣ)

)
× E

∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx) dw

≤ 2
√
m‖Σ−1/2‖op

∫
X

E

∫ 1

0

w1{w ≤ ‖DxF‖}dw |DxFj DxL
−1Fk|λ(dx)

+ 2dconvex(F,NΣ)

∫
X

E

∫ 1

0

1{w ≤ ‖DxF‖}dw |DxFj DxL
−1Fk|λ(dx)

≤
√
m‖Σ−1/2‖op

∫
X

E ‖DxF‖2 |DxFj DxL
−1Fk|λ(dx)

+ 2dconvex(F,NΣ)

∫
X

E ‖DxF‖ |DxFj DxL
−1Fk|λ(dx)

≤
√
m‖Σ−1/2‖op

(
1

2

m∑
`=1

∫
X

E (DxF`)
4 λ(dx) +

m

4

∫
X

E (DxFj)
4 + E (DxFk)4 λ(dx)

)

+ 2dconvex(F,NΣ)
1

3

( m∑
`=1

∫
X

E |DxF`|3 λ(dx) +m

∫
X

E |DxFj |3 + E |DxFk|3 λ(dx)

)
.

Consequently, we have that√√√√m

m∑
j,k=1

(R
(1)
jk )2 ≤

√
m

m∑
j,k=1

R
(1)
jk ≤ m

2‖Σ−1/2‖opγ2
4 + 2dconvex(F,NΣ)m5/2γ3. (3.11)

For R(2)
jk we obtain by the Cauchy-Schwarz inequality and Lemma 3.3 that

R
(2)
jk ≤ sup

z∈Rm,s∈[0,1]

∫ 1

0

P(d(F, ∂Ks,z) ≤ w)1/2

×
(
E

∣∣∣∣ ∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

− E
∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

∣∣∣∣2)1/2

dw
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≤
∫ 1

0

(
2dconvex(F,NΣ) + 2

√
m‖Σ−1/2‖opw

)1/2

×
(

Var

(∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

))1/2

dw

≤
(

2dconvex(F,NΣ)V
(1)
jk + 2

√
m‖Σ−1/2‖opV (2)

jk

)1/2

with

V
(1)
jk :=

∫ 1

0

Var

(∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

)
dw,

V
(2)
jk :=

∫ 1

0

wVar

(∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

)
dw.

The existence of the variances in the definitions of V (1)
jk and V (2)

jk will be discussed below.

To further bound V (1)
jk and V (2)

jk we will apply the Poincaré inequality (see Theorem
A.2). We prepare this by computing difference operators. We have that

|Dy1{w ≤ ‖DxF‖}| = |1{w ≤ ‖DxF‖+Dy‖DxF‖} − 1{w ≤ ‖DxF‖}|
≤ 1{w ≤ ‖DxF‖+

∣∣Dy‖DxF‖
∣∣}

and ∣∣Dy‖DxF‖
∣∣ =

∣∣‖DxF +D2
x,yF‖ − ‖DxF‖

∣∣ ≤ ‖D2
x,yF‖,

whence

|Dy1{w ≤ ‖DxF‖}| ≤ 1{w ≤ ‖DxF‖+ ‖D2
x,yF‖}1{D2

x,yF 6= 0}.

Together with Lemma A.1, we obtain

(
Dy

(∫
X

1{w ≤ ‖DxF‖}|DxFj DxL
−1Fk|λ(dx)

))2

≤
(∫

X

1{w ≤ ‖DxF‖+ ‖D2
x,yF‖}1{D2

x,yF 6= 0}

×
(
|DxFj DxL

−1Fk|+
∣∣Dy|DxFj DxL

−1Fk|
∣∣)

+ 1{w ≤ ‖DxF‖}
∣∣Dy|DxFj DxL

−1Fk|
∣∣λ(dx)

)2

≤ 3

∫
X2

1{w ≤ min{‖Dx1
F‖+ ‖D2

x1,yF‖, ‖Dx2
F‖+ ‖D2

x2,yF‖}}

× 1{D2
x1,yF 6= 0, D2

x2,yF 6= 0}
×
(
|Dx1

Fj Dx1
L−1Fk| |Dx2

Fj Dx2
L−1Fk|

+
∣∣Dy|Dx1

Fj Dx1
L−1Fk|

∣∣ ∣∣Dy|Dx2
Fj Dx2

L−1Fk|
∣∣)λ2(d(x1, x2))

+ 3

∫
X2

1{w ≤ min{‖Dx1
F‖, ‖Dx2

F‖}}
∣∣Dy|Dx1

Fj Dx1
L−1Fk|

∣∣
×
∣∣Dy|Dx2Fj Dx2L

−1Fk|
∣∣λ2(d(x1, x2)).
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Now it follows from the Poincaré inequality that

V
(1)
jk ≤ 3

∫
X3

E1{D2
x1,yF 6= 0, D2

x2,yF 6= 0}min{‖Dx1
F‖+ ‖D2

x1,yF‖, ‖Dx2
F‖+ ‖D2

x2,yF‖}

×
(
|Dx1

Fj Dx1
L−1Fk| |Dx2

Fj Dx2
L−1Fk|

+
∣∣Dy|Dx1

Fj Dx1
L−1Fk|

∣∣ ∣∣Dy|Dx2
Fj Dx2

L−1Fk|
∣∣)λ3(d(x1, x2, y))

+ 3

∫
X3

E min{‖Dx1
F‖, ‖Dx2

F‖}
∣∣Dy|Dx1

Fj Dx1
L−1Fk|

∣∣
×
∣∣Dy|Dx2Fj Dx2L

−1Fk|
∣∣λ3(d(x1, x2, y))

and

V
(2)
jk ≤ 3

∫
X3

E1{D2
x1,yF 6= 0, D2

x2,yF 6= 0}

×min{‖Dx1F‖2 + ‖D2
x1,yF‖

2, ‖Dx2F‖2 + ‖D2
x2,yF‖

2}
×
(
|Dx1Fj Dx1L

−1Fk| |Dx2Fj Dx2L
−1Fk|

+
∣∣Dy|Dx1

Fj Dx1
L−1Fk|

∣∣ ∣∣Dy|Dx2
Fj Dx2

L−1Fk|
∣∣)λ3(d(x1, x2, y))

+
3

2

∫
X3

E min{‖Dx1
F‖2, ‖Dx2

F‖2}
∣∣Dy|Dx1

Fj Dx1
L−1Fk|

∣∣
×
∣∣Dy|Dx2

Fj Dx2
L−1Fk|

∣∣λ3(d(x1, x2, y)).

This implies that

V
(`)
jk ≤ 3

∫
X

E

(∫
X

1{D2
x,yF 6= 0}

√
‖DxF‖` + ‖D2

x,yF‖` |DxFj DxL
−1Fk|λ(dx)

)2

+ E

(∫
X

1{D2
x,yF 6= 0}

√
‖DxF‖` + ‖D2

x,yF‖`
∣∣Dy|DxFj DxL

−1Fk|
∣∣λ(dx)

)2

λ(dy)

+
3

`

∫
X

E

(∫
X

√
‖DxF‖`

∣∣Dy|DxFj DxL
−1Fk|

∣∣λ(dx)

)2

λ(dy)

≤ 3

∫
X

E

(∫
X

1{D2
x,yF 6= 0}

√
‖DxF‖` + ‖D2

x,yF‖` |DxFj DxL
−1Fk|λ(dx)

)2

λ(dy)

+

(
3 +

3

`

)∫
X

E

(∫
X

√
‖DxF‖` + ‖D2

x,yF‖`
∣∣Dy|DxFj DxL

−1Fk|
∣∣λ(dx)

)2

λ(dy)

for ` ∈ {1, 2}. Lemma A.1 yields∣∣Dy|DxFjDxL
−1Fk|

∣∣ ≤ |Dy(DxFjDxL
−1Fk)|

= |D2
x,yFjDxL

−1Fk +DxFjD
2
x,yL

−1Fk +D2
x,yFjD

2
x,yL

−1Fk|
(3.12)

so that

V
(`)
jk ≤ 3

∫
X

E

(∫
X

1{D2
x,yF 6= 0}

√
‖DxF‖` + ‖D2

x,yF‖` |DxFj DxL
−1Fk|λ(dx)

)2

λ(dy)

+

(
9 +

9

`

)∫
X

E

(∫
X

√
‖DxF‖` + ‖D2

x,yF‖` |D2
x,yFj DxL

−1Fk|λ(dx)

)2

+ E

(∫
X

√
‖DxF‖` + ‖D2

x,yF‖` |DxFj D
2
x,yL

−1Fk|λ(dx)

)2

+ E

(∫
X

√
‖DxF‖` + ‖D2

x,yF‖` |D2
x,yFj D

2
x,yL

−1Fk|λ(dx)

)2

λ(dy).
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Now it follows from Proposition 3.4 with p = 3/2 and q = 3 that

V
(`)
jk ≤ 3

∫
X3

(
E1{D2

x1,yF 6= 0, D2
x2,yF 6= 0}

(
‖Dx1

F‖` + ‖D2
x1,yF‖

`
)3/4

×
(
‖Dx2

F‖` + ‖D2
x2,yF‖

`
)3/4|Dx1

Fj |3/2 |Dx2
Fj |3/2

)2/3
×
(
E |Dx1

Fk|3 |Dx2
Fk|3

)1/3
λ3(d(x1, x2, y))

+

(
9 +

9

`

)∫
X3

(
E
(
‖Dx1

F‖` + ‖D2
x1,yF‖

`
)3/4(‖Dx2

F‖` + ‖D2
x2,yF‖

`
)3/4

× |D2
x1,yFj |

3/2 |D2
x2,yFj |

3/2
)2/3

×
(
E |Dx1

Fk|3 |Dx2
Fk|3

)1/3
λ3(d(x1, x2, y))

+
1

4

(
9 +

9

`

)∫
X3

(
E
(
‖Dx1

F‖` + ‖D2
x1,yF‖

`
)3/4(‖Dx2

F‖` + ‖D2
x2,yF‖

`
)3/4

× |Dx1
Fj |3/2 |Dx2

Fj |3/2
)2/3

×
(
E |D2

x1,yFk|
3 |D2

x2,yFk|
3
)1/3

λ3(d(x1, x2, y))

+
1

4

(
9 +

9

`

)∫
X3

(
E
(
‖Dx1

F‖` + ‖D2
x1,yF‖

`
)3/4(‖Dx2

F‖` + ‖D2
x2,yF‖

`
)3/4

× |D2
x1,yFj |

3/2 |D2
x2,yFj |

3/2
)2/3

×
(
E |D2

x1,yFk|
3 |D2

x2,yFk|
3
)1/3

λ3(d(x1, x2, y)).

A short computation using Hölder’s inequality shows that
m∑

j,k=1

(R
(2)
jk )2 ≤ 2dconvex(F,NΣ)

m∑
j,k=1

V
(1)
jk + 2

√
m‖Σ−1/2‖op

m∑
j,k=1

V
(2)
jk

≤ 2dconvex(F,NΣ)γ3
5 + 2

√
m‖Σ−1/2‖opγ4

6 .

(3.13)

By the Poincaré inequality (see Theorem A.2), we have that

E

(∫
X

|DxFj | |DxL
−1Fk|λ(dx)

)2

≤
(
E

∫
X

|DxFj | |DxL
−1Fk|λ(dx)

)2

+ E

∫
X

(∫
X

Dy

(
|DxFj | |DxL

−1Fk|
)
λ(dx)

)2

λ(dy).

Here, the first term is bounded because Fj , Fk ∈ domD. Using (3.12) and Proposition
3.4 in a similar way as above, one obtains that the second term can be bounded by
3(γ1 + γ2) < ∞. This guarantees that the variances in the definitions of V (1)

jk and V
(2)
jk

exist.
Combining√√√√ m∑

i,j,k=1

U2
ijk ≤

√√√√ m∑
i,j,k=1

(U
(1)
ijk)2 +

√√√√ m∑
i,j,k=1

(U
(2)
ijk)2

≤

√√√√m

m∑
j,k=1

(R
(1)
jk )2 +

√√√√m

m∑
j,k=1

(R
(2)
jk )2 +

√√√√ m∑
i,j,k=1

(U
(2)
ijk)2

with (3.8), (3.11), (3.13), and (3.10) leads to

|J2,2| ≤
M3‖Σ−1‖3/2op

2
√
t

(
m2‖Σ−1/2‖opγ2

4 + 2dconvex(F,NΣ)m5/2γ3

+
√

2mdconvex(F,NΣ)γ3
5 + 2m3/2‖Σ−1/2‖opγ4

6 +m2γ2
4

)
.

(3.14)
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Part (v): Putting the pieces together and choosing t. Finally, we may evaluate the
right-hand side of (3.3). Recalling the definition of γ at (3.2), we may simplify (3.6), (3.7),
and (3.14) to

|J̃ | ≤ 4
(√

M2| log t|
√
dconvex(F,NΣ) + 24m17/12

)
γ,

|J2,1| ≤
1

2
(
√
M2| log t|

√
dconvex(F,NΣ) + 24m17/12)γ,

and

|J2,2| ≤
M3

2
√
t

(
m2γ2 + 2m5/2‖Σ−1/2‖opdconvex(F,NΣ)γ +

√
2
√
m
√
dconvex(F,NΣ)γ3/2

+
√

2m3/4‖Σ−1/2‖−1/2
op γ2 + ‖Σ−1/2‖−1

op m
2γ2

)
,

where we used ‖Σ−1‖op = ‖Σ−1/2‖2op for the last inequality.
In view of (3.3) and Lemma 2.2, we have that

dconvex(F,NΣ)

≤ 6
(√

M2| log t|
√
dconvex(F,NΣ) + 24m17/12

)
γ

+
4M3

3
√
t

(
1

2
m2γ2 +m5/2‖Σ−1/2‖opdconvex(F,NΣ)γ +

1√
2

√
m
√
dconvex(F,NΣ)γ3/2

+
1√
2
m3/4‖Σ−1/2‖−1/2

op γ2 +
1

2
m2‖Σ−1/2‖−1

op γ
2

)
+

20√
2
m

√
t

1− t

for t ∈ (0, 1). For t ∈ (0, 1/2) the inequalities t1/4| log t| ≤ 2 and 1− t ≥ 1/2 yield that

dconvex(F,NΣ)

≤ 12
√
M2

t1/4

√
dconvex(F,NΣ)γ + 144m17/12γ

+
4M3

3
√
t

(
1

2
m2γ2 +m5/2‖Σ−1/2‖opdconvex(F,NΣ)γ +

1√
2

√
m
√
dconvex(F,NΣ)γ3/2

+
1√
2
m3/4‖Σ−1/2‖−1/2

op γ2 +
1

2
m2‖Σ−1/2‖−1

op γ
2

)
+

40√
2
m
√
t.

Assume that γ < 1/
√

2 (otherwise (1.9) is obviously true). Then, the choice
√
t =

max
{ √

2
80mdconvex(F,NΣ), γ

}
leads to

dconvex(F,NΣ)

≤ 12
√

80
√
M2

21/4

√
mγ + 144m17/12γ

+
4M3

3

(
1

2
m2γ +

80√
2
m7/2‖Σ−1/2‖opγ

+

√
40

21/4
mγ +

1√
2
m3/4‖Σ−1/2‖−1/2

op γ +
1

2
m2‖Σ−1/2‖−1

op γ

)
+

40√
2
mγ +

1

2
dconvex(F,NΣ).
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Together with (2.6) and (3.9) we obtain

dconvex(F,NΣ) ≤ 2

(
48
√

5

21/4
+ 144 +

4√
6

+
320√

3
+

16
√

5√
3 · 21/4

+
4√
3

+
2
√

6

3
+

40√
2

)
×m5 max{‖Σ−1/2‖−1

op , ‖Σ−1/2‖op}γ

≤ 941m5 max{‖Σ−1/2‖−1
op , ‖Σ−1/2‖op}γ,

which completes the proof.

4 Applications

4.1 Multivariate normal approximation of first order Poisson integrals

In this subsection we apply our main results to first order Poisson integrals with
respect to the Poisson process η (as considered before). For f ∈ L1(λ) ∩ L2(λ) we define
I1(f) to be the Poisson integral of f (also called the Wiener-Itô integral of f in [17]),
namely

I1(f) :=

∫
X

f(x) η(dx)−
∫
X

f(x)λ(dx).

If η is a proper Poisson process, i.e., it has almost surely a representation η =
∑
i∈I δXi

with a countable collection (Xi)i∈I of random elements of X, this can be rewritten as

I1(f) =
∑
i∈I

f(Xi)−
∫
X

f(x)λ(dx).

Using approximation arguments in L2(P), one can extend the above definition to inte-
grands f ∈ L2(λ). Note that, for all f, g ∈ L2(λ),

E I1(f) = 0 and E I1(f)I1(g) =

∫
X

f(x)g(x)λ(dx). (4.1)

For an exact definition and more details on first order Poisson integrals with respect to
Poisson processes we refer to [17, Subsection 12.1].

Corollary 4.1. Let F = (I1(f1), . . . , I1(fm)) with f1, . . . , fm ∈ L2(λ) and m ∈ N and let
Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive semi-definite.

(a) It is the case that

d3(F,NΣ) ≤ m

2

m∑
i,j=1

∣∣σij − ∫
X

fi(x)fj(x)λ(dx)
∣∣+

m2

4

m∑
i=1

∫
X

|fi(x)|3 λ(dx).

(b) If Σ is positive definite,

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2op

m∑
i,j=1

∣∣σij − ∫
X

fi(x)fj(x)λ(dx)
∣∣

+

√
2πm2

8
‖Σ−1‖3/2op ‖Σ‖op

m∑
i=1

∫
X

|fi(x)|3 λ(dx).

(c) If Σ is positive definite, then

dconvex(F,NΣ) ≤941m11/2 max{‖Σ−1/2‖op, ‖Σ−1/2‖3op}

×max

{ m∑
i,j=1

∣∣σij − ∫
X

fi(x)fj(x)λ(dx)
∣∣, m∑
i=1

∫
X

|fi(x)|3 λ(dx),

( m∑
i=1

∫
X

fi(x)4 λ(dx)

)1/2}
.
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Proof. It follows from (4.1) that, for i, j ∈ {1, . . . ,m},

Cov(I1(fi), I1(fj)) =

∫
X

fi(x)fj(x)λ(dx).

Moreover, it is well-known (see, for example, Eqn. (2.6) in [16]) that, for f ∈ L2(λ) and
x, x1, x2 ∈ X,

DxI1(f) = f(x) and D2
x1,x2

I1(f) = 0.

This implies that γ1 = γ2 = γ5 = γ6 = 0, γ3 =
∑m
i=1

∫
X
|fi(x)|3 λ(dx), and

γ4 =
√
m

( m∑
i=1

∫
X

fi(x)4 λ(dx)

)1/2

.

Now (a) and (b) are immediate consequences of Theorem 1.1, while (c) follows from
Theorem 1.2. One final technical remark is in order. To ensure that γ5 and γ6 vanish in
the event that

∫
X
fi(x)6λ(dx) is not finite for some i ∈ {1, ...,m}, we use the convention

that 0 · ∞ = 0. This convention is supported by the technical details of the proof of
Theorem 1.2; in particular we have V (1)

jk = V
(2)
jk = 0 because the difference operator is a

deterministic function.

The idea of the following proof of Corollary 1.3 is to show that it is only a special case
of Corollary 4.1.

Proof of Corollary 1.3. Let X = Rm (equipped with its Borel σ-field) and λ(·) = sP(X1 ∈
·), i.e., λ is s times the probability measure of X1. For i ∈ {1, . . . ,m} let us denote by πi
the projection Rm 3 (y1, . . . , ym) 7→ yi. Then we have that

Zs = (I1(π1/
√
s), . . . , I1(πm/

√
s)).

Together with the observation that, for i ∈ {1, . . . ,m}, p ∈ (0,∞), and s > 0,∫
X

|πi(x)/
√
s|p λ(dx) = E |X(i)

1 |ps1−p/2,

we see that conclusions (a) and (b) of Corollary 1.3 follow from conclusions (a) and
(b) of Corollary 4.1, with p = 3, whereas conclusion (c) follows from its counterpart in
Corollary 4.1 with p ∈ {3, 4}.

4.2 Multivariate central limit theorems for intrinsic volumes of Boolean mod-
els

In the following, we derive quantitative multivariate central limit theorems for
Boolean models, extending previous findings in [12] and [17, Chapter 22]. Our proofs
rely on the general bounds from Subsection 1.2 as well as arguments from [12] and [17,
Chapter 22].

We denote by Kd the set of compact convex sets in Rd, d ≥ 1. For a probability
measure Q on Kd such that Q({∅}) = 0 and γ > 0 let η be a Poisson process on Rd ×Kd
with intensity measure γλd ⊗Q, where λd is Lebesgue measure on Rd. Note that η is a
stationary Poisson process in Rd with independent marks in Kd distributed according
to Q. A random compact convex set Z0 distributed according to Q is called the typical
grain. From η we construct the random closed set

Z :=
⋃

(x,K)∈η

(x+K),
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which is called the Boolean model. For more details on Boolean models and further
references we refer to [29].

By the convex ring Rd we mean the set of all finite unions of elements from Kd. Let
V0, V1, . . . , Vd : Rd → R be the intrinsic volumes (see, for example, [29, Section 14.2] for
a definition via the Steiner formula and additive extensions). In particular, for A ∈ Rd,
Vd(A) is the volume of A, Vd−1(A) is half the surface area of A (if A is the closure of its
interior), and V0(A) is the Euler characteristic of A.

In the sequel we study the intersection of the Boolean model Z with a compact
convex observation window W ∈ Kd. Note that Z ∩W almost surely belongs to Rd if
EVi(Z0) <∞ for i ∈ {1, . . . , d}. Questions of interest include finding the fraction of W
covered by Z and the surface area of Z ∩W . We address both problems simultaneously
by considering

V(Z ∩W ) := (V0(Z ∩W ), V1(Z ∩W ), . . . , Vd(Z ∩W )).

Denote by r(K) the inradius of K ∈ Kd. In [12, Theorem 3.1] it is shown that there
exists a matrix Σ = (σi,j)i,j∈{0,...,d} ∈ R(d+1)×(d+1) such that

Σ(W ) :=
1

Vd(W )
(Cov(Vi(Z ∩W ), Vj(Z ∩W )))i,j∈{0,...,d} → Σ as r(W )→∞

if EVi(Z0)2 < ∞ for i ∈ {1, . . . , d}. If, additionally, P(Vd(Z0) > 0) > 0, the asymptotic
covariance matrix Σ is positive definite (see [12, Theorem 4.1]). We describe the
asymptotic behavior of V(Z ∩W ) as r(W )→∞ with respect to d3, d2, and dconvex.

Theorem 4.2. (a) If EVi(Z0)3 < ∞ for i ∈ {1, . . . , d}, there exists a constant C1 ∈
(0,∞) depending on d, γ, and Q such that

d3

(
V(Z ∩W )− EV(Z ∩W )√

Vd(W )
, NΣ

)
≤ C1

1

r(W )min{1,d/2}

for all W ∈ Kd with r(W ) ≥ 1.

(b) If EVi(Z0)3 < ∞ for i ∈ {1, . . . , d} and P(Vd(Z0) > 0) > 0, there exists a constant
C2 ∈ (0,∞) depending on d, γ, and Q such that

d2

(
V(Z ∩W )− EV(Z ∩W )√

Vd(W )
, NΣ

)
≤ C2

1

r(W )min{1,d/2}

for all W ∈ Kd with r(W ) ≥ 1.

(c) If EVi(Z0)4 < ∞ for i ∈ {1, . . . , d} and P(Vd(Z0) > 0) > 0, there exists a constant
C3 ∈ (0,∞) depending on d, γ, and Q such that

dconvex

(
V(Z ∩W )− EV(Z ∩W )√

Vd(W )
, NΣ

)
≤ C3

1

r(W )min{1,d/2}

for all W ∈ Kd with r(W ) ≥ 1.

(d) If NΣ is replaced by NΣ(W ), the assertions (a)-(c) hold with the rate 1/
√
Vd(W ).

Theorem 4.2(a) improves upon the moment assumptions of [12, Theorem 9.1] by
requiring existence of third moments (i.e., EVi(Z0)3 < ∞ for i ∈ {1, . . . , d}) and not
fourth moments. Parts (b) and (c) extend [12, Theorem 9.1] to different distances, in
particular, the non-smooth dconvex-distance. The findings of [12] as well as the univariate
results in [17] consider so-called geometric functionals, which include intrinsic volumes.
Theorem 4.2 could be also generalized to these functionals, but for the sake of simplicity
we consider only intrinsic volumes. Since our proof of Theorem 4.2 is based on second
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order Poincaré inequalities, it does not require dealing with the whole chaos expansion
as in [12]. For previous results on volume and surface area of Boolean models we refer
the reader to [12]. Theorem 4.2 indicates that the slow convergence of Σ(W ) to W

weakens the rate of convergence for d ≥ 3 (see also [12, Remark 9.5]). The rate of
convergence 1/

√
Vd(W ) for the distance to NΣ(W ) is comparable to 1/

√
n in the classical

central limit theorem for sums of n i.i.d. random vectors and, thus, presumably optimal.
We prepare the proof of Theorem 4.2 by two lemmas. In the sequel, we use the

Wills functional V (K) :=
∑d
i=0 κd−iVi(K) for K ∈ Kd, where κd−i is the volume of the

(d− i)-dimensional unit ball. We write the difference operator D with respect to the pair
(x,K), with x ∈ Rd,K ∈ Kd.
Lemma 4.3. There exists a constant C ∈ (0,∞) only depending on d, γ, and Q such that,
for x, x1, x2 ∈ Rd, K,K1,K2 ∈ Kd, i, j ∈ {0, . . . , d}, and m,m1,m2 ∈ {1, . . . , 6},

E |D(x,K)Vi(Z ∩W )|m ≤ CmV ((x+K) ∩W )m,

E |D2
(x1,K1),(x2,K2)Vi(Z ∩W )|m ≤ CmV ((x1 +K1) ∩ (x2 +K2) ∩W )m,

E |D(x1,K1)Vi(Z ∩W )|m1 |D(x2,K2)Vj(Z ∩W )|m2

≤ Cm1+m2V ((x1 +K1) ∩W )m1V ((x2 +K2) ∩W )m2 ,

and

E |D2
(x1,K1),(x,K)Vi(Z ∩W )|m1 |D2

(x2,K2),(x,K)Vj(Z ∩W )|m2

≤ Cm1+m2V ((x1 +K1) ∩ (x+K) ∩W )m1V ((x2 +K2) ∩ (x+K) ∩W )m2 .

Proof. For m ∈ {2, 3} or i = j and m1 = m2 = 2 this is shown in [17] in Proposition 22.4
in connection with (22.30) and (22.31) (see also [12, Lemma 3.3]), but the proof can be
extended to i 6= j and the other choices for m,m1,m2.

Moreover, we will use the following translative integral formula from [17, Proposition
22.5] and [12, Lemma 3.4].

Lemma 4.4. For all K,L ∈ Kd,∫
Rd

V ((x+K) ∩ L) dx ≤ V (K)V (L).

Proof of Theorem 4.2. We deduce Theorem 4.2 from Theorem 1.1 and Theorem 1.2
by bounding γ1, . . . , γ6 from Subsection 1.2 as follows. We denote by γ̃1, . . . , γ̃6 the
corresponding terms without the normalization 1/

√
Vd(W ) of the functionals. Without

loss of generality we can assume that γ = 1. In the sequel let (Zn)n∈N be independent
copies of the typical grain Z0. It follows from Lemma 4.3, the monotonicity and the
translation invariance of the Wills functional (i.e., V (K) ≤ V (L) for K,L ∈ Kd with
K ⊆ L and V (K + x) = V (K) for K ∈ Kd and x ∈ Rd), and Lemma 4.4 that

γ̃2
1 ≤ (d+ 1)2C4E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z1) ∩ (x3 + Z3) ∩W )

V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W ) d(x1, x2, x3)

≤ (d+ 1)2C4E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z1) ∩ (x3 + Z3) ∩W )

V (Z1)V (Z2) d(x1, x2, x3)

≤ (d+ 1)2C4E

∫
Rd

V (Z1)2V (Z2)2V ((x+ Z3) ∩W )2 dx
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≤ (d+ 1)2C4E

∫
Rd

V (Z1)2V (Z2)2V (Z3)V ((x+ Z3) ∩W ) dx

≤ (d+ 1)2C4EV (Z1)2EV (Z2)2EV (Z3)2V (W )

≤ (d+ 1)2C4(EV (Z0)2)3V (W )

and

γ̃2
2 ≤ (d+ 1)2C4E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )2V ((x2 + Z2) ∩ (x3 + Z3) ∩W )2

d(x1, x2, x3)

≤ (d+ 1)2C4E

∫
Rd

V (Z1)2V (Z2)2V ((x+ Z3) ∩W )2 dx

≤ (d+ 1)2C4EV (Z1)2V (Z2)2V (Z3)2V (W )

= (d+ 1)2C4(EV (Z0)2)3V (W ).

Hence, we see that γ1 and γ2 are at most of the order
√
V (W )/Vd(W ). From the same

arguments as above we obtain that, for k ∈ N,

E

∫
Rd

V ((x+Z0)∩W )k dx ≤ EV (Z0)k−1

∫
Rd

V ((x+Z0)∩W ) dx ≤ EV (Z0)kV (W ), (4.2)

whence γ3 is at most of order V (W )/Vd(W )3/2. We can also show that

E

∫
(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )2

(
V ((x1 + Z1) ∩ (x2 + Z2) ∩W )2 + V ((x1 + Z1) ∩W )2

)
d(x1, x2)

≤ 2E

∫
(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )V (Z2)V (Z1)2d(x1, x2)

≤ 2EV (Z1)3V (Z2)2V (W )

so that together with (4.2), we deduce that γ4 is at most of order
√
V (W )/Vd(W ).

Jensen’s inequality and Lemma 4.3 lead to

E ‖D(x,K)V(Z ∩W )‖6 ≤ (d+ 1)3C6V ((x+K) ∩W )6 (4.3)

for x ∈ Rd and K ∈ Kd and

E ‖D2
(x1,K1),(x2,K2)V(Z ∩W )‖6 ≤ (d+ 1)3C6V ((x1 +K1) ∩ (x2 +K2) ∩W )6

≤ (d+ 1)3C6V ((x1 +K1) ∩W )6
(4.4)

for x1, x2 ∈ Rd and K1,K2 ∈ Kd. This implies that, for x, y ∈ Rd, K,L ∈ Kd, and
` ∈ {1, 2},

E
(
‖D(x,K)V(Z ∩W )‖` + ‖D2

(x,K),(y,L)V(Z ∩W )‖`
)3

≤ 4E ‖D(x,K)V(Z ∩W )‖3` + 4E ‖D2
(x,K),(y,L)V(Z ∩W )‖3`

≤ 4
(
E ‖D(x,K)V(Z ∩W )‖6

)`/2
+ 4
(
E ‖D2

(x,K),(y,L)V(Z ∩W )‖6
)`/2

≤ 8(d+ 1)3`/2C3`V ((x+K) ∩W )3`.

From [12, Lemma 3.2] or [17, Lemma 22.6] it follows that, for i ∈ {0, . . . , d}, x1, x2 ∈ Rd,
and K1,K2 ∈ Kd,
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D2
(x1,K1),(x2,K2)Vi(Z∩W ) = Vi(Z∩(x1+K1)∩(x2+K2)∩W )−Vi((x1+K1)∩(x2+K2)∩W ).

Consequently, we have that

1{D2
(x1,K1),(x2,K2)V(Z ∩W ) 6= 0} ≤ 1{(x1 +K1) ∩ (x2 +K2) ∩W 6= ∅}

≤ V ((x1 +K1) ∩ (x2 +K2) ∩W ).

From Hölder’s inequality, (4.3), and (4.4), we obtain that, for x1, x2, y ∈ Rd, K1,K2, L ∈
Kd, and ` ∈ {1, 2},

E1{D2
(x1,K1),(y,L)V(Z ∩W ) 6= 0, D2

(x2,K2),(y,L)V(Z ∩W ) 6= 0}

×
(
‖D(x1,K1)V(Z ∩W )‖` + ‖D2

(x1,K1),(y,L)V(Z ∩W )‖`
)3/4

×
(
‖D(x2,K2)V(Z ∩W )‖` + ‖D2

(x2,K2),(y,L)V(Z ∩W )‖`
)3/4

× |D(x1,K1)Vi(Z ∩W )|3/2 |D(x2,K2)Vi(Z ∩W )|3/2

≤ 1{(x1 +K1) ∩ (y + L) ∩W 6= ∅}1{(x2 +K2) ∩ (y + L) ∩W 6= ∅}

× E
(
‖D(x1,K1)V(Z ∩W )‖3`/4 + ‖D2

(x1,K1),(y,L)V(Z ∩W )‖3`/4
)

×
(
‖D(x2,K2)V(Z ∩W )‖3`/4 + ‖D2

(x2,K2),(y,L)V(Z ∩W )‖3`/4
)

× |D(x1,K1)Vi(Z ∩W )|3/2 |D(x2,K2)Vi(Z ∩W )|3/2

≤ 1{(x1 +K1) ∩ (y + L) ∩W 6= ∅}1{(x2 +K2) ∩ (y + L) ∩W 6= ∅}

×
((
E ‖D(x1,K1)V(Z ∩W )‖6

)`/8
+
(
E ‖D2

(x1,K1),(y,L)V(Z ∩W )‖6
)`/8)

×
((
E ‖D(x2,K2)V(Z ∩W )‖6

)`/8
+
(
E ‖D2

(x2,K2),(y,L)V(Z ∩W )‖6
)`/8)

×
(
E |D(x1,K1)Vi(Z ∩W )|3 |D(x2,K2)Vi(Z ∩W )|3

)1/2
≤ 1{(x1 +K1) ∩ (y + L) ∩W 6= ∅}1{(x2 +K2) ∩ (y + L) ∩W 6= ∅}

× 4(d+ 1)3`/4C3`/2V ((x1 +K1) ∩W )3`/4V ((x2 +K2) ∩W )3`/4

× C3V ((x1 +K1) ∩W )3/2V ((x2 +K2) ∩W )3/2

= 1{(x1 +K1) ∩ (y + L) ∩W 6= ∅}1{(x2 +K2) ∩ (y + L) ∩W 6= ∅}

× 4(d+ 1)3`/4C3+3`/2V ((x1 +K1) ∩W )3/2+3`/4V ((x2 +K2) ∩W )3/2+3`/4.

Combining the previous estimates with Lemma 4.3 yields

γ̃3
5 ≤ 3(d+ 1)2E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z2) ∩ (x3 + Z3) ∩W )

× 42/3(d+ 1)1/2C3V ((x1 + Z1) ∩W )3/2V ((x2 + Z2) ∩W )3/2

× C2V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W ) d(x1, x2, x3)

+ 27(d+ 1)2E

∫
(Rd)3

2(d+ 1)1/2CV ((x1 + Z1) ∩W )1/2V ((x2 + Z2) ∩W )1/2

× C2V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z2) ∩ (x3 + Z3) ∩W )

× C2V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W ) d(x1, x2, x3)
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and

γ̃4
6 ≤ 3(d+ 1)2E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z2) ∩ (x3 + Z3) ∩W )

× 42/3(d+ 1)C4V ((x1 + Z1) ∩W )2V ((x2 + Z2) ∩W )2

× C2V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W ) d(x1, x2, x3)

+
81

4
(d+ 1)2E

∫
(Rd)3

2(d+ 1)C2V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W )

× C2V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z2) ∩ (x3 + Z3) ∩W )

× C2V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W ) d(x1, x2, x3).

Monotonicity and translation invariance of the Wills functional and Lemma 4.4 imply

γ̃3
5 ≤ 3 · 42/3(d+ 1)5/2C5EV (Z1)7/2V (Z2)7/2V (Z3)2V (W )

+ 54(d+ 1)5/2C5EV (Z1)5/2V (Z2)5/2V (Z3)2V (W )

and

γ̃4
6 ≤ 3 · 42/3(d+ 1)3C6EV (Z1)4V (Z2)4V (Z3)2V (W )

+
81

2
(d+ 1)3C6EV (Z1)3V (Z2)3V (Z3)2V (W ).

Thus, γ5 and γ6 are at most of the orders V (W )1/3/Vd(W )5/6 and V (W )1/4/Vd(W )3/4,
respectively. By [12, Lemma 3.7], there exists a dimension dependent constant Cd ∈
(0,∞) such that

V (W )

Vd(W )
≤ Cd for all W ∈ Kd with r(W ) ≥ 1.

This implies that γ1, γ2, γ3, γ4, γ5, and γ6 have at most the order 1/
√
Vd(W ). It is known

[12, Theorem 3.1] that there exists a constant CΣ ∈ (0,∞) only depending on d, γ, and Q
such that ∣∣∣∣Cov(Vi(Z ∩W ), Vj(Z ∩W ))

Vd(W )
− σi,j

∣∣∣∣ ≤ CΣ
1

r(W )

for i, j ∈ {0, . . . , d} and W ∈ Kd with r(W ) ≥ 1. Now Theorem 1.1 and Theorem 1.2
complete the proof.

4.3 Multivariate normal approximation for functionals of marked Poisson pro-
cesses

In this subsection we establish a consequence of Theorem 1.1 and Theorem 1.2,
which can be seen as a multivariate version of Proposition 1.4 and Theorem 6.1 in [16].
This result will be used heavily in the companion paper [32], in order to deduce rates
of normal approximation for Poisson functionals which may be expressed as sums of
stabilizing score functions. We work in the context of marked Poisson processes, where
(M,FM, λM) denotes the probability space of marks. Let X̂ := X ×M, put F̂ to be the
product σ-field of F and FM, and let λ̂ be the product measure of λ and λM. Here,
(X,F , λ) is as before. For a given point x ∈ X we denote by Mx the corresponding
random mark, which has distribution λM and which is independent of everything else.

Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals F1, . . . , Fm ∈ domD

with EFi = 0, i ∈ {1, . . . ,m}. Define for all c, p ∈ (0,∞),

Γ1(c, p) := c
2

4+p

( m∑
i=1

∫
X

(∫
X

P(D2
(x1,Mx1 ),(x2,Mx2 )Fi 6= 0)

p
16+4p λ(dx2)

)2

λ(dx1)

)1/2
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Γ2(c, p) := c
3

4+p

m∑
i=1

∫
X

P(D(x,Mx)Fi 6= 0)
1+p
4+p λ(dx)

Γ3(c, p) := c
2

4+p

( m∑
i=1

9

∫
X2

P(D2
(x1,Mx1

),(x2,Mx2
)Fi 6= 0)

p
8+2p λ2(d(x1, x2))

+

∫
X

P(D(x,Mx)Fi 6= 0)
p

4+p λ(dx)

)1/2

Γ4(c, p) := c
5

3(4+p)

(
62

∫
X

(∫
X

P(D2
(x1,Mx1

),(x2,Mx2
)F 6= 0)

p−2
24+6p λ(dx2)

)2

λ(dx1)

)1/3

Γ5(c, p) := c
3

2(4+p)

(
49

∫
X

(∫
X

P(D2
(x1,Mx1

),(x2,Mx2
)F 6= 0)

p−2
24+6p λ(dx2)

)2

λ(dx1)

)1/4

.

Theorem 4.5. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals F1, . . . , Fm
∈ domD with EFi = 0, i ∈ {1, . . . ,m}, and assume that there are constants c, p ∈ (0,∞)

such that
E |D(x,Mx)Fi|4+p ≤ c, λ-a.e. x ∈ X, (4.5)

and
E |D2

(x1,Mx1
),(x2,Mx2

)Fi|
4+p ≤ c, λ2-a.e. (x1, x2) ∈ X2, (4.6)

for all i ∈ {1, . . . ,m}.

(a) For positive semi-definite Σ = (σij)i,j∈{1,...,m} ∈ Rm×m,

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+
3m3/2

2
Γ1(c, p) +

m2

4
Γ2(c, p).

(b) For positive definite Σ ∈ Rm×m,

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2op

m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 3‖Σ−1‖op‖Σ‖1/2op

√
mΓ1(c, p)

+

√
2π

8
‖Σ−1‖3/2op ‖Σ‖opm2Γ2(c, p).

(c) Let Σ ∈ Rm×m be positive definite and assume that p > 2. Then

dconvex(F,NΣ) ≤941m5 max{‖Σ−1/2‖op, ‖Σ−1/2‖3op}

×max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|,
√
mΓ1(c, p),Γ2(c, p),

√
mΓ3(c, p),m5/6Γ4(c, p),m3/4Γ5(c, p)

}
.

Proof. Obviously, Theorem 1.1 and Theorem 1.2 can be also applied to marked Poisson
processes. By combining the product form of λ̂ with the Cauchy-Schwarz inequality we
obtain∫

X̂3

[
E (D2

x̂1,x̂3
Fi)

2(D2
x̂2,x̂3

Fi)
2
]1/2[

E (Dx̂1
Fj)

2(Dx̂2
Fj)

2
]1/2

λ̂3(d(x̂1, x̂2, x̂3))

=

∫
X3

∫
M3

[
E (D2

(x1,m1),(x3,m3)Fi)
2(D2

(x2,m2),(x3,m3)Fi)
2
]1/2

×
[
E (D(x1,m1)Fj)

2(D(x2,m2)Fj)
2
]1/2

λ3
M(d(m1,m2,m3))λ3(d(x1, x2, x3))

EJP 24 (2019), paper 130.
Page 36/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP386
http://www.imstat.org/ejp/


Multivariate second order Poincaré inequalities for Poisson functionals

≤
∫
X3

[ ∫
M3

E (D2
(x1,m1),(x3,m3)Fi)

2(D2
(x2,m2),(x3,m3)Fi)

2 λ3
M(d(m1,m2,m3))

]1/2

×
[ ∫

M3

E (D(x1,m1)Fj)
2(D(x2,m2)Fj)

2 λ3
M(d(m1,m2,m3))

]1/2

λ3(d(x1, x2, x3))

=

∫
X3

[
E (D2

(x1,Mx1
),(x3,Mx3

)Fi)
2(D2

(x2,Mx2
),(x3,Mx3

)Fi)
2
]1/2

×
[
E (D(x1,Mx1

)Fj)
2(D(x2,Mx2

)Fj)
2
]1/2

λ3(d(x1, x2, x3)).

Since we can apply the same arguments to the other terms, we see that the bounds
from Theorem 1.1 and Theorem 1.2 are still valid if we integrate with respect to λ and
always replace xi by (xi,Mxi

), where Mxi
is an independent random mark. We denote

the corresponding versions of γ1, . . . , γ6 by γ̂1, . . . , γ̂6. For i ∈ {1, . . . ,m} and q ∈ (0, 4 + p)

it follows from (4.5), (4.6), and Hölder’s inequality that

E |D(x,Mx)Fi|q ≤ c
q

4+pP(D(x,Mx)Fi 6= 0)
4+p−q

4+p , λ-a.e. x ∈ X,

and

E |D2
(x1,Mx1

),(x2,Mx2
)Fi|

q ≤ c
q

4+pP(D2
(x1,Mx1

),(x2,Mx2
)Fi 6= 0)

4+p−q
4+p , λ2-a.e. (x1, x2) ∈ X2.

Applying Hölder’s inequality to separate expectations of products and using these
inequalities, one obtains

γ̂1 ≤
√
mΓ1(c, p), γ̂2 ≤

√
mΓ1(c, p), γ̂3 ≤ Γ2(c, p), and γ̂4 ≤

√
mΓ3(c, p). (4.7)

Next we bound γ̂5 and γ̂6. Combining Jensen’s inequality with (4.5) and (4.6) yields that

E ‖D(x,Mx)F‖4+p ≤ m
4+p

2 c, λ-a.e. x ∈ X, (4.8)

and

E ‖D2
(x1,Mx1

),(x2,Mx2
)F‖

4+p ≤ m
4+p

2 c, λ2-a.e. (x1, x2) ∈ X2. (4.9)

Consequently, we have that, for ` ∈ {1, 2} and λ2-a.e. (x1, x2) ∈ X2,

E
(
‖D(x1,Mx1

)F‖` + ‖D2
(x1,Mx1

),(x2,Mx2
)F‖

`
)3

≤ 4E ‖D(x1,Mx1
)F‖3` + 4E ‖D2

(x1,Mx1
),(x2,Mx2

)F‖
3`

≤ 4
(
E ‖D(x1,Mx1

)F‖4+p
) 3`

4+p + 4
(
E ‖D2

(x1,Mx1 ),(x2,Mx2 )F‖
4+p
) 3`

4+p ≤ 8m
3`
2 c

3`
4+p .

For p > 2, ` ∈ {1, 2}, and λ3-a.e. (x1, x2, y) ∈ X3, Hölder’s inequality with q1 = 4+p
p−2 ,

q2 = q3 = 4
3` (4 + p), and q4 = q5 = 2

3 (4 + p) (and q6 = 2
3 (4 + p) for the factor one if ` = 1)

as well as (4.8) and (4.9) lead to

E1{D2
(x1,Mx1

),(y,My)F 6= 0, D2
(x2,Mx2

),(y,My)F 6= 0}

×
(
‖D(x1,Mx1

)F‖` + ‖D2
(x1,Mx1

),(y,My)F‖
`
)3/4

×
(
‖D(x2,Mx2

)F‖` + ‖D2
(x2,Mx2

),(y,My)F‖
`
)3/4|D(x1,Mx1

)Fi|3/2 |D(x2,Mx2
)Fi|3/2

≤ E1{D2
(x1,Mx1

),(y,My)F 6= 0, D2
(x2,Mx2

),(y,My)F 6= 0}

×
(
‖D(x1,Mx1 )F‖

3`
4 + ‖D2

(x1,Mx1 ),(y,My)F‖
3`
4

)
×
(
‖D(x2,Mx2

)F‖
3`
4 + ‖D2

(x2,Mx2
),(y,My)F‖

3`
4

)
|D(x1,Mx1

)Fi|3/2 |D(x2,Mx2
)Fi|3/2
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≤ P(D2
(x1,Mx1

),(y,My)F 6= 0, D2
(x2,Mx2

),(y,My)F 6= 0)
p−2
4+p

×
((
E ‖D(x1,Mx1 )F‖4+p

) 3`
4(4+p) +

(
E ‖D2

(x1,Mx1 ),(y,My)F‖
4+p
) 3`

4(4+p)
)

×
((
E ‖D(x2,Mx2

)F‖4+p
) 3`

4(4+p) +
(
E ‖D2

(x2,Mx2
),(y,My)F‖

4+p
) 3`

4(4+p)
)

×
(
E |D(x1,Mx1

)Fi|4+p
) 3

2(4+p)
(
E |D(x2,Mx2

)Fi|4+p
) 3

2(4+p)

≤ 4m
3`
4 c

3(`+2)
2(4+p)P(D2

(x1,Mx1
),(y,My)F 6= 0, D2

(x2,Mx2
),(y,My)F 6= 0)

p−2
4+p .

From Hölder’s inequality and the previous estimates, we obtain that, for p > 2,

γ̂3
5 ≤ 3

m∑
i,j=1

∫
X3

42/3
√
mc

3
4+pP(D2

(x1,Mx1
),(y,My)F 6= 0, D2

(x2,Mx2
),(y,My)F 6= 0)

2
3

p−2
4+p c

2
4+p

λ3(d(x1, x2, y))

+

m∑
i,j=1

∫
X3

2
√
mc

1
4+p

×
(

45

2
c

2
4+pP(D2

(x1,Mx1
),(y,My)Fi 6= 0, D2

(x2,Mx2
),(y,My)Fi 6= 0)

1
3

p−2
4+p c

2
4+p

+
9

2
c

2
4+pP(D2

(x1,Mx1 ),(y,My)Fi 6= 0, D2
(x2,Mx2 ),(y,My)Fi 6= 0)

1
3

p−2
4+p c

2
4+p

)
λ3(d(x1, x2, y))

≤ m5/2Γ4(c, p)3

and

γ̂4
6 ≤ 3

m∑
i,j=1

∫
X3

42/3mc
4

4+pP(D2
(x1,Mx1

),(y,My)F 6= 0, D2
(x2,Mx2

),(y,My)F 6= 0)
2
3

p−2
4+p c

2
4+p

λ3(d(x1, x2, y))

+

m∑
i,j=1

∫
X3

2mc
2

4+p

×
(

135

8
c

2
4+pP(D2

(x1,Mx1
),(y,My)Fi 6= 0, D2

(x2,Mx2
),(y,My)Fi 6= 0)

1
3

p−2
4+p c

2
4+p

+
27

8
c

2
4+pP(D2

(x1,Mx1 ),(y,My)Fi 6= 0, D2
(x2,Mx2 ),(y,My)Fi 6= 0)

1
3

p−2
4+p c

2
4+p

)
λ3(d(x1, x2, y))

≤ m3Γ5(c, p)4.

This implies that
γ̂5 ≤ m5/6Γ4(c, p) and γ̂6 ≤ m3/4Γ5(c, p). (4.10)

Combining the estimates in (4.7) and in (4.10) with the marked versions of Theorem
1.1 and Theorem 1.2 described at the beginning of this proof completes the proof of
Theorem 4.5.

Proof of Corollary 1.4. We aim to apply Theorem 4.5 without marks. We choose s0 such
that Σs is positive definite for s ≥ s0 and such that ‖Σs‖op and ‖Σ−1

s ‖op are uniformly
bounded for s ≥ s0. For λ = sµ, the assumptions (4.5) and (4.6) of Theorem 4.5 are
satisfied with c = a/s3+ε/2 and p = 2+ε. The assumptions (1.11), (1.12), and (1.13) show
that Γj(c, p), j ∈ {1, . . . , 5}, are all of order s−1/2. Together with Σ = Σs, this yields the
conclusion of Corollary 1.4.
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A Appendix: Malliavin calculus on the Poisson space

We recall the definitions of the Malliavin operators as well as some of their relations.
For more details we refer to, for example, [16, Section 2].

We start with a pathwise product formula for the difference operator.

Lemma A.1. For Poisson functionals F and G and x ∈ X,

Dx(FG) = (DxF )G+ F (DxG) + (DxF )(DxG).

The second moment and the variance of a Poisson functional can be bounded in terms
of the difference operator:

Theorem A.2 (Poincaré inequality). For a Poisson functional F with E |F | <∞,

EF 2 ≤
(
EF

)2
+ E

∫
X

(DxF )2 λ(dx).

For n ∈ N let us denote by In(g) the multiple Wiener-Itô integral of g ∈ L2(λn) with
respect to the Poisson process η. Note that for g ∈ L2(λn), n ∈ N, and h ∈ L2(λm),
m ∈ N,

E In(g)Im(h) = 1{n = m}n!

∫
Xn

g(x)h(x)λn(dx). (A.1)

Any square integrable Poisson functional F has a so-called Wiener-Itô chaos expansion

F = EF +

∞∑
n=1

In(fn),

where the functions fn ∈ L2(λn), n ∈ N, are symmetric and λn-a.e. uniquely defined and
the right-hand side converges in L2(P). Together with (A.1) one sees that

VarF =

∞∑
n=1

n!‖fn‖2n,

where ‖ · ‖n denotes the usual norm in L2(λn) for n ∈ N.
If F ∈ domD (see (1.2)), the difference operator defined in (1.1) satisfies the identity

DxF =

∞∑
n=1

nIn−1(fn(x, ·)) P-a.s.

for λ-a.e. x ∈ X. Here, fn(x, ·) denotes the function in n− 1 variables one obtains after
fixing the first argument to be x. Moreover, F ∈ domD is equivalent to

∞∑
n=1

nn!‖fn‖2n <∞.

The inverse Ornstein-Uhlenbeck generator of F is given by

L−1F = −
∞∑
n=1

1

n
In(f)

and is the pseudo-inverse of the Ornstein-Uhlenbeck generator L, which we do not need
for our purposes. Next we present the definition of the Skorohod integral δ. We say that
a random function g : X→ R depending only on η such that

E

∫
X

g(x)2 λ(dx) <∞ (A.2)
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belongs to dom δ if

g(x) = g0(x) +

∞∑
n=1

In(gn(x, ·))

for λ-a.e. x ∈ X with functions gn ∈ L2(λn+1), n ∈ N ∪ {0}, such that

∞∑
n=0

(n+ 1)!‖g̃n‖2n+1 <∞.

Here, g̃n ∈ L2(λn+1) denotes the symmetrization

g̃n(x1, . . . , xn+1) =
1

(n+ 1)!

∑
π∈Π(n+1)

gn(xπ(1), . . . , xπ(n+1))

of gn, where Π(n+1) stands for the set of all permutations of {1, . . . , n+1}. For g ∈ dom δ

the Skorohod integral δ(g) is defined as

δ(g) =

∞∑
n=0

In+1(g̃n),

i.e., δ maps a random function to a random variable. The difference operator and the
Skorohod integral are adjoint operators in the sense that they satisfy the following
well-known integration by parts formula.

Lemma A.3. For F ∈ domD and g ∈ dom δ,

E

∫
X

DxFg(x)λ(dx) = EFδ(g).

The following lemma (see [16, Proposition 2.3 and Corollary 2.4]) provides a criterion
for g belonging to dom δ and an upper bound for the second moment of δ(g).

Lemma A.4. Let g be a random function depending only on η and satisfying (A.2) and

E

∫
X2

(Dyg(x))2 λ2(d(x, y)) <∞. (A.3)

Then, g ∈ domD and

E δ(g)2 ≤ E
∫
X

g(x)2 λ(dx) + E

∫
X2

(Dyg(x))2 λ2(d(x, y)).
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