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Abstract

Statistics arising in geometric probability can often be expressed as sums of stabilizing

functionals, that is functionals which satisfy a local dependence structure. In this note we

show that stabilization leads to nearly optimal rates of convergence in the CLT for statistics

such as total edge length and total number of edges of graphs in computational geometry and

the total number of particles accepted in random sequential packing models. These rates also

apply to the 1-dimensional marginals of the random measures associated with these statistics.
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1 Introduction and main results

In the study of limit theorems for functionals on Poisson or binomial spatial point processes, the

notion of stabilization has recently proved to be a useful unifying concept [4, 9, 11]. Laws of large

numbers and central limit theorems can be proved in the general setting of functionals satisfying

an abstract ‘stabilization’ property whereby the insertion of a point into a Poisson process has only

a local effect in some sense. These results can then be applied to deduce limit laws for a great

variety of particular functionals, including those concerned with minimal spanning tree, nearest

neighbor graph, Voronoi and Delaunay graph, and packing (see Section 2).

Several different techniques are available for proving general central limit theorems for sta-

bilizing functionals. These include a martingale approach [9] and a method of moments [4]. In

the present work, we revisit a third technique for proving central limit theorems for stabilizing

functionals on Poisson point processes, which was introduced by Avram and Bertsimas [1]. This

method is based on the normal approximation of sums of random variables which are ‘mostly in-

dependent of one another’ in a sense made precise via dependency graphs, which in turn is proved

via Stein’s method [12]. It has the advantage of providing the possibility of explicit error bounds

and rates of convergence.

We extend the work of Avram and Bertsimas in several directions. First, whereas in [1] attention

was restricted to certain particular functionals, here we derive a general result holding for arbitrary

functionals satisfying a stabilization condition which can then be checked rather easily for many

special cases. Second, we consider non-uniform point process intensities and do not require the

functionals to be translation invariant. Third, we improve on the rates of convergence in [1] by

making use of the recent refinement by Chen and Shao [6] of previous normal approximation

results for sums of ‘mostly independent’ variables. Finally, we apply the methods not only to

random variables obtained by summing some quantity over Poisson points, but to the associated

random point measures, thereby recovering many of the results of Baryshnikov and Yukich [4]

on convergence of measures, with extra information about the rate of convergence and without

requiring higher order moment calculations.

Let ξ(x;X ) be a measurable R-valued function defined for all pairs (x,X ), where X ⊂ Rd

is finite and where x ∈ X . When x /∈ X , we abbreviate notation and write ξ(x;X ) instead of

ξ(x;X ∪ {x}). For all λ > 0 let

ξλ(x;X ) := ξ(x; x + λ1/d(−x + X ))
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where given a > 0 and y ∈ Rd, we let aX := {ax : x ∈ X} and y + X := {y + x : x ∈ X}.
We say ξ is translation invariant if ξ(x,X ) = ξ(y+x, y+X ) for all y ∈ Rd. When ξ is translation

invariant, the functional ξλ simplifies to ξλ(x;X ) = ξ(λ1/dx;λ1/dX ).

Given a probability density function κ with compact support A ⊂ Rd, for all λ > 0 we let

Pλ := Pλκ denote a Poisson point process with intensity λκ on A. We shall assume throughout

that κ is bounded with supremum denoted ‖κ‖∞.

The following notion of exponential stabilization, introduced in [4], plays a central role in all

that follows. For x ∈ Rd and r > 0, let Br(x) denote the Euclidean ball centered at x of radius r.

Definition 1.1 ξ is exponentially stabilizing for κ if for all λ ≥ 1 and all x ∈ A, there exists an

a.s. finite random variable R := R(x, λ) (a radius of stabilization for ξ at x) such that

ξλ (x; [Pλ ∩Bλ−1/dR(x)] ∪ X )

is independent of X for all finite X ⊂ A \Bλ−1/dR(x) and there exists a constant C > 0 such that

for all t > 0

sup
λ≥1, x∈A

P [R(x, λ) > t] ≤ C exp(−t/C).

Definition 1.2 ξ has a moment of order p > 0 if

sup
λ≥1, x∈Rd

E [|ξλ(x;Pλ)|p] < ∞. (1.1)

For λ > 0, define the random weighted point measure

µξ
λ :=

∑

x∈Pλ

ξλ(x;Pλ)δx.

and the centered version µξ
λ := µξ

λ−E [µξ
λ]. Let B(A) denote the set of bounded Borel-measurable

functions on A, and let Bc(A) denote the set of continuous functions in B(A). Given f ∈ B(A),

let 〈f, µξ
λ〉 :=

∫
A

fdµξ
λ and 〈f, µξ

λ〉 :=
∫

A
fdµξ

λ.

Let Φ denote the distribution function of the standard normal. Our main result is a normal

approximation result for 〈f, µξ
λ〉, suitably scaled.

Theorem 1.1 Let ξ be exponentially stabilizing and assume that ξ satisfies the moment condition

(1.1) for some p > 3. Let f ∈ B(A) and put Tλ := 〈f, µξ
λ〉. There exists a finite constant C

depending on d, ξ, κ and f , such that for all λ > 1

sup
t∈R

∣∣∣∣P
[

Tλ − ETλ

(VarTλ)1/2
≤ t

]
− Φ(t)

∣∣∣∣ ≤ C(log λ)3dλ(VarTλ)−3/2. (1.2)
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Remarks

(i) For many functionals of interest Var〈f, µξ
λ〉 = Θ(λ) (see Remark (v) below). Whenever

Var〈f, µξ
λ〉 = Θ(λ), Theorem 1.1 yields a rate of convergence O((log λ)3dλ−1/2) to the normal

distribution. We are not sure if the logarithmic factors can be removed. The rate in [1] is

O((log λ)1+3/(2d)λ−1/4).

(ii) If in Theorem 1.1 we assume only that (1.1) holds for some p > 2 instead of some p > 3,

and if VarTλ = Θ(λ), then the proof of Theorem 1.1 can be adapted to give a rate of convergence

of O(λ1+ε−p/2), for arbitrary ε > 0.

(iii) We do not have rate of convergence results in the binomial (non-Poisson) setting. For

central limit theorems in the binomial setting, we refer to [9] and [4], which treat uniform and

non-uniform samples respectively.

(iv) Some functionals, such as those defined in terms of the minimal spanning tree, satisfy a

weaker form of stabilization but are not known to satisfy exponential stabilization. In these cases

univariate and multivariate central limit theorems hold [8, 9] but our Theorem 1.1 does not apply

and explicit rates of convergence are not known.

(v) In many cases, combining Theorem 1.1 with known results on the asymptotic behavior of

Var(Tλ) yields central limit theorems. More precisely, it is established in Theorem 2.4(i) of [4],

using methods developed in [9, 11], that if A is convex, κ is continuous, and ξ lies in a certain

class of ‘slowly varying’ functionals SV(4/3) which includes all translation invariant functionals as

a special case, and if certain exponential stabilization and pth moment conditions hold which are

similar in spirit to those given in Definitions 1.1 and 1.2 above, for some p > 2, then then for all

f ∈ Bc(A),

lim
λ→∞

λ−1Var〈f, µξ
λ〉 =

∫

A

f(x)2V ξ(κ(x))κ(x)dx (1.3)

with V ξ(·) given explicitly in terms of ξ in [4]. Combining (1.3) with Theorem 1.1 yields

〈f, λ−1/2µξ
λ〉

D−→ N
(

0,

∫

A

f(x)2V ξ(κ(x))κ(x)dx

)
,

where N (0, σ2) denotes a centered normal distribution with variance σ2 if σ2 > 0, and a unit point

mass at 0 if σ2 = 0. Thus, when (1.3) holds we can use Theorem 1.1 to recover the conclusions

of Theorem 2.4 (ii) of [4] (a central limit theorem for the finite-dimensional distributions of the

random field (〈f, λ−1/2µξ
λ〉, f ∈ Bc(A))), without any computation of higher order moments. This

is characteristic of Stein’s method.
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(vi) Our Theorem 1.1 requires neither the underlying density function κ nor the test function f

to be continuous (both of these conditions are imposed in [4]). In particular, Theorem 1.1 applies

when f is the indicator function of a Borel subset B of A, giving normal approximation for µ̄ξ
λ(B).

2 Applications

Applications of Theorem 1.1 to geometric probability include functionals of proximity graphs,

Boolean models, and random sequential packing models. The following examples are for illustrative

purposes only and are not meant to be encyclopedic. For simplicity we will assume that Rd is

equipped with the usual Euclidean metric. However, since we do not assume that ξ is translation

invariant, the examples can be modified to treat the situation where Rd has a local metric structure.

2.1 k-nearest neighbor graph

Let k be a positive integer. Given a locally finite point set X ⊂ Rd, the k-nearest neighbors

(undirected) graph on X , denoted kNG(X ), is the graph with vertex set X obtained by including

{x, y} as an edge whenever y is one of the k nearest neighbors of x and/or x is one of the k

nearest neighbors of y. The k-nearest neighbors (directed) graph on X , denoted kNG′(X ), is the

graph with vertex set X obtained by placing a directed edge between each point and its k nearest

neighbors.

Let Nk(X ) denote the total edge length of the (undirected) k-nearest neighbors graph on

X . Note that Nk(X ) =
∑

x∈X ξk(x;X ), where ξk(x;X ) denotes the sum of the edge lengths in

kNG(X ) incident to x. If A is convex or polyhedral and κ is bounded away from 0 on A, then

ξk is exponentially stabilizing (cf. Lemma 6.1 of [9]) and has moments of all orders. Moreover

Var[Nk(λ1/dPλ)] ≥ Cλ. We thus obtain the following rates in the CLT for the total edge length

of Nk(λ1/dPλ) improving upon Avram and Bertsimas [1] and Bickel and Breiman [5]. A similar

CLT holds for the total edge length of the k-nearest neighbors directed graph.

Theorem 2.1 Suppose A is convex or polyhedral and κ is bounded away from 0 on A. Let Nλ :=

Nk(λ1/dPλ) denote the total edge length of the k-nearest neighbors graph on λ1/dPλ. There exists

a finite constant C depending on d, ξk, and κ such that

sup
t∈R

∣∣∣∣P
[

Nλ − ENλ

(VarNλ)1/2
≤ t

]
− Φ(t)

∣∣∣∣ ≤ C(log λ)3dλ−1/2. (2.1)
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Similarly, letting ξs(x;X ) be one or zero according to whether the distance between x and its

nearest neighbor in X is less than s or not, we can verify that ξs is exponentially stabilizing and

that the variance of
∑

x∈λ1/dPλ
ξs(x; λ1/dPλ) is bounded below by a positive multiple of λ. We

thus obtain rates of convergence of O((log λ)3dλ−1/2) in the CLT for the empirical distribution

function of k nearest neighbor distances on λ1/dPλ, improving upon those implicit on p. 88 of [7].

Using the results from section 6.2 of [9], we could likewise obtain the same rates of convergence

in the CLT for the number of vertices of fixed degree in the k nearest neighbors graph.

2.2 Voronoi and sphere of influence graphs

We will consider the Voronoi graph for d = 2 and the sphere of influence graph for all d (see

sections 7 and 8 of [9] for definitions). From the results of [4, 9, 11], we know that the total

edge length of the Voronoi and sphere of influence graphs on X both admit the representation
∑

x∈X ξ(x;X ); moreover, if κ is bounded away from 0 and infinity and A is convex, then ξ is

exponentially stabilizing and satisfies the moment condition (1.1) for all p > 1. Also, the variance

of the total edge length of these graphs on Pλ is bounded below by a multiple of λ. We thus obtain

O((log λ)3dλ−1/2) rates of convergence in the CLT for the total edge length functionals of these

graphs on Pλ, thereby improving and generalizing the results of Avram and Bertsimas [1].

For the sphere of influence graph we may draw on the results of sections 7.1 and 7.3 of [9], to

obtain O((log λ)3dλ−1/2) rates of convergence in the CLT for the total number of edges and the

number of vertices of fixed degree in the sphere of influence graph on Pλ.

2.3 Random sequential packing models

The following prototypical random sequential packing model is of considerable scientific interest;

see [10] for references to the vast literature.

With N(λ) standing for a Poisson random variable with parameter λ, we let Bλ,1, Bλ,2, ..., Bλ,N(λ)

be a sequence of d-dimensional balls of volume λ−1 whose centers are i.i.d. random d-vectors

X1, ..., XN(λ) with probability density function κ : A → [0,∞). Without loss of generality, assume

that the balls are sequenced in the order determined by marks (time coordinates) in [0, 1]. Let the

first ball Bλ,1 be packed, and recursively for i = 2, 3, . . . , let the i-th ball Bλ,i be packed iff Bλ,i

does not overlap any ball in Bλ,1, ..., Bλ,i−1 which has already been packed. If not packed, the i-th

ball is discarded. In much of the literature, the time coordinates are assumed independent of the

spatial coordinates but since we do not need to confine attention to translation invariant models,
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we do not require this assumption here.

Packing models of this type arise in diverse disciplines, including physical, chemical, and bi-

ological processes. See [10] for a discussion of the many applications, the many references, and

the widespread use. Penrose and Yukich [10] establish the asymptotic normality of the number of

accepted balls when the spatial distribution is uniform and also show [11] a LLN for the number

of accepted balls when the spatial distribution is non-uniform.

For any finite point set X ⊂ Rd, assume the points x ∈ X have time coordinates which are

independent and uniformly distributed over the interval [0, 1]. Assume balls of volume λ−1 centered

at the points of X arrive sequentially in an order determined by the time coordinates, and assume

as before that each ball is packed or discarded according to whether or not it overlaps a previously

packed ball. Let ξ(x;X ) be either 1 or 0 depending on whether the ball centered at x is packed

or discarded. Consider the re-scaled packing functional ξλ(x;X ) = ξ(λ1/dx;λ1/dX ), where λ1/dx

denotes scalar multiplication of x but not the mark associated with x and where balls centered at

points of λ1/dX have volume one. The random measure

µξ
λ :=

N(λ)∑

i=1

ξλ(Xi; {Xi}N(λ)
i=1 ) δXi ,

is called the random sequential packing measure induced by balls with centers arising from κ. The

convergence of the finite dimensional distributions of the packing measures µξ
λ is established in

[3, 4]. ξ is exponentially stabilizing [10, 3] and for any f ∈ Bc([0, 1]d) and κ uniform, the variance

of 〈f, µξ
λ〉 is bounded below by a positive multiple of λ [4], showing that 〈f, µξ

λ〉 satisfies a CLT

with an O((log λ)3dλ−1/2) rate of convergence.

It follows easily from the stabilization analysis of [10] that many variants of the above basic

packing model satisfy similar rates of convergence in the CLT. For example, the number of balls

accepted in the cooperative sequential adsorption models and the monolayer ballistic deposition

models of [10] both satisfy the CLT with an O((log λ)3dλ−1/2) rate of convergence. The same

comment applies for the number of seeds accepted in the spatial birth-growth models [10].

2.4 Independence number, off-line packing

An independent set of vertices in a graph G is a set of vertices in G, no two of which are connected

by an edge. The independence number of G, which we denote β(G), is defined to be the maximum

cardinality of all independent sets of vertices in G.

For r > 0, and for finite or countable X ⊂ Rd, let G(X , r) denote the geometric graph with
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vertex set X and with edges between each pair of vertices distant at most r apart. Then the

independence number β(G(X , r)) is the maximum number of disjoint closed balls of radius r/2

that can be centered at points of X ; it is an ‘off-line’ version of the packing functionals considered

in the previous section.

Let b > 0 be a constant, and consider the graph G(Pλ, bλ−1/d) (or equivalently, G(λ1/dPλ, b)).

Random geometric graphs of this type are the subject of [7], although independence number is

considered only briefly there (on page 135). A law of large numbers for the independence number

is described in Theorem 2.7 (iv) of [11].

For µ > 0, let Hµ denote a homogeneous Poisson point process of intensity µ on Rd, and let

H0
µ be the point process Hµ with a point inserted at the origin. As on page 189 of [7], let λc be the

infimum of all µ such that the origin has a non-zero probability of being in an infinite component

of G(Hµ, 1).

If bd‖κ‖∞ < λc, we can use Theorem 1.1 to obtain a central limit theorem for the independence

number β(G(Pλ, bλ−1/d)).

We only sketch the proof. The graph G(Pλ, bλ−1/d) is isomorphic to G(b−1λ1/dPλ, 1) and the

point process b−1λ1/dPλ is dominated by Hbd‖κ‖∞ (in the sense of [7], page 189). By exponential

decay for subcritical continuum percolation (Lemma 10.2 of [7]) the probability that the component

of G(H0
bd‖κ‖∞ , 1) containing the origin includes a point distant more than r from the origin decays

exponentially in r, and one can deduce exponential stabilization from this.

3 Proof of Theorem 1.1

3.1 A CLT for dependency graphs

We shall prove Theorem 1.1 by showing that exponential stabilization implies that a modification

of 〈f, µξ
λ〉 has a dependency graph structure, whose definition we now recall (see e.g. Chapter 2 of

[7]). Let Xα, α ∈ V, be a collection of random variables. The graph G := (V, E) is a dependency

graph for Xα, α ∈ V, if for any pair of disjoint sets A1, A2 ⊂ V such that no edge in E has one

endpoint in A1 and the other in A2, the sigma-fields σ{Xα, α ∈ A1}, and σ{Xα, α ∈ A2}, are

mutually independent. Let D denote the maximal degree of the dependency graph.

It is well known that sums of random variables indexed by the vertices of a dependency graph

admit rates of convergence to a normal. The rates of Baldi and Rinott [2] and those in Penrose [7]

are particularly useful; Avram and Bertsimas [1] use the former to obtain rate results for the total
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edge length of the nearest neighbor, Voronoi, and Delaunay graphs.

In many cases, the following theorem of Chen and Shao [6] provides superior rate results. We

shall apply this result when p = 3. For any random variable X and any p > 0, let ||X||p =

(E [|X|p])1/p.

Lemma 3.1 (see Thm 2.7 of [6]) Let 2 < p ≤ 3. Let Wi, i ∈ V, be random variables indexed by

the vertices of a dependency graph. Let W =
∑

i∈V Wi. Assume that E [W 2] = 1,E [Wi] = 0, and

||Wi||p ≤ θ for all i ∈ V and for some θ > 0. Then

sup
t
|P [W ≤ t]− Φ(t)| ≤ 75D5(p−1)|V|θp. (3.1)

3.2 Auxiliary lemmas

To prepare for the proof of Theorem 1.1 we will need some auxiliary lemmas. We assume throughout

that A ⊆ [0, 1]d, but all of our results can be easily modified to treat the case of arbitrary compact

sets A ⊂ Rd. Throughout, C denotes a generic constant depending possibly on d, ξ, and κ and

whose value may vary at each occurrence. We assume λ > 1 throughout.

Let α > 0 be a constant to be chosen later. Given λ > 0, let sλ := λ−1/dα log λ, and cover

[0, 1)d by cubes of side sλ of the form
∏d

i=1[jisλ, (ji + 1)sλ), with all ji ∈ Z. Let the cubes in the

covering be denoted Q1, Q2, ..., QV , where V := V (λ) is the number of cubes in the covering, i.e.

V (λ) := ds−1
λ ed = dλ1/d/(α log λ)ed.

For all 1 ≤ i ≤ V (λ), the number of points in Pλ∩Qi is a Poisson random variable Ni := N(τi),

where τi := λ
∫

Qi
κ(x)dx. Assuming τi > 0, choose an ordering on the points of Pλ∩Qi uniformly at

random from all (Ni)! possible such orderings. Use this ordering to list the points as Xi,1, ..., Xi,Ni ,

where conditional on the value of Ni, the random variables Xi,j , j = 1, 2, ... are i.i.d. on Qi with

a density κi(·) := κ(·)/ ∫
Qi

κ(x)dx. Thus we have the representation Pλ = ∪V (λ)
i=1 {Xi,j}Ni

j=1. For all

1 ≤ i ≤ V (λ), let Pi := Pλ \ {Xi,j}Ni
j=1 and note that Pi is a Poisson point process on [0, 1]d with

intensity density λκ on [0, 1]d \Qi and intensity zero on Qi.

We show that the condition (1.1), which bounds the moments of the value of ξ at points inserted

into Pλ, also yields bounds on E [|ξλ(Xi,j ;Pλ) · 1j≤Ni |p]. More precisely, we have

Lemma 3.2 Let p > 0. If (1.1) holds, then there is a constant C such that for all λ > 1 and all

1 ≤ i ≤ V (λ)

E [|ξλ(Xi,j ;Pλ) · 1j≤Ni |p] ≤ C(log λ)d. (3.2)
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Proof. If Ni = n, then denote {Xi,1, ..., Xi,Ni} by Xn. We have by definition

E [|ξλ(Xi,j ;Pλ) · 1j≤Ni |p] =
∞∑

n=j

∫

Qi

E [|ξλ(x;Xn−1 ∪ Pi)|p]κi(x)dx · P [Ni = n],

where the expectation on the right hand side is with respect to Xn−1 and Pi. The above is bounded

by

≤ τi

∞∑
n=1

∫

Qi

E [|ξ(x;Xn−1 ∪ Pi)|p]κi(x)dx · e−τiτn−1
i

(n− 1)!

= τi

∞∑
m=0

∫

Qi

E [|ξλ(x;Pλ)|p | |Pλ ∩Qi| = m]κi(x)dx · P [|Pλ ∩Qi| = m]

= τi

∫

Qi

E [|ξλ(x;Pλ ∪ x)|p]κi(x)dx ≤ const.× τi,

where the last inequality follows by (1.1). Since τi = λ
∫

Qi
κ(x)dx ≤ ‖κ‖∞(α log λ)d, this shows

(3.2).

Fix 1 ≤ i ≤ V . For all j = 1, 2, ... we define

ξj := ξi,j := ξλ(Xi,j ;Pλ)

when 1 ≤ j ≤ Ni and otherwise we set ξj = 0.

Lemma 3.3 If (1.1) holds for some p > 3, then

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj |
∣∣∣∣∣∣

∣∣∣∣∣∣

3

3

≤ C(log λ)4d.

Proof. Clearly, with N := Ni and τ := τi,
∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj |
∣∣∣∣∣∣

∣∣∣∣∣∣
3

=

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj |
(

1N≤τ +
∞∑

k=0

12kτ<N≤2k+1τ

)∣∣∣∣∣∣

∣∣∣∣∣∣
3

≤
∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

∞∑

k=0

|ξj | · 12kτ<N≤2k+1τ

∣∣∣∣∣∣

∣∣∣∣∣∣
3

+

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj | · 1N≤τ

∣∣∣∣∣∣

∣∣∣∣∣∣
3

.

Since a.s. only finitely many summands in the double sum are non-zero, by subadditivity of the

norm, the above is bounded by

≤
∞∑

k=0

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj | · 12kτ<N≤2k+1τ

∣∣∣∣∣∣

∣∣∣∣∣∣
3

+

∣∣∣∣∣∣

∣∣∣∣∣∣

τ∑

j=1

|ξj | · 1N≤τ

∣∣∣∣∣∣

∣∣∣∣∣∣
3
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≤
∞∑

k=0

∣∣∣∣∣∣

∣∣∣∣∣∣

2k+1τ∑

j=1

|ξj | · 1N≥2kτ

∣∣∣∣∣∣

∣∣∣∣∣∣
3

+

∣∣∣∣∣∣

∣∣∣∣∣∣

τ∑

j=1

|ξj | · 1N≤τ

∣∣∣∣∣∣

∣∣∣∣∣∣
3

≤
∞∑

k=0

2k+1τ∑

j=1

∣∣∣∣ξj · 1N≥2kτ

∣∣∣∣
3

+
τ∑

j=1

||ξj · 1N≤τ ||3 . (3.3)

Hölder’s inequality yields for all 1 ≤ j ≤ 2k+1τ and any 0 < δ < 1/9:

||ξj · 1N≥2kτ ||3 ≤ ||ξj ||3+3δ · (P [N ≥ 2kτ ])δ/(3+3δ)

and therefore replacing 3δ with δ gives

||ξj · 1N≥2kτ ||3 ≤ ||ξj ||3+δ · (P [N ≥ 2kτ ])δ/10. (3.4)

Now by (3.2) we have

||ξj ||3+δ ≤ C(log λ)d/(3+δ). (3.5)

Substituting (3.4) and (3.5) into (3.3) we obtain
∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj |
∣∣∣∣∣∣

∣∣∣∣∣∣
3

≤ C(log λ)d/(3+δ)
∞∑

k=0

τ2k+1 · (P [N ≥ 2kτ ])δ/10 +
τ∑

j=1

||ξj · 1N≤τ ||3 . (3.6)

Now for τ > 1 we have
∞∑

k=0

τ2k+1 · (P [N ≥ 2kτ ])δ/10 ≤
∞∑

k=0

τ2k+1 · (P [N ≥ 2k])δ/10 ≤ Cτ

whereas for 0 < τ < 1 we have
∞∑

k=0

τ2k+1 · (P [N ≥ 2kτ ])δ/10

≤
dlog2

1
τ e+2∑

k=0

τ2k+1 +
∞∑

k=dlog2
1
τ e+3

τ2k+1 · (P [N ≥ 2kτ ])δ/10

≤ C +
∞∑

k=dlog2
1
τ e+3

τ2k+1 · (exp(−2k−1τ · k))δ/10 ≤ C,

where the penultimate inequality follows from bounds for the tail of a Poisson (see e.g. (1.12) in

[7]). Thus the first sum on the right hand side of (3.6) is at most C(log λ)4d/3 since τ ≤ C(log λ)d.

Since ||ξj ||3 ≤ C(log λ)d/3 we find that (3.6) implies
∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=1

|ξj |
∣∣∣∣∣∣

∣∣∣∣∣∣
3

≤ C(log λ)4d/3, (3.7)

which concludes the proof of Lemma 3.3.
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3.3 Conclusion of proof of Theorem 1.1

Throughout this section, we fix f ∈ B(A) and set Tλ := 〈f, µξ
λ〉. For all 1 ≤ i ≤ V and all

j = 1, 2, ..., let Ri,j denote the radius of stabilization of ξ at λ1/dXi,j if 1 ≤ j ≤ Ni and let Ri,j be

zero otherwise.

Let Ei,j := {Ri,j ≤ α log λ}. Then by standard Palm theory (e.g. Theorem 1.6 in [7])

E
[∑V

i=1

∑Ni

j=1 1Ec
i,j

]
=

∫
[0,λ1/d]d

P [R(x, λ) > α log λ]κ(λ−1/dx)dx ≤ Cλ−33 by exponential sta-

bilization if α is large enough. Let Eλ := ∩V
i=1 ∩∞j=1 Ei,j and note that P [Ec

λ] ≤ Cλ−33.

Recalling the representation Pλ = ∪V (λ)
i=1 {Xi,j}Ni

j=1, we have

Tλ =
V (λ)∑

i=1

Ni∑

j=1

ξλ(Xi,j ;Pλ) · f(Xi,j).

To obtain rates of normal approximation for Tλ, it will be be convenient to consider a closely

related sum enjoying more independence structure, namely

T ′λ :=
V (λ)∑

i=1

Ni∑

j=1

ξλ(Xi,j ;Pλ) · 1Ei,j · f(Xi,j).

For all 1 ≤ i ≤ V (λ) define

Si := SQi := (VarT ′λ)−1/2
Ni∑

j=1

ξλ(Xi,j ;Pλ) · 1Ei,j · f(Xi,j)

and put S := (VarT ′λ)−1/2(T ′λ − ET ′λ) =
∑V (λ)

i=1 (Si − ESi). Clearly VarS = ES2 = 1.

We define a graph Gλ := (Vλ, Eλ) as follows. The set Vλ consists of the subcubes Q1, ..., QV (λ)

and edges (Qi, Qj) belong to Eλ if d(Qi, Qj) ≤ 2αλ−1/d log λ, where d(Qi, Qj) := inf{|x− y| : x ∈
Qi, y ∈ Qj} . By definition of exponential stabilization, we note that if A1 and A2 are disjoint

collections of cubes in Vλ such that no edge in Eλ has one endpoint in A1 and one endpoint in A2,

then the random variables {SQi , Qi ∈ A1} and {SQj , Qj ∈ A2} are independent. Thus Gλ is a

dependency graph.

To prepare for an application of Lemma 3.1, we make four observations:

(i) V (λ) := |Vλ| = dλ1/d/(α log λ)ed.
(ii) Since the number of cubes in Q1, ..., QV distant at most 2αλ−1/d log λ from a given cube is

bounded by 5d, it follows that the maximal degree D satisfies D := Dλ ≤ 5d.

(iii) The definitions of Si and ξi,j and Lemma 3.3 tell us that for all 1 ≤ i ≤ V (λ)

E [|Si|3] ≤ C(VarT ′λ)−3/2E







∞∑

j=1

|ξi,j |



3

 ≤ C(VarT ′λ)−3/2(log λ)4d.
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(iv) Var[T ′λ] is close to Var[Tλ] for λ large. We require a few estimations to show this. Note

that |T ′λ − Tλ| = 0 except possibly on the set Ec
λ which has probability less than Cλ−33. Lemma

3.3, along with Minkowski’s inequality, yields the upper bound

E







V (λ)∑

i=1

Ni∑

j=1

|ξλ(Xi,j ;Pλ)|



3

 ≤ CV (λ)3(log λ)4d ≤ Cλ4. (3.8)

Thus Hölder’s inequality implies that

E [|Tλ − T ′λ|2]

≤ E [|Tλ − T ′λ|2 · 1Ec
λ

] ≤ 4E [(T 2
λ + T ′2λ) · 1Ec

λ
]

≤ 8


E




V (λ)∑

i=1




Ni∑

j=1

|ξλ(Xi,j ;Pλ)|



3






2/3

· (P [Ec
λ])1/3 ≤ Cλ−8 (3.9)

and thus

E [|T ′λ − Tλ|] ≤ Cλ−4. (3.10)

Additionally, (3.8) and Jensen’s inequality yield

E







V (λ)∑

i=1

Ni∑

j=1

|ξλ(Xi,j ;Pλ)|



2

 ≤ Cλ3. (3.11)

Since

Var[T ′λ] = Var[Tλ] + Var(T ′λ − Tλ) + 2Cov(Tλ, T ′λ − Tλ),

by (3.9), (3.11) and the Cauchy-Schwarz inequality we obtain

|Var[T ′λ]−Var[Tλ]| ≤ Cλ−2. (3.12)

Given the four observations (i)-(iv), we are now ready to apply Lemma 3.1 to prove Theorem

1.1. Trivially, (1.2) holds for large enough λ when Var[Tλ] < 1, and so without loss of generality

we now assume Var[Tλ] ≥ 1. To establish the rate of convergence (1.2) in this case, we apply the

bound (3.1) to Wi := Si − ESi, 1 ≤ i ≤ Vλ, with p = 3 and with

θ := C(VarT ′λ)−1/2(log λ)4d/3.

Our choice of θ is applicable because of observation (iii). We clearly have E [Wi] = 0 and

E [(
∑Vλ

i=1 Wi)2] = 1. With S =
∑Vλ

i=1 Wi, Lemma 3.1 yields

sup
t
|P [S ≤ t]− Φ(t)| ≤ Cd λ1/d

α log λ
ed · (VarT ′λ)−3/2(log λ)4d
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≤ Cλ(VarTλ)−3/2(log λ)3d, (3.13)

where the last line makes use of the fact that Var[T ′λ] ≥ Var[Tλ]/2, which follows from (3.12).

Now if β > 0 is a constant and Z any random variable then by (3.13) we have for all t ∈ R

P [Z ≤ t] ≤ P [S ≤ t + β] + P [|Z − S| ≥ β]

≤ Φ(t + β) + Cλ(VarTλ)−3/2(log λ)3d + P [|Z − S| ≥ β]

≤ Φ(t) + Cβ + Cλ(VarTλ)−3/2(log λ)3d + P [|Z − S| ≥ β]

by the Lipschitz property of Φ. Similarly for all t ∈ R

P [Z ≤ t] ≥ Φ(t)− Cβ − Cλ(VarTλ)−3/2(log λ)3d − P [|Z − S| ≥ β].

In other words

sup
t
|P [Z ≤ t]− Φ(t)| ≤ Cβ + Cλ(VarTλ)−3/2(log λ)3d + P [|Z − S| ≥ β]. (3.14)

Now by definition of S,

|(VarT ′λ)−1/2(Tλ − ETλ)− S| = |(VarT ′λ)−1/2{(Tλ − ETλ)− (T ′λ − ET ′λ)}|

≤ (VarT ′λ)−1/2{|Tλ − T ′λ|+ E [|Tλ − T ′λ|]}

which by (3.10) is bounded by Cλ−4 except possibly on the set Ec
λ which has probability less than

Cλ−33. Thus by (3.14) with Z = (VarT ′λ)−1/2(Tλ − ETλ) and β = Cλ−4

sup
t
|P [(VarT ′λ)−1/2(Tλ − ETλ) ≤ t]− Φ(t)| ≤ Cλ(VarTλ)−3/2(log λ)3d + Cλ−4 + Cλ−33.

Moreover, by the triangle inequality

sup
t

∣∣∣P [(VarTλ)−1/2(Tλ − ETλ) ≤ t]− Φ(t)
∣∣∣ ≤

≤ sup
t

∣∣∣∣P
[
(VarT ′λ)−1/2(Tλ − ETλ) ≤ t · (VarTλ

VarT ′λ
)1/2

]
− Φ

(
t(

VarTλ

VarT ′λ
)1/2

)∣∣∣∣ +

+ sup
t

∣∣∣∣Φ
(

t(
VarTλ

VarT ′λ
)1/2

)
− Φ(t)

∣∣∣∣ .

Since for all s ≤ t, we have |Φ(s) − Φ(t)| ≤ (t − s)maxs≤u≤t φ(u) where φ denotes the standard

normal density, and since by (3.12) there is a constant 0 < C < ∞ such that for all λ > 0 and all

t ∈ R ∣∣∣∣t(
VarTλ

VarT ′λ
)1/2 − t

∣∣∣∣ ≤ |t|
∣∣∣∣
VarTλ

VarT ′λ
− 1

∣∣∣∣ ≤
C|t|
λ2
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we get

sup
t

∣∣∣∣Φ
(

t(
VarTλ

VarT ′λ
)1/2

)
− Φ(t)

∣∣∣∣ ≤ C sup
t

(( |t|
λ2

)(
max

u∈[t−tC/λ2, t+tC/λ2]
φ(u)

))
≤ C

λ2
.

Thus,

sup
t
|P [(VarTλ)−1/2(Tλ − ETλ) ≤ t]− Φ(t)| ≤ Cλ(VarTλ)−3/2(log λ)3d + Cλ−2. (3.15)

Finally we assert that

VarTλ = O((log λ)8d/3λ). (3.16)

To see this, observe that T ′λ is the sum of V (λ) random variables, which by Jensen’s inequality and

Lemma 3.3 each have a second moment bounded by a constant multiple of (log λ)8d/3. Thus the

variance of each of the V (λ) random variables is also bounded by a constant multiple of (log λ)8d/3.

Moreover, the covariance of any pair of the V (λ) random variables is zero when the indices of the

random variables correspond to non-adjacent sub-cubes. For adjacent sub-cubes, the covariance is

also bounded by a constant multiple of (log λ)8d/3. This shows that VarT ′λ = O((log λ)8d/3λ), and

combined with (3.12) this yields (3.16).

By (3.16), in (3.15) the first term in the right hand side dominates, thus yielding the desired

bound (1.2), and the proof of Theorem 1.1 is complete.

Acknowledgments. We began this work while visiting the Institute for Mathematical Sciences

at the National University of Singapore, and continued it while visiting the Isaac Newton Institute

for Mathematical Sciences at Cambridge. We thank both institutions for their hospitality.

References

[1] F. Avram and D. Bertsimas (1993), On central limit theorems in geometrical probability. Ann.

Appl. Probab. 3, 1033-1046.

[2] P. Baldi and Y. Rinott (1989), Asymptotic normality of some graph related statistics. J. Appl.

Probab. 26, 171-175.

[3] Yu. Baryshnikov and J.E. Yukich (2003), Gaussian fields and random packing. J. Statist. Phys.

111, 443-463.

15



[4] Yu. Baryshnikov and J.E. Yukich (2004), Gaussian limits for random measures

in geometric probability. Ann. Appl. Probab., to appear, Electronically available via

http://www.lehigh.edu/∼jey0/publications.html

[5] P. J. Bickel and L. Breiman (1983), Sums of functions of nearest neighbor distances, moment

bounds, limit theorems and a goodness of fit test. Ann. Probab. 11, 185-214.

[6] L. Chen and Q.-M. Shao (2003), Normal approximation under local dependence, preprint, Ann.

Probab., to appear.

[7] M.D. Penrose (2003), Random Geometric Graphs, Oxford University Press.

[8] M.D. Penrose (2004). Multivariate spatial central limit theorems with applications to percola-

tion and spatial graphs. Preprint, University of Bath. M.D. Penrose. Electronically available via

http://www.bath.ac.uk/math-sci/

[9] M.D. Penrose and J.E. Yukich (2001), Central limit theorems for some graphs in computational

geometry. Ann. Appl. Probab. 11, 1005-1041.

[10] M.D. Penrose and J.E. Yukich (2002), Limit theory for random sequential packing and depo-

sition. Ann. Appl. Probab. 12, 272-301.

[11] M.D. Penrose and J.E. Yukich (2003), Weak laws of large numbers in geometric probability.

Ann. Appl. Probab., 13, 277-303.

[12] C. Stein (1972), Approximate Computation of Expectations. IMS, Hayward, CA.

16


