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Abstract

We observe a realization of a stationary weighted Voronoi tessellation of the
d-dimensional Euclidean space within a bounded observation window. Given a geomet-
ric characteristic of the typical cell, we use the minus-sampling technique to construct
an unbiased estimator of the average value of this geometric characteristic. Under mild
conditions on the weights of the cells, we establish variance asymptotics and the asymp-
totic normality of the unbiased estimator as the observation window tends to the whole
space. Moreover, weak consistency is shown for this estimator.
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1 Introduction

Tessellations, also known as mosaics, are an important model in stochastic geometry [5,
16] and have numerous applications in engineering and the natural sciences [11]. This paper
focuses on random Voronoi tessellations of Rd, as well as the so-called weighted Voronoi
tessellations. We shall be interested in developing the limit theory for unbiased and consistent
estimators of statistics of a typical cell in a weighted Voronoi tessellation.

The estimators are constructed by observing the tessellation within a bounded window.
Unbiased estimators are constructed by considering only those cells which lie within the
bounded window. This technique, known as minus-sampling, has a long history going back
to Miles [9] as well as Horvitz and Thompson; see [1] for details. In this paper we use sta-
bilization methods to develop expectation and variance asymptotics, as well as central limit
theorems, for unbiased and asymptotically consistent estimators of geometric statistics of a
typical cell.

Letting (�,F , P) be the common probability space, weighted Voronoi tessellations are
defined as follows. Let P be a unit intensity stationary marked point process in Rd with mark
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680 D. FLIMMEL ET AL.

space M := [0, μ] for some constant μ < ∞. Let B(M) be the Borel σ -algebra on M, and let
QM be the mark distribution; for its definition see [16, Section 3.5]. The elements of Rd ×M

will be denoted by x̂ := (x, mx). We introduce a weight function ρ:Rd × (Rd ×M) →R which,
for each x̂ ∈P , generates the weighted cell

Cρ(x̂,P) :=
{

y ∈Rd : ρ(y, x̂) ≤ ρ(y, ẑ) for all ẑ ∈P
}

.

Letting ‖x‖ denote the Euclidean norm of x, we focus on the following well-known weights:

(i) Voronoi cell: ρ1(y, x̂) := ‖x − y‖,

(ii) Laguerre cell: ρ2(y, x̂) := ‖x − y‖2 − m2
x ,

(iii) Johnson–Mehl cell: ρ3(y, x̂) := ‖x − y‖ − mx.

Notice that the Lebesgue measure of Cρ(x̂,P) increases with increasing mx. Voronoi and
Laguerre cells are convex, whereas Johnson–Mehl cells need not be convex. The weight
functions ρi(·, x̂), i = 1, 2, 3, generate the Voronoi, Laguerre [7], and Johnson–Mehl tessel-
lations [10], respectively, and are often called the power of the point x; see [16, Section 10.2].
When P is a marked Poisson point process we shall refer to these tessellations as weighted
Poisson–Voronoi tessellations.

We next consider the notion of a typical cell of a stationary random tessellation defined by
the weight ρ. By the typical cell Kρ

0 := Kρ

0 (P) we understand the cell generated by a typical
point of P . This can be formally introduced by considering the Palm probability P0 which
corresponds to P conditional on the event that P has a point at the origin. Expectation with
respect to P0 is denoted by E0. In the case of Laguerre or Johnson–Mehl tessellations the
typical cell Kρ

0 could satisfy Kρ

0 = ∅. This is different from the definition of the typical cell
described in, e.g., [16, Section 10.4], where the typical cell is meant to be the typical non-empty
cell. For a Voronoi tessellation both approaches coincide. For weighted Voronoi tessellations,
Kρ

0 is distributed as a mixture of the typical non-empty cell and the empty cell with mixture
weights 1 − p∅ and p∅, where p∅ is the probability that the cell generated by the typical point
is empty. Let Qρ be the distribution of the typical cell.

Denote by Fd the space of all closed subsets of Rd equipped with the Borel σ -algebra
B(Fd) generated by the open sets from the Fell topology; see [16, Definition 2.1.1]. Let
h:(Fd,B(Fd)) → (R,B(R)) describe a geometric characteristic of elements of Fd (e.g. diame-
ter, volume) such that h(∅) = 0.

We have two goals: (i) use minus-sampling to construct unbiased estimators of E0h(Kρ

0 ) =∫
h(K) Qρ(dK), and (ii) establish variance asymptotics and asymptotic normality for such esti-

mators. As a by-product, we also establish the limit theory for geometric statistics of Laguerre
and Johnson–Mehl tessellations, adding to the results of [12, 14] which are confined to Voronoi
tessellations.

2 Main results

Denote by R̂d the Cartesian product of Rd and M. Let N be the set of all locally finite marked

counting measures on R̂d. An element of N can be interpreted as a marked point configuration.
Therefore, we treat it as a set in the notation. The set N is equipped with the standard σ -algebra
N which is the smallest σ -algebra such that all mappings πA : N →N∪ {0, ∞}, P 
→P(A),

A ∈B(R̂d), are measurable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2020.4
Downloaded from https://www.cambridge.org/core. Lehigh University, on 08 Oct 2020 at 19:47:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2020.4
https://www.cambridge.org/core


Limit theory for unbiased estimators of statistics of random tessellations 681

Define, for z ∈Rd and x̂ ∈P ,

Cρ
z (x̂,P) := Cρ(x̂,P) + (z − x).

Thus, Cρ(x̂,P) = x + Cρ

0 (x̂,P), where 0 denotes the origin of Rd. Note that Kρ

0 =
Cρ

0 ((0, M0),P) P0 almost surely, where M0 is a typical mark distributed according to QM.
Recall that h : Fd →R measures a geometric characteristic of elements of Fd. We assume

that h is invariant with respect to shifts, namely, for all x ∈Rd and mx ∈M,

h(Cρ((x, mx),P)) = h(x + Cρ

0 ((x, mx),P)) = h(Cρ

0 ((x, mx),P)).

Put Wλ := [− λ1/d

2 , λ1/d

2

]d and Ŵλ := Wλ ×M, λ > 0. Given h and a tessellation defined by
the weight ρ, we define, for all λ > 0,

Hρ
λ (P ∩ Ŵλ) :=

∑
x̂∈P∩Ŵλ

h(Cρ(x̂,P))

Vol(Wλ � Cρ(x̂,P))
1{Cρ(x̂,P) ⊆ Wλ}.

Here, for sets A and B, A � B := {x ∈Rd : B + x ⊆ A} denotes the erosion of A by B. The statis-
tic Hρ

λ (P ∩ Ŵλ) disregards cells contained in the window Wλ that are generated by the points
outside Wλ. Such cells do not exist in the Voronoi case but they could appear for weighted
cells. Therefore, we also consider

Hρ
λ (P) :=

∑
x̂∈P

h(Cρ(x̂,P))

Vol(Wλ � Cρ(x̂,P))
1{Cρ(x̂,P) ⊆ Wλ}.

Our first main result has a proof which is short and illustrative. The result holds if Wλ is
replaced by any observation window. It is a special case of a more general result given in
[1, Theorem 2.1] and formulated for stationary germ-grain models and general sampling rules.

Theorem 2.1. Let P be a stationary marked point process with unit intensity and mark distri-
bution QM. Let h : Fd →R be translation invariant as above. Then, for all λ > 0, the statistic
Hρ

λ (P) is an unbiased estimator of E0h(Kρ

0 ).

Proof of Theorem 2.1. We have

EHρ
λ (P) =E

∑
x̂∈P

h(Cρ(x̂,P))

Vol(Wλ � Cρ(x̂,P))
1{Cρ(x̂,P) ⊆ Wλ}

=E
∑
x̂∈P

h(Cρ

0 (x̂,P))

Vol(Wλ � Cρ

0 (x̂,P))
1{x + Cρ

0 (x̂,P) ⊆ Wλ}

=
∫
Rd

E0

(
h(Kρ

0 )

Vol(Wλ � Kρ

0 )
1{x + Kρ

0 ⊆ Wλ}
)

dx

=E0
∫
Rd

(
h(Kρ

0 )

Vol(Wλ � Kρ

0 )
1{x ∈ Wλ � Kρ

0 }
)

dx

=E0h(Kρ

0 ),

where the second equality uses the translation invariance of h and translation invariance of
erosions, the third uses the refined Campbell theorem for stationary marked point processes
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682 D. FLIMMEL ET AL.

[16, Theorem 3.5.3], while the fourth uses Fubini’s theorem. Hence, we have shown the
unbiasedness Hρ

λ (P). �

Controlling the moments of Hρ
λ (P ∩ Ŵλ) is problematic since Vol(Wλ � Cρ(x̂,P)) may

become arbitrarily small. It will therefore be convenient to consider versions of Hρ
λ (P ∩ Ŵλ)

and Hρ
λ (P) given by

Ĥρ
λ (P ∩ Ŵλ) :=

∑
x̂∈P∩Ŵλ

h(Cρ(x̂,P)) 1{Cρ(x̂,P) ⊆ Wλ}
Vol(Wλ � Cρ(x̂,P))

1
{

Vol(Wλ � Cρ(x̂,P)) ≥ λ

2

}

and

Ĥρ
λ (P) :=

∑
x̂∈P

h(Cρ(x̂,P)) 1{Cρ(x̂,P) ⊆ Wλ}
Vol(Wλ � Cρ(x̂,P))

1
{

Vol(Wλ � Cρ(x̂,P)) ≥ λ

2

}
.

Note that Hρ
λ (P ∩ Ŵλ), Ĥρ

λ (P), and Ĥρ
λ (P ∩ Ŵλ) are not unbiased. Under the assumptions

of Theorem 2.1, one instead has

EHρ
λ (P ∩ Ŵλ) =E0

(
h(Kρ

0 )
Vol(Wλ ∩ (Wλ � Kρ

0 ))

Vol(Wλ � Kρ

0 )

)
,

EĤρ
λ (P ∩ Ŵλ) =E0

(
h(Kρ

0 )
Vol(Wλ ∩ (Wλ � Kρ

0 ))

Vol(Wλ � Kρ

0 )
1
{

Vol(Wλ � Kρ

0 ) ≥ λ

2

})
,

and

EĤρ
λ (P) =E0

(
h(Kρ

0 )1
{

Vol(Wλ � Kρ

0 ) ≥ λ

2

})
.

The general form of the bias is given by Theorem 2.1 of [1].
We need some additional terminology. For every weight ρ and geometric statistic h we

define the score ξρ : R̂d × N →R by

ξρ(x̂,A) := h(Cρ(x̂,A))1{Cρ(x̂,A) is bounded}, x̂ ∈ R̂d, A ∈ N. (2.1)

We use this representation to explicitly link our statistics with the stabilizing statistics in the
literature [2, 4, 6, 12, 13, 14, 15]. Translation invariance for h implies

ξρ(x̂,A) = ξρ((x, mx),A) = ξρ((0, mx),A− x)

for every x̂ ∈ R̂d, x̂ := (x, mx), and A ∈ N, where A− x := {(a − x, ma) : (a, ma) ∈A}. If
Cρ(x̂,P) is empty we have ξρ(x̂,P) = h(∅) = 0. Write Cρ(x̂,P) := Cρ(x̂,P ∪ {x̂}) for x̂ �∈P ,
so ξρ(x̂,P) := ξρ(x̂,P ∪ {x̂}) for x̂ �∈P .

Let Px̂, respectively Px̂,ŷ, denote the Palm probability measures conditioned on P having
an additional marked point x̂, respectively two additional marked points x̂ and ŷ. In particular,
P0(·) = ∫

M
P(0,m)(·) QM(dm). By Ex̂, respectively Ex̂,ŷ, we denote expectation with respect to

Px̂, respectively Px̂,ŷ.
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Limit theory for unbiased estimators of statistics of random tessellations 683

Definition 2.1. The score ξρ is said to satisfy a p-moment condition, p ∈ [1, ∞), if

sup
x̂,ŷ∈R̂d

Ex̂,ŷ|ξρ(x̂,P)|p < ∞. (2.2)

For r ∈ (0, ∞) and y ∈Rd, we denote by Br(y) the closed Euclidean ball of radius r centered
at y.

Definition 2.2. We say that the cells of the tessellation defined by ρ and generated by P
have diameters with exponentially decaying tails if there is a constant cdiam ∈ (0, ∞) such
that, for all x̂ := (x, mx) ∈P , there exists an almost surely finite random variable Dx̂ such that
Cρ(x̂,P) ⊆ BDx̂ (x) and

Px̂(Dx̂ ≥ t) ≤ cdiam exp

(
− 1

cdiam
td
)

, t ≥ 0. (2.3)

Definition 2.3. We say that ξρ is stabilizing with respect to P if, for all x̂ := (x, mx) ∈P ,
there exists an almost surely finite random variable Rx̂ := Rx̂(P), henceforth called a radius of
stabilization, such that

ξρ(x̂, (P ∪A) ∩ B̂Rx̂ (x)) = ξρ(x̂,P ∪A) (2.4)

for all A with card(A) ≤ 7 and where B̂r(y) := Br(y) ×M. We say that ξρ is exponentially
stabilizing with respect to P if there are constants cstab, α ∈ (0, ∞) such that

Px̂(Rx̂ ≥ t) ≤ cstab exp

(
− 1

cstab
tα
)

, t ≥ 0.

In other words, ξρ is stabilizing with respect to P if there is Rx̂ such that the cell Cρ(x̂,P)
is not affected by changes in point configurations outside B̂Rx̂ (x). The condition card(A) ≤
7 is chosen in accordance with the approach in [6], which requires controlling moments of
difference operators with possibly seven extra points inserted into a Poisson point process.

By ηs, s ∈ (0, ∞), we denote a homogeneous marked Poisson point process with values in
Rd ×M and such that the unmarked process on Rd has rate s. We write η for η1. Our next
results establish the limit theory for the above estimators.

Theorem 2.2. Let M0 be a random mark distributed according to QM.

(i) If ξρ satisfies the p-moment condition (2.2) for some p ∈ (1, ∞) and if the cell
Cρ((0, M0), η) has a diameter with an exponentially decaying tail, then Hρ

λ (η ∩ Ŵλ),
Ĥρ

λ (η), and Ĥρ
λ (η ∩ Ŵλ) are asymptotically unbiased estimators of E0h(Kρ

0 (η)).

(ii) Under the conditions of (i), and assuming that ξρ stabilizes with respect to η as at (2.4),
the statistics Hρ

λ (η), Hρ
λ (η ∩ Ŵλ), Ĥρ

λ (η), and Ĥρ
λ (η ∩ Ŵλ) are consistent estimators of

E0h(Kρ

0 (η)).

Given the score ξρ at (2.1), put

σ 2(ξρ) :=E(ξρ(0M, η))2 (2.5)

+
∫
Rd

[
Eξρ(0M, η ∪ {xM})ξρ(xM, η ∪ {0M}) −Eξρ(0M, η) Eξρ(xM, η)

]
dx,
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684 D. FLIMMEL ET AL.

where 0M := (0, M0), xM := (x, Mx), and M0 and Mx are independent random marks distributed
according to QM. Note that E0h(Kρ

0 (η)) =Eh(Cρ(0M, η)) =Eξρ(0M, η) by the Slivnyak theo-
rem [16, Theorem 3.5.9]. Here, we use that, given the Poisson process η, the Palm distribution
corresponds to the usual distribution with a point inserted at the origin.

Theorem 2.3. Let h be translation invariant and assume that ξρ is exponentially stabilizing
with respect to η.

(i) If ξρ satisfies the p-moment condition (2.2) for some p ∈ (2, ∞), then

lim
λ→∞ λVarĤρ

λ (η ∩ Ŵλ) = lim
λ→∞ λVarĤρ

λ (η) = σ 2(ξρ) ∈ [0, ∞). (2.6)

(ii) If σ 2(ξρ) ∈ (0, ∞) and if the p-moment condition (2.2) holds for some p ∈ (4, ∞), then

√
λ
(

Hρ
λ (η ∩ Ŵλ) −EHρ

λ (η ∩ Ŵλ)
)

D−→
λ→∞ N(0, σ 2(ξρ))

and √
λ
(

Hρ
λ (η) −E0h(Kρ

0 (η))
)

D−→
λ→∞ N(0, σ 2(ξρ)),

where N(0, σ 2(ξρ)) denotes a mean-zero Gaussian random variable with variance
σ 2(ξρ).

Remark 2.1. The assumption σ 2(ξρ) ∈ (0, ∞) is often satisfied by scores of interest, as seen
in the upcoming applications. According to Theorem 2.1 in [14], where it has been shown that
whenever we have ∑

x̂∈η∩Ŵλ
(ξρ(x̂, η) −Eξρ(x̂, η))√

Var
∑

x̂∈η∩Ŵλ
ξρ(x̂, η)

D−→ N(0, σ 2(ξρ))

then necessarily σ 2(ξρ) ∈ (0, ∞) provided (a) there is a random variable S < ∞ and a random
variable 
ρ(∞) such that, for all finite A⊆ B̂S(0)c, we have


ρ(∞) =
∑

x̂∈(η∩B̂S(0))∪A∪{0M}
ξρ(x̂, (η ∩ B̂S(0)) ∪A∪ {0M})

−
∑

x̂∈(η∩B̂S(0))∪A
ξρ(x̂, (η ∩ B̂S(0)) ∪A),

and (b) 
ρ(∞) is non-degenerate, that is to say it is not almost surely constant. We will use
this fact in showing positivity of σ 2(ξρ) in the applications which follow.

Remark 2.2. Theorems 2.2 and 2.3 hold for translation-invariant statistics h of Poisson–
Voronoi cells regardless of the mark distribution because ξρ1 stabilizes exponentially fast and
diameters of Voronoi cells have exponentially decaying tails as shown in [13, 14]. In Section 3
we establish that the cells of Laguerre and the Johnson–Mehl tessellations also have diame-
ters with exponentially decaying tails, and that ξρi , i = 2, 3, are exponentially stabilizing with
respect to η.
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Limit theory for unbiased estimators of statistics of random tessellations 685

2.1. Applications

We provide some applications of our main results. The proofs are provided in Section 5.
Our first result gives the limit theory for an unbiased estimator of the distribution function of
the volume of a typical cell in a weighted Poisson–Voronoi tessellation.

Theorem 2.4.

(i) For all i = 1, 2, 3 and t ∈ (0, ∞) the statistic

∑
x̂∈η

1{Vol(Cρi(x̂, η)) ≤ t}
Vol(Wλ � Cρi (x̂, η))

1{Cρi(x̂, η) ⊆ Wλ}

is an unbiased estimator of P0(Vol(Kρi
0 (η)) ≤ t).

(ii) For all i = 1, 2, 3 and t ∈ (0, ∞) we have that

√
λ

⎛
⎝∑

x̂∈η

1{Vol(Cρi(x̂, η)) ≤ t}
Vol(Wλ � Cρi (x̂, η))

1{Cρi(x̂, η) ⊆ Wλ} − P0(Vol(Kρi
0 (η)) ≤ t

)⎞⎠ (2.7)

tends to N(0, σ 2(ϕρi)) in distribution as λ → ∞, where ϕρi (x̂, η) := 1{Vol(Cρi(x̂, η)) ≤
t} and where σ 2(ϕρi) ∈ (0, ∞) is given by (2.5).

Our next result gives the limit theory for an unbiased estimator of the (d − 1)-dimensional
Hausdorff measure Hd−1 of the boundary of a typical cell in a weighted Poisson–Voronoi
tessellation.

Theorem 2.5.

(i) For all i = 1, 2, 3 we have that

∑
x̂∈η

Hd−1(∂Cρi(x̂, η))

Vol(Wλ � Cρi (x̂, η))
1{Cρi (x̂, η) ⊆ Wλ}

is an unbiased estimator of E0Hd−1(∂Kρi
0 (η)).

(ii) For all i = 1, 2, 3 we have that

√
λ

⎛
⎝∑

x̂∈η

Hd−1(∂Cρi(x̂, η))

Vol(Wλ � Cρi (x̂, η))
1{Cρi(x̂, η) ⊆ Wλ} −E0Hd−1(∂Kρi

0 (η))

⎞
⎠

tends to N(0, σ 2(ξρi)) in distribution as λ → ∞, where

ξρi(x̂, η) :=Hd−1(∂Cρi(x̂, η))1{Cρi(x̂, η)is bounded}
and where σ 2(ξρi) ∈ (0, ∞) is given by (2.5).

There are naturally other applications of the general theorems. By choosing h appropriately,
one could for example use the general results to deduce the limit theory for an unbiased estima-
tor of the distribution function of either the surface area, inradius, or circumradius of a typical
cell in a weighted Poisson–Voronoi tessellation.
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686 D. FLIMMEL ET AL.

3. Stabilization of statistics of weighted Poisson–Voronoi tessellations

In this section we establish that (i) the cells in the Voronoi, Laguerre, and Johnson–Mehl
tessellations generated by Poisson input have diameters with exponentially decaying tails (see
Definition 2.2), and (ii) the scores ξρi , i = 1, 2, 3, as defined at (2.1) are exponentially stabiliz-
ing (see Definition 2.3). These two conditions arise in the statements of Theorems 2.2 and 2.3.
Conditions (i) and (ii) have already been established in the case of the Poisson–Voronoi tessel-
lation (ρ1) in [13] and [14]. The Voronoi cell is a special example of both the Laguerre and the
Johnson–Mehl cell when putting M= {0} (or any constant). Thus it will be enough to show
that these two conditions hold for the Laguerre (ρ2) and the Johnson–Mehl (ρ3) tessellations.

By definition we have
Cρ(x̂,P) =

⋂
ẑ∈P\{x̂}

H
ρ

ẑ (x̂),

where H
ρ

ẑ (x̂) := {y ∈Rd : ρ(y, x̂) ≤ ρ(y, ẑ)}. Note that Hρ· (·) is a closed half-space in the con-
text of the Voronoi and Laguerre tessellations, whereas it has a hyperbolic boundary for the
Johnson–Mehl tessellation. Tessellations generated by P are stationary and are examples of
stationary particle processes; see [3, Section 2.8] or [16, Section 10.1].

Proposition 3.1. The cells of the tessellation defined by ρi, i = 1, 2, 3, and generated by
Poisson input η have diameters with exponentially decaying tails as at (2.3).

Proof. We need to prove (2.3) for all x̂ ∈ η. Without loss of generality, we may assume that
x̂ is the origin 0̂ := (0, m0) and we denote D := D0̂.

Let Kj, j = 1, . . . , J, be a collection of convex cones in Rd such that ∪J
j=1Kj =Rd and

〈x, y〉 ≥ 3‖x‖‖y‖/4 for any x and y from the same cone Kj. Each cone has an apex at the
origin 0. Denote K̂j :=Kj ×M. We take (xj, mj) ∈ η ∩ K̂j ∩ B̂2μ(0)c so that xj is closer to 0
than any other point from η ∩ K̂j ∩ B̂2μ(0)c. This condition means that the balls Bm0 (0) and
Bmj (xj) do not overlap. Then

Cρi (0̂, η) ⊆
J⋂

j=1

H
ρi
(xj,mj)

(0̂), i = 1, 2, 3.

Therefore, it is sufficient to find D such that for all i = 1, 2, 3 we have Hρi
(xj,mj)

(0̂) ∩Kj ⊆ BD(0)

for j = 1, . . . , J to obtain Cρi(0̂, η) ⊆ BD(0). Consider y ∈H
ρi
(xj,mj)

(0̂) ∩Kj. Then ρi(y, 0̂) ≤
ρi(y, (xj, mj)) and 〈y, xj〉 ≥ 3‖xj‖‖y‖/4. For the Laguerre cell (i = 2) the first condition means
that ‖y‖2 − m2

0 ≤ ‖y − xj‖2 − m2
j = ‖y‖2 + ‖xj‖2 − 2〈y, xj〉 − m2

j . Thus,

2〈y, xj〉 ≤ ‖xj‖2 + m2
0 − m2

j ≤ ‖xj‖2 + μ2 <
3

2
‖xj‖2

and so ‖y‖ < ‖xj‖. For the Johnson–Mehl cell (i = 3) we have

‖y − xj‖ ≥ ‖y‖ − m0 + mj ≥ ‖y‖ − μ,

which for ‖y‖ > μ gives
2〈y, xj〉 ≤ 2μ‖y‖ − μ2 + ‖xj‖2.

Hence, using the assumptions 〈xj, y〉 ≥ 3‖xj‖‖y‖/4 and ‖xj‖ > 2μ,

‖y‖ ≤ 2(‖xj‖2 − μ2)

3‖xj‖ − 4μ
<

2‖xj‖2

‖xj‖ = 2‖xj‖.
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Consequently, for either the Laguerre or Johnson–Mehl cells, we can take

D = 2 max
j=1,...,J

‖xj‖. (3.1)

Then, for t ∈ (4μ, ∞) we have

P0̂(D ≥ t) ≤
J∑

j=1

P(2‖xj‖ ≥ t) =
J∑

j=1

P(η ∩ (B̂t/2(0) \ B̂2μ(0)) ∩ K̂j = ∅)

=
J∑

j=1

exp ( − Vol((Bt/2(0) \ B2μ(0)) ∩Kj)) ≤ cdiam exp

(
− 1

cdiam
td
)

for some cdiam := cdiam(d, μ) ∈ (0, ∞) depending on d and μ. This shows Proposition 3.1 for
i = 2, 3, and hence for i = 1 as well. �

Proposition 3.2. For all i = 1, 2, 3 the score ξρi defined at (2.1) is exponentially stabilizing
with respect to η.

Proof. We will prove (2.4) when x̂ is the origin, and we denote R := R0̂. For simplicity of
exposition, we prove (2.4) when A is the empty set, as the arguments do not change otherwise.
In other words, if A is not empty then the resulting radius of stabilization will not be larger, as
seen by the following arguments. By (2.1), it is enough to show that there is an almost surely
finite random variable R such that

Cρi(0̂, η ∩ B̂R(0)) = Cρi(0̂, (η ∩ B̂R(0)) ∪ {(z, mz)})
almost surely whenever ‖z‖ ∈ (R, ∞). To see this we put R := 2D + μ, where D is as given in
(3.1). Given ẑ := (z, mz), with ‖z‖ ∈ (R, ∞), we assert that

BD(0) ⊆H
ρi
ẑ (0̂).

To prove this, we take any point y ∈ BD(0) and show that

ρi(y, 0̂) ≤ ρi(y, ẑ), i = 1, 2, 3. (3.2)

Note that y ∈ BD(0) implies ‖y − z‖ ∈ (D + μ, ∞). The proof of (3.2) is shown for the Laguerre
and Johnson–Mehl cases individually. First, assume that Cρ2 (0̂, η) is the cell in the Laguerre
tessellation. Then

ρ2(y, 0̂) = ‖y‖2 − m2
0 ≤ D2 < (D + μ)2 − μ2 < ‖y − z‖2 − μ2 ≤ ‖y − z‖2 − m2

z = ρ2(y, ẑ),

showing that y ∈H
ρ2
ẑ (0̂). For the Johnson–Mehl case,

ρ3(y, 0̂) = ‖y‖ − m0 ≤ D = (D + μ) − μ < ‖y − z‖ − μ ≤ ‖y − z‖ − mz = ρ3(y, ẑ),

thus again y ∈H
ρ3
ẑ (0̂), which shows our assertion.

The radius D at (3.1) has a tail decaying exponentially fast, showing that R also has the
same property. Consequently, for all i = 1, 2, 3, the score ξρi is exponentially stabilizing with
respect to η. �
Remark 3.1. The assertion Cρi(0̂,P) ⊆ BD(0) holds for a larger class of marked point pro-
cesses. We only need that the unmarked point process has at least one point in each cone
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Kj ∩ B2μ(0)c, j = 1, . . . , J, with Palm probability P0 equal to 1. Consequently, scores ξρi ,
i = 1, 2, 3, are stabilizing with respect to such marked point processes.

Remark 3.2. Proposition 3.2 implies that the limit theory developed in [8, 14, 15] for the
total edge length and other stabilizing functionals of the Poisson–Voronoi tessellation extends
to Poisson tessellation models with weighted Voronoi cells. Thus, Proposition 3.2 provides
expectation and variance asymptotics, as well as normal convergence, for such functionals of
the Poisson tessellation.

Remark 3.3. Aside from weighted Poisson–Voronoi tessellations, Propositions 3.1 and 3.2
hold also for the Poisson–Delaunay triangulation. On the other hand, Proposition 3.1 holds for
Poisson-line tessellation, but Proposition 3.2 does not.

4. Proofs of the main results

4.1. Preliminary lemmas

In this section we omit in the notation the dependence on the weight ρ that defines the
tessellation. For simplicity, we write

Hλ(η ∩ Ŵλ) := Hρ
λ (η ∩ Ŵλ), Hλ(η) := Hρ

λ (η),

as well as

Ĥλ(η ∩ Ŵλ) := Ĥρ
λ (η ∩ Ŵλ), Ĥλ(η) := Ĥρ

λ (η).

Let us start with some useful first-order results.

Lemma 4.1. Under the assumptions of Theorem 2.2(ii), we have

lim
λ→∞ λE

∣∣∣Hλ(η ∩ Ŵλ) − Ĥλ(η ∩ Ŵλ)
∣∣∣= 0.

Proof. We denote by Q̂ the product of the Lebesgue measure on Rd and QM. By the refined
Campbell theorem and stationarity,

E

∣∣∣Hλ(η ∩ Ŵλ) − Ĥλ(η ∩ Ŵλ)
∣∣∣

≤E
∑

x̂∈η∩Ŵλ

|h(C(x̂, η))|
Vol(Wλ � C(x̂, η))

1{C(x̂, η) ⊆ Wλ} 1
{

Vol(Wλ � C(x̂, η)) <
λ

2

}

=
∫

Ŵλ

Ex̂
( |h(C(x̂, η))|

Vol(Wλ � C(x̂, η))
1{C(x̂, η) ⊆ Wλ} 1

{
Vol(Wλ � C(x̂, η)) <

λ

2

})
Q̂(dx̂)

=
∫

Wλ

∫
M

E(0,m)

(
|h(C((0, m), η))|

Vol(Wλ � C((0, m), η))
1{x ∈ Wλ � C((0, m), η)}

× 1
{

Vol(Wλ � C((0, m), η)) <
λ

2

})
QM(dm) dx.
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Changing the order of integration we get

E

∣∣∣Hλ(η ∩ Ŵλ) − Ĥλ(η ∩ Ŵλ)
∣∣∣≤ ∫

M

E0m

(
|h(C(0m, η))|1

{
Vol(Wλ � C(0m, η)) <

λ

2

}

×
∫

Wλ

1{x ∈ Wλ � C(0m, η)}
Vol(Wλ � C(0m, η))

dx

)
QM(dm), (4.1)

where 0m := (0, m). The inner integral over Wλ is bounded by one, showing that for all p ∈
(1, ∞) we have

E

∣∣∣Hλ(η ∩ Ŵλ) − Ĥλ(η ∩ Ŵλ)
∣∣∣

≤
∫
M

E0m

(
|h(C(0m, η))| 1

{
Vol(Wλ � C(0m, η)) <

λ

2

})
QM(dm)

≤
∫
M

(
E0m |h(C(0m, η))|p

) 1
p
P0m

(
Vol(Wλ � C(0m, η)) <

λ

2

) p−1
p

QM(dm).

The random variable D at (3.1) satisfies C(0̂, η) ⊆ BD(0) almost surely. Thus,

P0̂
(

Vol(Wλ � C(0̂, η)) <
λ

2

)
≤ P0̂

(
Vol(Wλ � BD(0)) <

λ

2

)
.

The volume of the erosion on the right-hand side equals (λ1/d − 2D)d+. By conditioning on
Y := 1{λ1/d ≥ 2D}, we obtain

P0̂
(

(λ1/d − 2D)d+ <
λ

2

)
= P0̂

(
(λ1/d − 2D)d+ <

λ

2

∣∣∣ Y = 1

)
P0̂(Y = 1)

+ P0̂
(

(λ1/d − 2D)d+ <
λ

2

∣∣∣ Y = 0

)
P0̂(Y = 0)

≤ P0̂
(

(λ1/d − 2D)d <
λ

2

)
+ P0̂(λ1/d < 2D)

≤ 2P0̂(D > e(λ)),

where e(λ) := (λ1/d − (λ/2)1/d)/2. Finally, recalling that D has exponentially decaying tails as
at (2.3), we obtain

P0̂
(

Vol(Wλ � C(0̂, η)) <
λ

2

)
≤ 2 cdiam exp

(
− 1

cdiam
e(λ)d

)
.

Using this bound, we have

λE

∣∣∣Hλ(η ∩ Ŵλ) − Ĥλ(η ∩ Ŵλ)
∣∣∣

≤ λ

∫
M

(E0m |h(C(0m, η))|p)
1
p

(
2 cdiam exp

(
− 1

cdiam
e(λ)d

)) p−1
p

QM(dm).

Now ξ satisfies the p-moment condition (2.2) for p ∈ (1, ∞) and thus the first factor is bounded
by a constant uniformly over all m ∈M. Lemma 4.1 follows. �
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Lemma 4.2. Under the assumptions of Theorem 2.2(i), we have

lim
λ→∞ λE

∣∣∣Hλ(η) − Ĥλ(η)
∣∣∣= 0.

Proof. We follow the proof of Lemma 4.1. In (4.1), we integrate over Rd instead of over
Wλ, yielding a value of one for the inner integral. Now follow the proof of Lemma 4.1
verbatim. �
Lemma 4.3. Under the assumptions of Theorem 2.2(i), we have

lim
λ→∞ E

∣∣∣Ĥλ(η ∩ Ŵλ) − Ĥλ(η)
∣∣∣= 0.

Proof. Write

ν̂λ(x̂, η) :=h(C(x̂, η)) 1{C(x̂, η) ⊆ Wλ}
Vol(Wλ � C(x̂, η))

× 1
{

Vol(Wλ � C(x̂, η)) ≥ λ

2

}
1{Dx̂ ≥ d(x, Wλ)},

(4.2)

where Dx̂ is the radius of the ball centered at x and containing C(x̂, η), and where Dx̂ is equal
in distribution to D, with D as in (3.1). Here, d(x, Wλ) denotes the Euclidean distance between
x and Wλ. We observe that

E

∣∣∣Ĥλ(η ∩ Ŵλ) − Ĥλ(η)
∣∣∣≤E

∑
x̂∈η∩Ŵc

λ

∣∣ν̂λ(x̂, η)
∣∣ .

From now on, we use the notation c to denote a universal positive constant whose value
may change from line to line. By the Hölder inequality, the p-moment condition on ξ ,
and the assumption that C(x̂, η) has an exponentially decaying tail, we have E|ν̂λ(x̂, η)| ≤
(c/λ) exp

(
− 1

c d(x, Wλ)d
)

. Thus,

E

∣∣∣Ĥλ(η ∩ Ŵλ) − Ĥλ(η)
∣∣∣≤ c

λ

∫
Wc

λ

exp

(
−1

c
d(x, Wλ)d

)
dx.

Let Wλ,ε be the set of points in Wc
λ at distance ε from Wλ. The co-area formula implies

E

∣∣∣Ĥλ(η ∩ Ŵλ) − Ĥλ(η)
∣∣∣≤ c

λ

∫ ∞

0

∫
Wλ,ε

exp

(
−1

c
εd
)

Hd−1(dy) dε.

Since Hd−1(Wλ,ε) ≤ c (λ1/d(1 + ε))d−1, we get

E

∣∣∣Ĥλ(η ∩ Ŵλ) − Ĥλ(η)
∣∣∣= O(λ−1/d). �

4.2. Proof of Theorem 2.2

(i) The asymptotic unbiasedness of Hλ(η ∩ Ŵλ), Ĥλ(η ∩ Ŵλ), and Ĥλ(η) is a consequence
of Lemmas 4.1, 4.2, and 4.3. For example, concerning Hλ(η ∩ Ŵλ), one may write

|EHλ(η ∩ Ŵλ) −E0h(K0(η))| ≤E|Hλ(η ∩ Ŵλ) − Hλ(η)|
≤
(
E|Hλ(η ∩ Ŵλ) − Ĥλ(η ∩ Ŵλ)| +E|Ĥλ(η ∩ Ŵλ) − Ĥλ(η)| +E|Ĥλ(η) − Hλ(η)|

)
,
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which in view of Lemmas 4.1, 4.2, and 4.3 goes to zero as λ → ∞. This gives the asymp-
totic unbiasedness of Hλ(η ∩ Ŵλ). One may similarly show the asymptotic unbiasedness
for Ĥλ(η ∩ Ŵλ) and Ĥλ(η).

(ii) To show consistency, we introduce Tλ(η ∩ Ŵλ) = λ−1∑
x̂∈η∩Ŵλ

ξ (x̂, η). By assumption,
ξ stabilizes and satisfies the p-moment condition for p ∈ (1, ∞). Thus, using Theorem
2.1 of [15], we get that Tλ(η ∩ Ŵλ) is a consistent estimator of E0h(K0(η)). To prove the
consistency of the estimators in Theorem 2.2(iii), it is enough to show for one of them
that it has the same L1 limit as Tλ(η ∩ Ŵλ). We choose Ĥλ(η ∩ Ŵλ) and write

E

∣∣∣Ĥλ(η ∩ Ŵλ) − Tλ(η ∩ Ŵλ)
∣∣∣

=E

∣∣∣∣∣∣λ−1
∑

x̂∈η∩Ŵλ

ξ (x̂, η)

(
λ 1{C(x̂, η) ⊆ Wλ} 1{Vol(Wλ � C(x̂, η)) ≥ λ

2 }
Vol(Wλ � C(x̂, η))

− 1

)∣∣∣∣∣∣
≤ λ−1E

∑
x̂∈η∩Ŵλ

|ξ (x̂, η)|
∣∣∣∣∣λ 1{C(x̂, η) ⊆ Wλ} 1{Vol(Wλ � C(x̂, η)) ≥ λ

2 }
Vol(Wλ � C(x̂, η))

− 1

∣∣∣∣∣
≤
∫

Wλ

λ−1E0

(
|h(K0(η))|

∣∣∣∣∣λ 1{x + K0(η) ⊆ Wλ} 1{Vol(Wλ � K0(η)) ≥ λ
2 }

Vol(Wλ � K0(η))
− 1

∣∣∣∣∣
)

dx

=
∫

[− 1
2 , 1

2 ]d
E0(|h(K0(η))|Yλ(u)

)
du,

where we substituted λ1/du for x in the last equality and the defined random variables

Yλ(u) :=
∣∣∣∣∣λ 1{λ1/du + K0(η) ⊆ Wλ} 1{Vol(Wλ � K0(η)) ≥ λ

2 }
Vol(Wλ � K0(η))

− 1

∣∣∣∣∣ .

We show that Yλ(u) converges to zero in P0 probability for any u ∈ ( − 1/2, 1/2)d. Write
the inclusion K0(η) ⊆ BD(0), where D has exponentially decaying tails by assumption. We
conclude that both λ/Vol(Wλ � K0(η)) and 1{Vol(Wλ � K0(η)) ≥ λ/2} tend to one in P0 prob-
ability. To prove the convergence of Yλ(u) to zero in P0 probability, it remains to show that
1{λ1/du + K0(η) ⊆ Wλ} converges to one in P0 probability. Equivalently, we show that the
P0 probability of the event {λ1/du + K0(η) ⊆ Wλ} goes to 1. Let u ∈ ( − 1/2, 1/2)d be fixed.
Then

P0(λ1/du ∈ Wλ � K0(η)) ≥ P0(λ1/du ∈ Wλ � BD(0))

= P0

(
u ∈
[
−1

2
+ D

λ1/d
,

1

2
− D

λ1/d

]d
)

= P0

(
u ∈
[
−1

2
+ D

λ1/d
,

1

2
− D

λ1/d

]d ∣∣∣D ≤ log λ

)
P0(D ≤ log λ)

+ P0

(
u ∈
[
−1

2
+ D

λ1/d
,

1

2
− D

λ1/d

]d ∣∣∣D > log λ

)
P0(D > log λ)
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≥ 1

{
u ∈
[
−1

2
+ log λ

λ1/d
,

1

2
− log λ

λ1/d

]d
}
P0(D ≤ log λ)

+ P0

(
u ∈
[
−1

2
+ D

λ1/d
,

1

2
− D

λ1/d

]d ∣∣∣D > log λ

)
P0(D > log λ).

Again, D has exponentially decaying tails, so the lower bound converges to P0(u ∈ ( −
1/2, 1/2)d) = 1, showing that Yλ(u) goes to zero in probability as λ → ∞. We proved that the
Yλ(u) converge to zero in P0 probability, but they are also uniformly bounded by one, hence it
follows from the moment condition on ξ that h(K0(η))Yλ(u) goes to zero in L1. Finally, by the
dominated convergence theorem, we get

lim
λ→∞ E

∣∣∣Ĥλ(η ∩ Ŵλ) − Tλ(η ∩ Ŵλ)
∣∣∣= 0.

Thus, Ĥλ(η ∩ Ŵλ) converges to E0h(K0(η)) in L1 and also in probability. The consistency of the
remaining estimators in Theorem 2.2 follows from Lemmas 4.1, 4.2, and 4.3. This completes
the proof of Theorem 2.2.

4.3. Proof of Theorem 2.3(i)

We prove the variance asymptotics (2.6). The proof is split into two lemmas (Lemmas 4.5
and 4.6). We first show an auxiliary result used in the proofs of both lemmas. Then we prove
the variance asymptotics for Ĥλ(η ∩ Ŵλ). This is easier, since, after scaling by λ, the scores
are bounded by 2|ξ (x̂, η)| and thus, by assumption, satisfy a p-moment condition for some
p ∈ (2, ∞). Finally, we conclude the proof by showing that the asymptotic variance of Ĥλ(η)
is the same as the asymptotic variance of Ĥλ(η ∩ Ŵλ).

Lemma 4.4. Let ϕ : R̂d × N →R be an exponentially stabilizing function with respect to η that
satisfies the p-moment condition for some p ∈ (2, ∞). Then there exists a constant c ∈ (0, ∞)

such that, for all x̂, ŷ ∈ R̂d,

|Eϕ(x̂, η ∪ {ŷ})ϕ(ŷ, η ∪ {x̂}) −Eϕ(x̂, η) Eϕ(ŷ, η)|

≤ c

⎛
⎝ sup

x̂,ŷ∈R̂d

E|ϕ(x̂, η ∪ {ŷ})|p
⎞
⎠

2
p

exp

(
−1

c
‖x − y‖α

)
, (4.3)

where ϕ(x̂, η) := ϕ(x̂, η ∪ {x̂}) if x̂ �∈ η.

Proof. We follow the proof of Lemma 5.2 in [2] and show that the constant A1,1 there
involves the moment (E|ϕ(x̂, η ∪ {ŷ})|p)

2
p . Put R := max (Rx̂, Rŷ), where Rx̂, Rŷ are the radii of

stabilization as in Proposition 3.2 for x̂ and ŷ, respectively. Furthermore, put r := ‖x − y‖/3
and define the event E := {R ≤ r}. Hölder’s inequality gives

|Eϕ(x̂, η ∪ {ŷ})ϕ(ŷ, η ∪ {x̂}) −Eϕ(x̂, η ∪ {ŷ})ϕ(ŷ, η ∪ {x̂})1{E}|

≤ c

⎛
⎝ sup

x̂,ŷ∈R̂d

E|ϕ(x̂, η ∪ {ŷ})|p
⎞
⎠

2
p

P(Ec)
p−2

p . (4.4)
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Notice that

Eϕ(x̂, η ∪ {ŷ})ϕ(ŷ, η ∪ {x̂})1{E}
=Eϕ(x̂, (η ∪ {ŷ}) ∩ B̂r(x̂))ϕ(ŷ, (η ∪ {x̂}) ∩ B̂r(x̂))1{E}
=Eϕ(x̂, (η ∪ {ŷ}) ∩ B̂r(x̂))ϕ(ŷ, (η ∪ {x̂}) ∩ B̂r(x̂))(1 − 1{Ec}).

A second application of Hölder’s inequality gives

|Eϕ(x̂, η ∪ {ŷ})ϕ(ŷ, η ∪ {x̂})1{E} −Eϕ(x̂, (η ∪ {ŷ}) ∩ B̂r(x̂))ϕ(ŷ, (η ∪ {x̂}) ∩ B̂r(ŷ))|

≤ c

⎛
⎝ sup

x̂,ŷ∈R̂d

E|ϕ(x̂, η ∪ {ŷ})|p
⎞
⎠

2
p

P(Ec)
p−2

p . (4.5)

Thus, combining (4.4) and (4.5) and using the independence of ϕ(x̂, (η ∪ {ŷ}) ∩ B̂r(x̂)) and
ϕ(ŷ, (η ∪ {x̂}) ∩ B̂r(ŷ)) we have

|Eϕ(x̂, η ∪ {ŷ})ϕ(ŷ, η ∪ {x̂}) −Eϕ(x̂, (η ∪ {ŷ}) ∩ B̂r(x̂))Eϕ(ŷ, (η ∪ {x̂}) ∩ B̂r(ŷ))|

≤ c

⎛
⎝ sup

x̂,ŷ∈R̂d

E|ϕ(x̂, η ∪ {ŷ})|p
⎞
⎠

2
p

P(Ec)
p−2

p . (4.6)

Likewise, we may show that

|Eϕ(x̂, η)Eϕ(ŷ, η) −Eϕ(x̂, η ∩ B̂r(x̂))Eϕ(ŷ, η ∩ B̂r(ŷ))|

≤ c

⎛
⎝ sup

x̂,ŷ∈R̂d

E|ϕ(x̂, η ∪ {ŷ})|p
⎞
⎠

2
p

P(Ec)
p−2

p . (4.7)

Combining (4.6) and (4.7), and using that P(Ec) decreases exponentially in ‖x − y‖α , we thus
obtain (4.3). �
Lemma 4.5. If ξ is exponentially stabilizing with respect to η then

lim
λ→∞ λVarĤλ(η ∩ Ŵλ) = σ 2(ξ ),

where σ 2(ξ ) is as in (2.5).

Proof. Put, for all x̂ ∈ R̂d and any marked point process P ,

ζλ(x̂,P) := λ ξ (x̂,P)

Vol(Wλ � C(x̂,P))
1
{

Vol(Wλ � C(x̂,P)) ≥ λ

2

}

and
νλ(x̂,P) := ζλ(x̂,P) 1{C(x̂,P) ⊆ Wλ}.

Note that ζλ is translation invariant whereas νλ is not translation invariant. Then, λ Ĥλ(η ∩
Ŵλ) =∑x̂∈η∩Ŵλ

νλ(x̂, η).
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Recall that Q̂ is the product measure of Lebesgue measure on Rd and QM. By the Slivnyak–
Mecke theorem [16, Corollary 3.2.3] we have

λVarĤλ(η ∩ Ŵλ) = λ−1E
∑

x̂∈η∩Ŵλ

ν2
λ(x̂, η)

+ λ−1E
∑

x̂,ŷ∈η∩Ŵλ;x̂ �=ŷ

νλ(x̂, η)νλ(ŷ, η) − λ−1

⎛
⎝E ∑

x̂∈η∩Ŵλ

νλ(x̂, η)

⎞
⎠

2

= λ−1
∫

Ŵλ

Eν2
λ(x̂, η) Q̂(dx̂)

+ λ−1
∫

Ŵλ

∫
Ŵλ

[
Eνλ(x̂, η ∪ {ŷ})νλ(ŷ, η ∪ {x̂})

− Eνλ(x̂, η) Eνλ(ŷ, η)
]
Q̂(dŷ) Q̂(dx̂)

=: I1(λ) + I2(λ).

Here we use the convention that νλ(x̂,P) := νλ(x̂,P ∪ {x̂}) if x̂ �∈P .
Using stationarity and the transformation u := λ1/dx, we rewrite I1(λ) as

I1(λ) = λ−1
∫

Wλ

∫
M

EZ2
λ(0m, η, x) QM(dm) dx =

∫
W1

EZ2
λ(0M, η, λ1/du) du,

where Zλ((z, mz),P, x) := ζλ((z, mz),P) 1{C((z, mz),P) ⊆ Wλ − x}. Similarly, by translation
invariance of ζλ, we have

I2(λ) = λ−1
∫

Wλ

∫
Wλ−x

∫
M

∫
M

[EZλ(0m1 , η ∪ {zm2}, x) Zλ(zm2, η ∪ {0m1}, x)

−EZλ(0m1 , η, x) EZλ(zm2, η, x)] QM(dm1) QM(dm2) dz dx

=
∫

W1

∫
Wλ−λ1/du

[EZλ(0M, η ∪ {zM}, λ1/du) Zλ(zM, η ∪ {0M}, λ1/du)

−EZλ(0M, η, λ1/du) EZλ(zM, η, λ1/du)] dz du,

where 0m1 := (0, m1), zm2 := (z, m2), 0M := (0, M0), zM := (z, Mz), and M0, Mz are random
marks distributed according to QM.

Since |ζλ(x̂, η)| ≤ 2|ξ (x̂, η)|, ζλ satisfies a p-moment condition, p ∈ (2, ∞). Recall that
Vol(Wλ � C(x̂, η))/λ tends in probability to 1, and notice that Wλ − λ1/du for u ∈ ( −
1/2, 1/2)d increases to Rd as λ → ∞. Thus, as λ → ∞, we have, for any 0̂ := (0, m0),

ẑ := (z, mz) ∈ R̂d, and u ∈ ( − 1/2, 1/2)d,

EZλ(0̂, η, λ1/du) →Eξ (0̂, η), (4.8)

EZ2
λ(0̂, η, λ1/du) →Eξ2(0̂, η), (4.9)

EZλ(0̂, η ∪ {ẑ}, λ1/du)Zλ(ẑ, η ∪ {0̂}, λ1/du) →Eξ (0̂, η ∪ {ẑ})ξ (ẑ, η ∪ {0̂}). (4.10)
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These ingredients are enough to establish variance asymptotics for Ĥλ(η ∩ Ŵλ). Indeed,
I1(λ) converges to Eξ2(0M, η) by (4.9). Concerning I2(λ), for each u ∈ ( − 1/2, 1/2)d we have

lim
λ→∞

∫
Wλ−λ1/du

[EZλ(0M, η ∪ {zM}, λ1/du)Zλ(zM, η ∪ {0M}, λ1/du)

−EZλ(0M, η, λ1/du) EZλ(zM, η, λ1/du)] dz

=
∫
Rd

[Eξ (0M, η ∪ {zM})ξ (zM, η ∪ {0M}) −Eξ (0M, η)Eξ (zM, η)] dz.

Here we use that for any x ∈Rd, the function Zλ(·, ·, x) : R̂d × N →R is exponentially sta-
bilizing with respect to η and satisfies the p-moment condition for some p ∈ (2, ∞). Thus,
from Lemma 4.4, the integrand is dominated by an exponentially decaying function of ‖z‖α .
Applying the dominated convergence theorem, together with (4.8) and (4.10), we obtain the
desired variance asymptotics since Vol(W1) = 1. �

The next lemma completes the proof of Theorem 2.3(i).

Lemma 4.6. If ξ is exponentially stabilizing with respect to η then

lim
λ→∞ λVarĤλ(η) = lim

λ→∞ λVarĤλ(η ∩ Ŵλ) = σ 2(ξ ).

Proof. Write
λ Ĥλ(η) =

∑
x̂∈η∩Ŵλ

νλ(x̂, η) +
∑

x̂∈η∩Ŵc
λ

νλ(x̂, η).

Now,

λVarĤλ(η) =λ−1Var

⎛
⎝ ∑

x̂∈η∩Ŵλ

νλ(x̂, η)

⎞
⎠+ λ−1Var

⎛
⎜⎝ ∑

x̂∈η∩Ŵc
λ

νλ(x̂, η)

⎞
⎟⎠

+ 2λ−1Cov

⎛
⎜⎝ ∑

x̂∈η∩Ŵλ

νλ(x̂, η),
∑

x̂∈η∩Ŵc
λ

νλ(x̂, η)

⎞
⎟⎠ .

It suffices to show that Var
(∑

x̂∈η∩Ŵc
λ
νλ(x̂, η)

)= O(λ(d−1)/d), for then the Cauchy–Schwarz
inequality shows that the covariance term in the above expression is negligible compared to λ.

We show that Var
(∑

x̂∈η∩Ŵc
λ
νλ(x̂, η)

)= O(λ(d−1)/d) as follows. Note that Ĥλ(η) =∑
x̂∈η ν̂λ(x̂, η), where ν̂λ(x̂, η) is as in (4.2). By the Slivnyak–Mecke theorem we have

λVar

⎛
⎜⎝ ∑

x̂∈η∩Ŵc
λ

νλ(x̂, η)

⎞
⎟⎠= λ−1E

∑
x̂∈η∩Ŵc

λ

ν̂2
λ(x̂, η)

+ λ−1E
∑

x̂,ŷ∈η∩Ŵc
λ;x̂ �=ŷ

ν̂λ(x̂, η)ν̂λ(ŷ, η) − λ−1

⎛
⎜⎝E ∑

x̂∈η∩Ŵc
λ

ν̂λ(x̂, η)

⎞
⎟⎠

2
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= λ−1
∫

Ŵc
λ

Eν̂2
λ(x̂, η) Q̂(dx̂)

+ λ−1
∫

Ŵc
λ

∫
Ŵc

λ

[Eν̂λ(x̂, η ∪ {ŷ})ν̂λ(ŷ, η ∪ {x̂}) −Eν̂λ(x̂, η) Eν̂λ(ŷ, η)] Q̂(dx̂) Q̂(dŷ)

=: I∗
1 (λ) + I∗

2 (λ).

By the Hölder inequality, the moment condition on ξ , and the assumed exponential decay

of the tail of the diameter of C(x̂, η), we have Eν̂λ(x̂, η)p ≤ c exp
(
− 1

c d(x, Wλ)d
)

for some

positive constant c. Then, similarly to Lemma 4.3, we may use the co-area formula to obtain
I∗
1 (λ) = O(λ−1/d).

To bound I∗
2 (λ) we appeal to Lemma 4.3. Notice that |ν̂λ(x̂, η)| ≤ 2|ξ (x̂, η)|. Since ν̂λ, λ ≥ 1

are exponentially stabilizing with respect to η and satisfy the p-moment condition for p ∈
(2, ∞), then, by Lemma 4.4,

|Eν̂λ(x̂, η ∪ {ŷ})ν̂λ(ŷ, η ∪ {x̂}) −Eν̂λ(x̂, η) Eν̂λ(ŷ, η)|

≤ c

⎛
⎝ sup

x̂,ŷ∈R̂d

E|ν̂λ(x̂, η ∪ {ŷ})|p
⎞
⎠

2
p

exp

(
−1

c
‖x − y‖α

)
.

Using this estimate we compute

I∗
2 (λ) ≤ λ−1

∫
Ŵc

λ

∫
Wc

λ

c (E|ν̂λ(x̂, η)|p)
2
p exp

(
−1

c
‖x − y‖α

)
dy Q̂(dx̂)

≤ c λ−1
∫

Ŵc
λ

(E|ν̂λ(x̂, η)|p)
2
p

∫
Rd

exp

(
−1

c
‖x − y‖α

)
dy Q̂(dx̂)

≤ c λ−1
∫

Wc
λ

exp

(
−1

c
d(x, Wλ)d

)
dx
∫
Rd

exp

(
−1

c
‖y‖α

)
dy.

Since
∫
Rd exp ( − ‖y‖α/c) dy < ∞, we obtain

I∗
2 (λ) ≤ c λ−1

∫
Wc

λ

exp

(
−1

c
d(x, Wλ)d

)
dx.

Arguing as we did for I∗
1 (λ) we obtain I∗

2 (λ) = O(λ−1/d). �

4.4. Proof of Theorem 2.3(ii)

Now we prove the central limit theorems for Hλ(η ∩ Ŵλ) and Hλ(η). Let us first introduce

some notation. Define, for any stationary marked point process P on R̂d,

ξλ(x̂,P) := λ ξ (λ1/dx̂, λ1/dP)

Vol(Wλ � C(λ1/dx̂, λ1/dP))
1{C(λ1/dx̂, λ1/dP) ⊆ Wλ},

ξ̂λ(x̂,P) := ξλ(x̂,P) 1
{

Vol(Wλ � C(λ1/dx̂, λ1/dP)) ≥ λ

2

}
,

where λ1/dx̂ := (λ1/dx, mx) and λ1/dP := {λ1/dx̂ : x̂ ∈P}.
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Put

Sλ(ηλ ∩ Ŵ1) :=
∑

x̂∈ηλ∩Ŵ1

ξλ(x̂, ηλ), Ŝλ(ηλ ∩ Ŵ1) :=
∑

x̂∈ηλ∩Ŵ1

ξ̂λ(x̂, ηλ),

as well as

Sλ(ηλ) :=
∑
x̂∈ηλ

ξλ(x̂, ηλ), Ŝλ(ηλ) :=
∑
x̂∈ηλ

ξ̂λ(x̂, ηλ).

Notice that
Sλ(ηλ ∩ Ŵ1)

D= λ Hλ(η ∩ Ŵλ), Sλ(ηλ)
D= λ Hλ(η)

and
Ŝλ(ηλ ∩ Ŵ1)

D= λ Ĥλ(η ∩ Ŵλ), Ŝλ(ηλ)
D= λ Ĥλ(η)

due to the distributional identity λ1/dηλ
D= η1. The reason for expressing the statistic λ Hλ(η ∩

Ŵλ) in terms of the scores ξλ(x̂, ηλ) is that it puts us in a better position to apply the normal
approximation results of [6] to the sums Sλ(ηλ ∩ Ŵ1).

In particular, we appeal to Theorem 2.3 of [6], with s replaced by λ there, to establish a
central limit theorem for Ŝλ(ηλ ∩ Ŵ1). Indeed, in that paper we may put X to be Rd, we let
Q be Lebesgue measure on Rd so that ηλ has intensity measure λQ, and we put K = W1. We
may write Ŝλ(ηλ ∩ Ŵ1) =∑x̂∈ηλ∩Ŵ1

ξ̂λ(x̂, ηλ) 1{x ∈ W1}. Note that ξ̂λ(x̂, ηλ)1{x ∈ W1}, x̂ ∈ X̂,
are exponentially stabilizing with respect to the input ηλ, they satisfy the p-moment condition
for some p ∈ (4, ∞), they vanish for x ∈ Wc

1, and they (trivially) decay exponentially fast with
respect to the distance to K. (Here, the notion of decaying exponentially fast with respect to the
distance to K is defined at (2.8) of [6]; since the distance to K is zero for x ∈ K this condition
is trivially satisfied.) This makes IK,λ = �(λ), where IK,λ is defined in (2.10) of [6]. Thus,
all conditions of Theorem 2.3 of [6] are fulfilled and we deduce a central limit theorem for
Ŝλ(ηλ ∩ Ŵ1), and hence for Ĥλ(η ∩ Ŵλ).

We may also apply Theorem 2.3 of [6] to show a central limit theorem for Ŝλ(ηλ). For
x ∈ Wc

1 we find the radius Dx such that C(λ1/dx̂, λ1/dηλ) ⊆ BDx (λ1/dx). Then the score ξ̂λ(x̂, ηλ)
vanishes if Dx > d(λ1/dx, Wλ). As in Section 3, Dx has exponentially decaying tails and thus
ξ̂λ decays exponentially fast with respect to the distance to K.

Let dK(X, Y) denote the Kolmogorov distance between random variables X and Y . Applying
Theorem 2.3 of [6] we obtain

dK

⎛
⎝ Ŝλ(ηλ ∩ Ŵ1) −EŜλ(ηλ ∩ Ŵ1)√

VarŜλ(ηλ ∩ Ŵ1)
, N(0, 1)

⎞
⎠≤ c√

VarŜλ(ηλ ∩ Ŵ1)

and

dK

⎛
⎝ Ŝλ(ηλ) −EŜλ(ηλ)√

VarŜλ(ηλ)
, N(0, 1)

⎞
⎠≤ c√

VarŜλ(ηλ)
.

Combining this with (2.6) and using VarŜλ(ηλ ∩ Ŵ1) ≥ c λ, we obtain, as λ → ∞,

Ŝλ(ηλ ∩ Ŵ1) −EŜλ(ηλ ∩ Ŵ1)√
λ

D−→ N(0, σ 2(ξ ))
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and
Ŝλ(ηλ) −EŜλ(ηλ)√

λ

D−→ N(0, σ 2(ξ )).

To show that
Sλ(ηλ ∩ Ŵ1) −ESλ(ηλ ∩ Ŵ1)√

λ

D−→ N(0, σ 2(ξ )) (4.11)

as λ → ∞, it suffices to show that limλ→∞ E|Sλ(ηλ ∩ Ŵ1) − Ŝλ(ηλ ∩ Ŵ1)| = 0. Since
E|Sλ(ηλ ∩ Ŵ1) − Ŝλ(ηλ ∩ Ŵ1)| = λE|Hλ(ηλ ∩ Ŵλ) − Ĥλ(ηλ ∩ Ŵλ)|, we may use Lemma 4.1
to prove (4.11). Likewise, to obtain the central limit theorem for Sλ(ηλ), it suffices to show that
limλ→∞ E|Sλ(ηλ) − Ŝλ(ηλ)| = 0, which is a consequence of Lemma 4.2. Hence, we deduce
from the central limit theorem for Ŝλ(ηλ) that, as λ → ∞,

Sλ(ηλ) −ESλ(ηλ)√
λ

D= √
λ
(

Hλ(η) −E0h(K0(η))
)

D−→ N(0, σ 2(ξ )).

This completes the proof of Theorem 2.3(ii).

5. Proofs of Theorems 2.4 and 2.5

Before giving the proof of Theorem 2.4, we recall from Section 3 that translation invariant
cell characteristics ξρi are exponentially stabilizing with respect to Poisson input η. This allows
us to apply Theorem 2.3 to cell characteristics of tessellations defined by ρi, i = 1, 2, 3. For
example, we can take h(·) to be either the volume or surface area of a cell or the radius of the
circumscribed or inscribed ball.

5.1. Proof of Theorem 2.4

(i) The assertion of unbiasedness follows from Theorem 2.1.

(ii) To prove asymptotic normality, we write

h(Cρi(x̂, η)) := 1{Vol(Cρi(x̂, η)) ≤ t} =: ϕρi(x̂, η).

To deduce (2.7) from Theorem 2.3(ii) we need only verify the p-moment condition for
p ∈ (4, ∞) and the positivity of σ 2(ϕρi). The moment condition holds for all p ∈ [1, ∞)
since ϕ is bounded by 1. To verify the positivity of σ 2(ϕρi), we recall Remark 2.1. More
precisely, we may use Theorem 2.1 of [14] and show that there is an almost surely finite
random variable S and a non-degenerate random variable 
ρi(∞) such that, for all finite
A⊆ B̂S(0)c, we have


ρi(∞) =
∑

x̂∈(η∩B̂S(0))∪A∪{0M}
1{Vol(Cρi(x̂, (η ∩ B̂S(0)) ∪A∪ {0M})) ≤ t}

−
∑

x̂∈(η∩B̂S(0))∪A
1{Vol(Cρi(x̂, (η ∩ B̂S(0)) ∪A)) ≤ t}.

We first explain the argument for the Voronoi case and then indicate how to extend it to
treat Laguerre and Johnson–Mehl tessellations.
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Let t ∈ (0, ∞) be arbitrary but fixed. Let N be the smallest integer of even parity that is
larger than 4

√
d. The choice of this value will be explained later in the proof. For L > 0 we

consider a collection of Nd cubes QL,1, . . . , QL,Nd centered around xi, i = 1, . . . , Nd, such that

(i) QL,i has side length L
N , and

(ii) ∪{QL,i, i = 1, . . . , Nd} = [− L
2 , L

2

]d.

Put εL := L/100N and Q̂L,i := QL,i ×M. Define the event

EL,N :=
{
|η ∩ Q̂L,i ∩ B̂εL (xi)| = 1, |η ∩ Q̂L,i ∩ B̂c

εL
(xi)| = 0 for all i = 1, . . . , Nd

}
.

Elementary properties of the Poisson point process show that P(EL,N) > 0 for all L and N.

On EL,N the faces of the tessellation restricted to
[−L

2 , L
2

]d nearly coincide with the union

of the boundaries of QL,i, i = 1, . . . , Nd, and the cell generated by x̂ ∈ η ∩ [−L
2 + L

N , L
2 − L

N

]d
is determined only by η ∩ ( ∪ {QL,j, j ∈ I(x̂)}), where j ∈ I(x̂) if and only if x̂ ∈ Q̂L,j or Q̂L,j ∩
Q̂L,i �= ∅ for i such that x̂ ∈ Q̂L,i. Thus, inserting a point at the origin will not affect the cells far

from the origin. More precisely, the cells around the points outside R̂L,N := [− 2L
N , 2L

N

]d ×M

are not affected by inserting a point at the origin. For SL := L/2 we have R̂L,N ⊆ B̂SL (0) due to
our choice of the value N. Therefore,

Cρ1 (x̂, (η ∩ B̂SL (0)) ∪A∪ {0M}) = Cρ1 (x̂, (η ∩ B̂SL (0)) ∪A)

for any finite A⊆ B̂SL (0)c and x̂ ∈ (η ∩ (B̂SL (0) \ R̂L,N)) ∪A. Consequently, on EL,N ,


ρ1 (∞) =
∑

x̂∈(η∩R̂L,N )∪{0M}
1{Vol(Cρ1 (x̂, (η ∩ B̂SL (0)) ∪A∪ {0M})) ≤ t}

−
∑

x̂∈η∩R̂L,N

1{Vol(Cρ1 (x̂, (η ∩ B̂SL (0)) ∪A)) ≤ t}.

Figure 1 illustrates the difference appearing in 
ρ1 (∞) on EL,N for d = 2. The cells gener-

ated by the points outside the square
[− 2L

N , 2L
N

]2 are identical for both point configurations,
whereas the cells generated by the points inside the square may differ.

On the event EL,N , the cell generated by x̂ ∈ (η ∩ R̂L,N) ∪ {0M} is contained in ∪{QL,j, j ∈
I(x̂)}, and thus

sup
x̂∈(η∩R̂L,N )∪{0M}

Vol(Cρ1 (x̂, (η ∩ B̂SL (0)) ∪A)) ≤
(

3L

N

)d

.

If L ∈ (0, Nt1/d/3), then all cell volumes in R̂L,N are at most t; thus, 
ρ1 (∞) = 1 on the event
EL1,N with L1 := 1

6 Nt1/d. Similarly,

inf
x̂∈(η∩R̂L,N )∪{0M}

Vol(Cρ1 (x̂, (η ∩ B̂SL (0)) ∪A∪ {0M})) ≥
(

L

3N

)d

.

If L ∈ (3Nt1/d, ∞), then all the cell volumes in R̂L,N exceed t and thus 
ρ1 (∞) = 0 on the event
EL2,N with L2 := 6Nt1/d. Taking S := SL1 1{EL1,N} + SL2 1{EL2,N}, we have found two disjoint
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700 D. FLIMMEL ET AL.

FIGURE 1: Voronoi tessellations in [− L
2 , L

2 ]2 generated by (η ∩ B̂SL (0)) ∪A (left) and (η ∩ B̂SL (0)) ∪
A∪ {0M} (right). The ball BSL (0) encloses the square [− 2L

N , 2L
N ]2, where N here has a value of 10.

events EL1,N and EL2,N , each having positive probability, such that 
ρ1 (∞) takes different
values on these events, and thus it is non-degenerate. Hence, σ 2(ϕρ1 ) > 0 and we can apply
Theorem 2.3(ii).

To prove the positivity of σ 2(ϕρ2 ) and σ 2(ϕρ3 ) we shall consider a subset of EL,N . Assume
there exists a parameter μ∗ ∈ [0, μ] and a small interval Iα(μ∗) ⊆ [0, μ] for some α ≥ 0
such that QM(Iα(μ∗)) > 0. Define ÊL,N to be the intersection of EL,N and the event FL,N,α

that the Poisson points in [− L/2, L/2]d have marks in Iα(μ∗). If α is small enough, then
the Laguerre and Johnson–Mehl cells nearly coincide with the Voronoi cells on the event
ÊL,N . Consideration of the events ÊL1,N and ÊL2,N shows that 
ρ2 (∞) and 
ρ3 (∞) are non-
degenerate, implying that σ 2(ϕρ2 ) > 0 and σ 2(ϕρ3 ) > 0. Thus, Theorem 2.4 holds for the
Laguerre and Johnson–Mehl tessellations.

Remark 5.1. In the same way, one can establish that Theorem 2.4 holds for any h taking the
form

h(K) = 1{g(K) ≤ t} or h(K) = 1{g(K) > t}

for t ∈ (0, ∞) fixed and g : (Fd,B(Fd)) → (R,B(R)) a homogeneous function of order q, i.e.
g(αK) = αqg(K) for all K ∈ Fd and α ∈ (0, ∞). Examples of the function g include (a) g(K) :=
Hd−1(∂K), (b) g(K) := diam(K), (c) g(K) := radius of the circumscribed ball of K, and (d)
g(K) := radius of the circumscribed ball of K.

5.2. Proof of Theorem 2.5

The unbiasedness is again a consequence of Theorem 2.1. To prove the asymptotic
normality, we need to check the p-moment condition for

ξρi(x̂, η) :=Hd−1(∂Cρi(x̂, η))1{Cρi(x̂, η) is bounded}

and the positivity of σ 2(ξρi), i = 1, 2, 3.
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First, we verify the moment condition with p = 5. Given any x̂, ŷ ∈ R̂d, we assert that
Ex̂,ŷHd−1(∂Cρi(x̂, η))5 =EHd−1(∂Cρi(x̂, η ∪ {ŷ}))5 ≤ c < ∞ for some constant c that does not
depend on x̂ and ŷ. From Proposition 3.2 there is a random variable Rx̂ such that

Cρi(x̂, η ∪ {ŷ}) =
⋂

ẑ∈(η∪{ŷ}\{x̂})∩B̂Rx̂
(x)

Hẑ(x̂).

As in Proposition 3.1 we find Dx̂ such that Cρi (x̂, η ∪ {ŷ}) ⊆ BDx̂ (x̂). Then

Hd−1(∂Cρi(x̂, η ∪ {ŷ})) ≤
∑

ẑ∈(η∪{ŷ}\{x̂})∩B̂Rx̂
(x)

Hd−1(∂Hẑ(x̂) ∩ BDx̂ (x̂))

≤ ci,dDd−1
x̂ η(B̂Rx̂ (x))

for some constant ci,d that depends only on i and d. Using the Cauchy–Schwarz inequality we
get

EHd−1(∂Cρi(x̂, η ∪ {ŷ}))5 ≤ c5
i,d(ED10(d−1)

x̂ )1/2(Eη(B̂Rx̂ (x))10)1/2.

By the property of the Poisson distribution we have

Eη(B̂Rx̂ (x))10 =E(E(η(B̂Rx̂ (x))10 | Rx̂)) =EP(Vol(BRx̂ (x))),

where P(·) is a polynomial of degree 10. Both Dx̂ and Rx̂ have exponentially decaying tails,
and the decay does not depend on x̂. Therefore, (ED10(d−1)

x̂ )1/2(Eη(B̂Rx̂ (x))10)1/2 is bounded
and the moment condition is satisfied with p = 5.

The positivity of the asymptotic variance can be shown similarly to the proof of Theorem
2.4. We will show it only for the Voronoi case, as the Laguerre and Johnson–Mehl tessellations
can be treated similarly. We will again find a random variable S and a 
ρ1 (∞) such that, for
all finite A⊆ B̂S(0)c, we have


ρ1 (∞) =
∑

x̂∈(η∩B̂S(0))∪A∪{0M}
ξρ1 (x̂, (η ∩ B̂S(0)) ∪A∪ {0M})

−
∑

x̂∈(η∩B̂S(0))∪A
ξρ1 (x̂, (η ∩ B̂S(0)) ∪A)

and, moreover, 
ρ1 (∞) assumes different values on two events having positive probability
and is thus non-degenerate. By Theorem 2.1 of [14], this is enough to show the positivity of
σ 2(ξρ1 ).

Let L > 0 and let N ∈N have odd parity. Abusing notation, we construct a collection of Nd

cubes QL,1, . . . , QL,Nd centered around xi ∈Rd, i = 1, . . . , Nd, such that

(i) QL,i has side length L
N , and

(ii) ∪{QL,i, i = 1, . . . , Nd} = [− L
2 , L

2

]d.

There is a unique index i0 ∈ {1, . . . , Nd} such that xi0 = 0. We define εL, Q̂L,i and the event
EL,N as in the proof of Theorem 2.4. Note that, under EL,N ,

inf
(x,mx)∈η∩Q̂L,i0

‖x‖ ≤ εL.
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Hence, on the event EL,N , the insertion of the origin into the point configuration creates a
new face of the tessellation whose surface area is bounded below by cmin(L/N)d−1 and bounded
above by cmax(L/N)d−1. Thus,

cmin

(
L

N

)d−1

+ O

(
εL

(
L

N

)d−2
)

≤ 
ρ1 (∞) ≤ cmax

(
L

N

)d−1

− O

(
εL

(
L

N

)d−2
)

,

where O
(
εL
( L

N

)d−2 )
is the change in the combined surface areas of the already existing faces

after inserting the origin. Events EL1,N, EL2,N , L1 < L2, both occur with positive probability for
any L1, L2. Similarly to the proof of Theorem 2.4, we can find N, S, L1, and L2 (L2 − L1 large
enough) such that the value of 
ρ1 (∞) differs on each event. Thus, σ 2(ξρ1 ) is strictly positive.

To show that σ 2(ξρ2 ) and σ 2(ξρ3 ) are strictly positive we argue as follows. The Laguerre
and Johnson–Mehl tessellations are close to the Voronoi tessellation on the event FL,N,α , for α

small. Arguing as we did in the proof of Theorem 2.4, and considering the event ÊL,N given in
the proof of that theorem, we may conclude that σ 2(ξρ2 ) > 0 and σ 2(ξρ3 ) > 0.
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