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Abstract

Let Kn be the convex hull of i.i.d. random variables distributed according to

the standard normal distribution on Rd. We establish variance asymptotics for

the re-scaled volume and k-face functional of Kn, k ∈ {0, 1, ..., d − 1}, resolving
an open problem. Asymptotic variances and the scaling limit of the boundary of

Kn are given in terms of functionals of germ-grain models having parabolic grains

with apices at a Poisson point process on Rd−1 × R with intensity ehdhdv.

1 Main results

For all λ ∈ (0,∞), let Pλ denote a Poisson point process of intensity λϕ(x)dx, where

ϕ(x) := (2π)−d/2 exp(−|x|2

2
)

is the standard normal density on Rd, d ≥ 2. Let Xn := {X1, ..., Xn}, where Xi are

i.i.d. with density ϕ(·). We put Kλ and Kn to be the Gaussian polytopes defined by

the convex hull of Pλ and Xn, respectively. The number of k-faces of Kλ and Kn are

denoted by fk(Kλ) and fk(Kn), respectively.
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In d = 2, Rényi and Sulanke [23] determined E f1(Kn) and later Raynaud [21]

determined E fd−1(Kn) for all dimensions. Subsequently, work of Affentranger and

Schneider [2] and Baryshnikov and Vitale [8] yielded the general formula

E fk(Kn) =
2d√
d

(
d

k + 1

)
βk,d−1(π log n)(d−1)/2(1 + o(1)),

with k ∈ {0, ..., d−1} and where βk,d−1 is the internal angle of a regular (d−1)-simplex

at one of its k-dimensional faces. Concerning the volume functional, Affentranger [1]

showed that its expectation asymptotics satisfy

EVol(Kn) = κd(2 log n)
d/2(1 + o(1)),

where κd denotes the volume of the d-dimensional unit ball.

In a remarkable paper, Bárány and Vu [8] use dependency graph methods to estab-

lish a rate of normal convergence for fk(Kn) and Vol(Kn), k ∈ {0, ..., d−1}. A key part

of their work involves obtaining sharp lower bounds for Varfk(Kn) and VarVol(Kn).

Their results stop short of determining precise variance asymptotics for fk(Kn) and

Vol(Kn), an open problem going back to the 1993 survey of Weil and Wieacker (p.

1431 of [28]). We resolve this problem in Theorems 1.3 and 1.4, expressing the variance

asymptotics in terms of scaling limit functionals of parabolic germ-grain models.

Let P be the Poisson point process on Rd−1 × R with intensity

dP((v, h)) := ehdhdv, with (v, h) ∈ Rd−1 × R. (1.1)

Let Π↓ := {(v, h) ∈ Rd−1 × R, h ≤ −|v|2/2} and put Π↓(w) := w ⊕ Π↓, where ⊕
denotes Minkowski addition. Consider the maximal union Φ(P) of parabolic grains

Π↓(w), w ∈ Rd, having the property that Π↓(w) belongs to Φ(P) if its interior contains

no point of P . Thus

Φ(P) :=
∪

{
w∈Rd−1×R

P∩int(Π↓(w))=∅

Π↓(w).

Remove all points of P not belonging to ∂Φ(P) and call the resulting thinned point set

Ext(P). Notice that ∂Φ(P) is a union of inverted parabolic surfaces.

We show that the re-scaled random point configuration of extreme points in Pλ (and

in Xn) converges to the limit measure Ext(P) and that the scaling limit ∂Kλ as λ → ∞
(and of ∂Kn and n → ∞) coincides with ∂Φ(P). Curiously, this boundary features in

the geometric construction of the zero-viscosity solution of Burgers’ equation [10]. We

consequently obtain a closed form expression for expectation and variance asymptotics

for the number of shocks in the solution of the inviscid Burgers’ equation adding to [7].
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Fix u0 := (0, 0, ..., 1) ∈ Rd and let Tu0 := Tu0Sd−1 denote the tangent space to the

unit sphere Sd−1 at u0. The exponential map exp := expd−1 := expu0
: Tu0Sd−1 → Sd−1

maps a vector v of the tangent space Tu0 to the point u ∈ Sd−1 such that u lies at the

end of the geodesic of length |v| starting at u0 and having direction v.

For all λ ∈ [1,∞) put

Rλ :=
√

2 log λ− log(2 · (2π)d · log λ). (1.2)

Choose λ0 so that for λ ∈ [λ0,∞) we have Rλ ∈ [0,∞). Define the scaling transform

T (λ) : Rd → Rd−1 × R by

T (λ)(x) :=

(
Rλ exp

−1
d−1

x

|x|
, R2

λ(1−
|x|
Rλ

)

)
, x ∈ Rd. (1.3)

Theorem 1.1 Under the transformations T (λ) and T (n), the extreme points of the re-

spective Gaussian samples Pλ and Xn converge in distribution to the thinned process

Ext(P) as λ → ∞ (respectively, as n → ∞).

Let Bd(v, r) be the d-dimensional Euclidean ball centered at v ∈ Rd and with

radius r. C(Bd(v, r)) is the space of continuous functions on Bd(v, r) equipped with

the supremum norm.

Theorem 1.2 Fix L ∈ (0,∞). As λ → ∞, the re-scaled boundary T (λ)(∂Kλ) converges

in probability to ∂(Φ(P)) in the space C(Bd−1(0, L)).

In a companion paper we shall show that ∂(Φ(P)) is also the scaling limit of the

boundary of the convex hull of i.i.d. points in polytopes. In d = 2, the reflection of

∂(Φ(P)) about the x-axis describes a festoon of parabolic arcs featuring in the geometric

construction of the zero viscosity solution(µ = 0) to Burgers’ equation

∂v

∂t
+ (v,∇)v = µ∆v, v = v(t, x), t > 0, (x, t) ∈ Rd−1 × R+, (1.4)

subject to Gaussian initial conditions [19]; see Remark (i) below. Given its prominence

in the asymptotics of Burgers’ equation and its role in scaling limits of boundaries of

random polytopes, we shall henceforth refer to ∂(Φ(P)) as the Burgers’ festoon.

The transformation T (λ) induces scaling limit k-face and volume functionals govern-

ing the large λ behavior of convex hull functionals, as seen in the next results. These

scaling limit functionals are used in the description of the variance asymptotics for the

k-face and volume functionals, k ∈ {0, 1, ..., d− 1}.
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Theorem 1.3 For all k ∈ {0, 1, ..., d−1}, there exists a constant Fk,d ∈ (0,∞), defined

in terms of averages of covariances of a scaling limit k-face functional on P, such that

lim
λ→∞

(2 log λ)−(d−1)/2Varfk(Kλ) = Fk,d (1.5)

and

lim
n→∞

(2 log n)−(d−1)/2Varfk(Kn) = Fk,d. (1.6)

Theorem 1.4 There exists a constant Vd ∈ (0,∞), defined in terms of averages of

covariances of a scaling limit volume functional on P, such that

lim
λ→∞

(2 log λ)−(d−3)/2VarVol(Kλ) = Vd (1.7)

and

lim
n→∞

(2 log n)−(d−3)/2VarVol(Kn) = Vd. (1.8)

We also have

κ−1
d (2 log λ)−d/2EVol(Kλ) = 1 +O((log λ)−1). (1.9)

The thinned point set Ext(P) features in the description of asymptotic solutions to

Burgers’ equation (cf. Remark (i) below) and we next consider its limit theory with

respect to a sequence of increasing windows in Rd. Let Qλ ↑ Rd−1 as λ → ∞ and put

Q̃λ := Qλ × R. The next result, a by-product of our general methods, yields a closed

form expression for the limits appearing in variance and expectation asymptotics for

the number of points in P0 over growing windows, adding to [7].

Corollary 1.1 There exist constants Ed and Nd ∈ (0,∞) such that

lim
λ→∞

(volQλ)
−1E [card(Ext(P ∩ Q̃λ))] = Ed (1.10)

and

lim
λ→∞

(volQλ)
−1Var[card(Ext(P ∩ Q̃λ))] = Nd. (1.11)

In particular, Nd = F0,d.

The reader may wonder about the genesis of T (λ) and characteristic scaling by Rλ,

which satisfies R
−(d−1)
λ λ

∫
|x|>Rλ

ϕ(x)dx → c ∈ (0,∞). Roughly speaking, the effect of

T (λ) is to first re-scale the Gaussian sample by R−1
λ so that ∂Kλ is close to Sd−1. By con-

sidering the distribution of maxi≤n |Xi| we see that (1−|x|/Rλ) is small when x ∈ ∂Kλ;

cf [17]. Re-scale again according to the twin desiderata: (i) unit volume image subsets

near the hyperplane Rd−1 should host Θ(1) re-scaled points (ii) radial components of

points should scale as the square of angular components exp−1
d−1 x/|x|. Desideratum (ii)
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preserves the parabolic nature of the defect support function for R−1
λ Kλ, namely the

function 1−hR−1
λ Kλ

(u), u ∈ Sd−1, where hK is the support function of K ⊂ Rd. Extreme

value theory [25] for |Xi|, i ≥ 1,suggests (i) is achieved via radial scaling by R2
λ, whence

by (ii) we obtain angular scaling of Rλ, and (1.3) follows. These heuristics are justified

in Section 3 (especially Lemma 3.2).

Remarks.

(i) Burgers’ equation. Let Ext(P)′ be the reflection of Ext(P) about the hyperplane

Rd−1. The point process Ext(P)′ features in the solution to Burgers’ equation (1.4) for

µ ∈ (0,∞) as well as for µ = 0 (inviscid limit). In the latter case, when d = 2 and when

the initial conditions are specified by a stationary Gaussian process η having covariance

r(x) = E η(0)η(x) = o(1/ log x), x → ∞, the re-scaled local maximum of the solutions

converge in distribution to Ext(P)′ [19]. The abscissas of points in Ext(P)′ correspond

to zeroes of the limit velocity process v(L2t, L2x), as L → ∞. See Figure 1 in [19] as

well as Figure 13 in the seminal work of Burgers [10]. The shocks in the limit velocity

process coincide with the local minima of the festoon ∂(Φ(P̃)).

By (1.3), the typical angular difference between consecutive extreme points of Kλ,

after scaling by Rλ, converges in probability to the typical distance between abscissas of

points in Ext(P)′. Thus the re-scaled angular increments between consecutive extreme

points in Kλ behaves like the spacings between zeroes of the zero-viscosity solution to

(1.4).

In the case µ ∈ (0,∞), the point set Ext(P)′ is shown to be the scaling limit as

t → ∞ of centered and re-scaled local maxima of the solutions to Burgers’ equation

(1.4) when the initial conditions are specified by degenerate shot noise with Poissonian

spatial locations; see Theorem 9 and Remark 3 of [3]. Correlation functions for Ext(P)′

are given section 5 of [3].

(ii) Theorems 1.1 and 1.2 - related work. In 1961, Geffroy [17] states that the Hausdorff

distance between Kn and Bd(0,
√
2 log n) converges almost surely to zero. From [8] we

also know that the extreme points of the polytope Kλ concentrate around the sphere

RλSd−1 with high probability. Theorems 1.1-1.2 add to these results, showing conver-

gence of the measure induced by the re-scaled extreme points as well as convergence of

the re-scaled boundary.

(iii) Theorem 1.3- - related work. As mentioned, Bárány and Vu [8] show that

(Varfk(Kn))
−1/2(fk(Kn) − E fk(Kn)) converges to a normal random variable as n →

∞. They also show (Theorem 6.3 of [8]) that Varfk(Kn) = Ω((log n)(d−1)/2). These

bounds are sharp, as Hug and Reitzner [14] had previously showed that Varfk(Kn) =

O((log n)(d−1)/2). Aside from these variance bounds and work of Hueter [18], assert-
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ing that Varf0(Kn) = c(log n)(d−1)/2 + o(1), the second order issues raised by Weil

and Weiacker [28] have largely remained unsettled in the case of Gaussian input. In

particular the question of showing

Varfk(Kn) = c(log n)(d−1)/2(1 + o(1))

for k ∈ {1, ..., d − 1} has remained open. On page 298 of [14], Hug and Reitzner,

commenting on the likelihood of progress, remarked that ‘Most probably it is difficult

to establish such a precise limit relation...’. Theorem 1.3 addresses these issues.

(iv) Theorem 1.4- -related work. Hug and Reitzner [14] show VarVol(Kn) = O((log n)(d−3)/2)

and later Bárány and Vu [8] show that VarVol(Kn) = Θ((log n)(d−3)/2), together with a

central limit theorem for Vol(Kn) and Vol(Kλ). The expectation limit (1.9) improves

upon Affentranger [1], who shows κ−1
d (2 log n)−d/2EVol(Kn) = 1 + o(1).

(v) Corollary 1.1- -related work. Baryshnikov [7] establishes the asymptotic normality

of card(Ext(P)∩Q̃λ), obtaining expectation and variance asymptotics in Theorem 1.9.2

of [7]. Notice that Ext(P) ∩ Q̃λ is the restriction to Q̃λ of the extreme points in P ,

whereas Ext(P ∩ Q̃λ) are the extreme points in P ∩ Q̃λ, which in general is not the

same set, by boundary effects. Baryshnikov left open the question of obtaining explicit

limits, remarking that ‘the question of constants is quite tricky’; see p. 180 of ibid.

In general, if a point process P∞ is a scaling limit to the solution of (1.4), then

card(P∞ ∩ Q̃λ) coincides with the number of Voronoi cells generated by the abcissas of

points in P∞ ∩ Q̃λ; under conditions on the viscosity and initial input, such cells model

the matterless voids in the Universe [3, 7, 19]

2 Parabolic germ-grain models and a general result

In this section we define scaling limit functionals of germ-grain models and we use

their second order correlations to precisely define the limit constants Fk,d and Vd in

(1.5) and (1.7), respectively. We use the scaling limit functionals to establish variance

asymptotics for the empirical measures induced by the k-face and volume functionals,

thereby extending Theorems 1.3 and 1.4. Denote points in Rd−1 × R by w := (v, h) or

w′ := (v′, h′).

2.1. Parabolic germ-grain models. Let

Π↑ := {(v, h) ∈ Rd−1 × R+, h ≥ |v|2

2
}.
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Let Π↑(w) := w ⊕ Π↑. The process P generates a germ-grain model of paraboloids

Ψ(P) :=
∪
w∈P

Π↑(w).

A point w0 ∈ P is extreme with respect to Ψ(P) if the grain Π↑(w0) is not a subset of

the union of the grains Π↑(w), w ∈ P \ w0. It may be verified that the extreme points

from this construction coincides with Ext(P).

2.2. Scaling limit k-face and volume functionals. A set of (k+1) extreme points

{x1, ..., xk} ⊂ Ext(P), generates a k-dimensional parabolic face of the Burgers festoon

∂(Φ(P)) if there exists a translate Π̃↓ of Π↓ such that {x1, · · · , xk+1} = Π̃↓ ∩ Ext(P);

cf. Definition 3.3 of [12]. When k = d− 1 the parabolic face is a hyperface.

Definition 2.1 Define the scaling limit k-face functional ξ
(∞)
k (x,P), k ∈ {0, 1, ..., d −

1}, to be the product of (k + 1)−1 and the number of k-dimensional parabolic faces of

the Burgers festoon ∂(Φ(P)) which contain x, if x ∈ Ext(P) and zero otherwise.

Definition 2.2 Define the scaling limit defect volume functional ξ
(∞)
V (x,P), x ∈ Ext(P),

to be

ξ
(∞)
V (x,P) := d−1

∫
Cyl(x)

∂Φ(v)dv,

where Cyl(x) denotes the projection onto Rd−1 of the parabolic hyperfaces containing x.

Otherwise, when x /∈ Ext(P) we put ξ
(∞)
V (x,P) = 0.

One of the main features of our approach is that ξ
(∞)
k , k ∈ {0, 1, ..., d−1}, are scaling

limits of re-scaled k-face functionals, as defined in Section 3.3. A similar statement holds

for ξ
(∞)
V . Lemma 4.5 makes these assertions precise. Let Ξ(∞) denote the collection of

scaling limits ξ
(∞)
k , k ∈ {0, 1, ..., d− 1}, together with ξ

(∞)
V .

2.3. Empirical k-face measures, empirical volume measures. Given a finite

point set X ⊂ Rd, let co(X ) be its convex hull.

Definition 2.3 Given k ∈ {0, 1, ..., d − 1} and x a vertex of co(X ), define the k-face

functional ξk(x,X ) to be the product of (k + 1)−1 and the number of k-faces of co(X )

which contain x. Otherwise we put ξk(x,X ) = 0. The empirical k-face measure is

µξk
λ :=

∑
x∈Pλ

ξk(x,Pλ)δx, (2.1)

where δx is the unit point mass at x.

7



Thus the total number of k-faces in co(X ) is
∑

x∈X ξk(x,X ).

Let F(x,Pλ) be the collection of (d − 1)-dimensional faces in Kλ which contain x

and let C(x,Pλ) := {ry, r > 0, y ∈ F(x,Pλ)} be the cone generated by F(x,Pλ).

Definition 2.4 Given x a vertex of co(Pλ), define the defect volume functional

ξV (x,Pλ) := d−1 [Vol(C(x,Pλ) ∩Bd(0, Rλ))− Vol(C(x,Pλ) ∩Kλ)] .

When x is not a vertex of co(Pλ), we put ξV (x,Pλ) = 0. The empirical defect volume

measure is

µξV
λ :=

∑
x∈Pλ

ξV (x,Pλ)δx. (2.2)

Thus the total defect volume of Kλ with respect to the ball Bd(0, Rλ) is given by∑
x∈Pλ

ξV (x,Pλ).

2.4. Limit theory for empirical k-face and volume measures. Define the fol-

lowing second order correlation functions for ξ(∞) ∈ Ξ(∞).

Definition 2.5 For all w1, w2 ∈ Rd and ξ(∞) ∈ Ξ(∞) put

cξ
(∞)

(w1, w2) := cξ
(∞)

(w1, w2,P) := (2.3)

E ξ(∞)(w1,P ∪ {w2})ξ(∞)(w2,P ∪ {w1})− E ξ(∞)(w1,P)E ξ(∞)(w2,P).

and

σ2(ξ(∞)) :=

∫ ∞

−∞
E ξ(∞)((0, h),P)2ehdh+

∫ ∞

−∞

∫
Rd−1

∫ ∞

−∞
cξ

(∞)

((0, h), (v′, h′))eh
′+hdh′dv′dh.

(2.4)

Theorem 1.3 is a special case of the following general result expressing the asymptotic

behavior of the empirical k-face measures in terms of the scaling limit functional ξ
(∞)
k

of parabolic germ grain models. Let C(Sd−1) be the class of bounded functions on Rd

whose set of continuity points includes Sd−1. Given g ∈ C(Sd−1), let gr(x) := g(x/r)

and let ⟨g, µξ
λ⟩ denote the integral of g with respect to µξ

λ.

Theorem 2.1 For all k ∈ {0, 1, ..., d− 1}, and g ∈ C(Sd−1) we have

lim
λ→∞

(2 log λ)−(d−1)/2E [⟨gRλ
, µξk

λ ⟩] =
∫ ∞

−∞
E ξ

(∞)
k ((0, h),P)ehdh

∫
Sd−1

g(u)du (2.5)

and

lim
λ→∞

(2 log λ)−(d−1)/2Var[⟨gRλ
, µξk

λ ⟩] = σ2(ξ
(∞)
k )

∫
Sd−1

g(u)2du ∈ (0,∞). (2.6)

8



Likewise Theorem 1.4 is a special case of the following general result for the empirical

volume measure.

Theorem 2.2 For all g ∈ C(Sd−1) we have

lim
λ→∞

(2 log λ)−(d−2)/2E [⟨gRλ
, µξV

λ ⟩] =
∫ ∞

−∞
E ξ

(∞)
V ((0, h),P)ehdh

∫
Sd−1

g(u)du (2.7)

and

lim
λ→∞

(2 log λ)−(d−3)/2Var[⟨gRλ
, µξV

λ ⟩] = σ2(ξ
(∞)
V )

∫
Sd−1

g(u)2du ∈ (0,∞). (2.8)

Remarks.

(i) Deducing Theorems 1.3 and 1.4 from Theorems 2.1 and 2.2 . The convergence (1.5)

is implied by (2.6) with Fk,d = σ2(ξ
(∞)
k ). Indeed, applying (2.6) to g ≡ 1, we have

⟨1, µξk
λ ⟩ =

∑
x∈Pλ

ξk(x,Pλ) = fk(Kλ).

Likewise, putting g ≡ 1 in (2.8) we get the convergence (1.7), with Vd = σ2(ξ
(∞)
V ).

To obtain (1.9), we put g ≡ 1 in (2.7) to get (2 log λ)−d/2+1E [Vol(Bd(0, Rλ)) −
Vol(Kλ)] = O(1). It follows that (1.9) holds since

κ−1
d (2 log λ)−d/2EVol(Kλ) = κ−1

d (2 log λ)−d/2Vol(Bd(0, Rλ))

+ κ−1
d (2 log λ)−d/2E [Vol(Bd(0, Rλ))− Vol(Kλ)]

= 1 +O((log λ)−1).

We are unable to show that the right side of (2.7) is non-zero, that is to say we are

unable to show (2 log λ)−d/2(E [Vol(Bd(0, Rλ))]− Vol(Kλ)) ̸= o((log λ)−1).

The de-Poissonized limit (1.8) follows from the coupling of binomial and Poisson

points used in Bárány and Vu [8], in particular Lemma 8.1 of [8]. The limit (1.6)

similarly follows from (1.5) and the same coupling, as described in Section 13.2 of [8].

(ii) Central limit theorems. Combining (2.6) with the results of [8] shows the following

central limit theorem, as λ → ∞:

(2 log λ)−(d−1)/2(⟨gRλ
, µξk

λ ⟩ − E ⟨gRλ
, µξk

λ ⟩) D−→ N(0, σ2),

where N(0, σ2) denotes a mean zero normal random variable with variance σ2 :=

σ2(ξ
(∞)
k )

∫
Sd−1 g(u)

2du.
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2.5. Further extensions

(i) Brownian limits. By following the scaling methods of this paper and by appealing to

the methods of section 8 of [12] we may deduce that the process given as the integrated

version of the defect volume converges to a Brownian sheet process. This goes as follows.

For X ⊂ Rd and u ∈ Sd−1 we put

r(u,X ) := Rλ − sup{ρ > 0 : ρu ∈ co(X )}

and for all λ ∈ [λ0,∞) let rλ(u) := r(u,Pλ) be the defect radius-vector function. Let

σd−1 be the (d− 1)-dimensional surface measure on Sd−1 and let Bd−1(π) be the closure

of the injectivity region of expd−1, i.e. exp(Bd−1(π)) = Sd−1. Define for v ∈ Bd−1(π) the

defect volume process

Vλ(v) :=

∫
exp([0,v])

rλ(u)dσd−1(u).

Here the ‘segment’ [0, v] for v ∈ Rd−1 is the rectangular solid in Rd−1 with vertices 0

and v, that is to say [0, v] :=
∏d−1

i=1 [min(0, v(i)),max(0, v(i))], with v(i) standing for the

ith coordinate of v. Define V̂λ : Rd−1 → R by

V̂λ(v) := (2 log λ)−(d+3)/4(Vλ(v)− EVλ(v)), v ∈ Rd−1.

For any σ2 > 0 let Bσ2
be the Brownian sheet of variance coefficient σ2 on the

injectivity region Bd−1(π). Extend the index set of Bσ2
to all of Rd−1 by putting

Bσ2
(v) = Bσ2

(w) whenever [0, v] ∩ Bd−1(π) = [0, w] ∩ Bd−1(π). In other words Bσ2
is

the mean zero continuous path Gaussian process indexed by Rd−1 with

Cov(Bσ2

(v), Bσ2

(w)) = σ2 · σd−1(exp([0, v] ∩ [0, w])).

Put σ2
V := σ2(ξ

(∞)
V ). The following shows that V̂λ, λ ≥ 1, converges to a Brownian sheet.

Theorem 2.3 As λ → ∞, the random functions V̂λ : Rd−1 → R converge in law to

Bσ2
V in C(Rd−1).

We shall not prove this result, as it follows closely the proof of Theorem 8.1 of [12].

(ii) Intrinsic volumes. For k ∈ {1, · · · , d − 1}, we denote by Vk(Kλ) the k-th intrinsic

volume of Kλ. In [14], Hug and Reitzner show the expectation asymptotics for Vk(Kλ)

as well as an upper-bound for its variance. We assert that a result similar to Theorem

1.4 can be obtained for the asymptotic expectation and variance of Vk(Kλ). In other

words, we have the following theorem.
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Theorem 2.4 There exists a constant vk ∈ [0,∞), defined in terms of averages of

covariances of a scaling limit volume functional on P, such that

lim
λ→∞

(2 log λ)−k+(d+3)/2VarVk(Kλ) = vk.

Moreover, when λ goes to ∞, we have

κd−k(
d
k

)
κd

(2 log λ)−k/2EVk(Kλ) = 1 +O((log λ)−1).

It is a notable improvement from Theorem 1.2 in [14] which claims that (log λ)−
k−3
2 VarVk(Kλ)

is bounded. In [22], Reitzner says already that ‘it seems that these upper bounds are

not best possible’. Hopefully the bounds that we get here are optimal but unfortunately

we were not able to show that the limits vk, 1 ≤ k ≤ (d− 1), are different from zero. In

particular, VarVk(Kλ) goes to infinity for k > (d+3)/2 as soon as vk ̸= 0. We postpone

the proof of Theorem 2.4 to Section 5.

(iii) Binomial input. By coupling binomial and Poisson points as in [8], one may deduce

the binomial analogs of Theorems 2.1 and 2.2 for the measures
∑n

i=1 ξk(Xi,Xn)δXi
, k ∈

{0, 1, ..., d− 1} and
∑n

i=1 ξV (Xi,Xn)δXi
, where we recall that Xi are i.i.d. with density

ϕ, Xn := {Xj}nj=1.

(iv) Random polytopes on general Poisson input. We expect that our main results

extend to random polytopes generated by Poisson points having an isotropic intensity

density. As shown by Carnal [13] and others, there are qualitative differences in the

behavior of E fk(Kn) according to whether the input Xn has algebraic tails modulated

by a slowly varying function or whether the input has an exponentially decaying tail.

The choice for the critical radius Rα and the scaling transform T (λ) would thus need to

reflect such behavior. For example, if |Xi| have an exponential intensity density on Rd

and Rλ = log λ− log log λ, then T (λ)(Pλ)
D−→ H1, where H1 is a rate one homogenous

Poisson point process on Rd.

3 Scaling transformations

For all λ ∈ [λ0,∞), the scaling transform T (λ) defined at (1.3) maps Rd onto the

rectangular solid Wλ ⊂ Rd−1 × R given by

Wλ := (Rλ · Bd−1(π))× (−∞, R2
λ],

11



where we recall Bd−1(π) is the closure of the injectivity region of expd−1. Let (v, h) be

the coordinates in Wλ, that is

v = Rλ exp
−1
d−1

x

|x|
, h = R2

λ(1−
|x|
Rλ

). (3.1)

Note that Sd−1 is geodesically complete in that the exponential map expu0
is well defined

on the whole tangent space Rd−1 ≃ Tu0Sd−1, although it is injective only on {v ∈
Tu0Sd−1, |v| < π}. In this and in the following section, our aim is to show:

(i) T (λ) defines a 1− 1 correspondence between boundaries of convex hulls of point sets

X ⊂ Rd and a subset of piecewise smooth functions on Wλ,

(ii) T (λ) carries Pλ into a point process on Wλ converging in distribution to P defined

at (1.1), and

(iii) T (λ) defines re-scaled k-face and volume functionals on Wλ; when the input is Pλ

then the means and covariances converge to the respective means and covariances of

the corresponding functionals in Ξ(∞).

3.1. The re-scaled boundary of the convex hull under T (λ). We examine the

image under T (λ) of the boundary of co(X ). For all λ ∈ [λ0,∞) and (v1, h1) ∈ Wλ,

consider the grain given by

[Π↑(v1, h1)]
(λ) := {(v, h) ∈ Wλ, h ≥ h1 +R2

λ(1− cos[eλ(v, v1)])− h1(1− cos[eλ(v, v1)])},
(3.2)

with

eλ(v, v1) := dSd−1(expd−1(R
−1
λ v), expd−1(R

−1
λ v1)), (3.3)

where dSd−1 stands for the geodesic distance in Sd−1.

For λ ∈ [λ0,∞), every locally finite X ⊂ Wλ generates the germ-grain model

Ψ(λ)(X ) :=
∪
w∈X

[Π↑(w)](λ). (3.4)

Considering the defect support function of co(X ), it may be seen (see e.g. section

4 of [26], sections 2 and 4 of [12]) that x0 ∈ X is a vertex of co(X ) if and only if

for each λ ∈ [λ0,∞) it is the case that [Π↑(T (λ)(x0))]
(λ) is not covered by the union

Ψ(λ)(T (λ)(X \ x0)). In this case we call T (λ)(x0) a vertex of T (λ)(X ).

For x0 ∈ Rd consider the half-space

H(x0) := {x ∈ Rd : ⟨x, x0

|x0|
⟩ ≥ |x0|}.

Letting θ := dSd−1( x
|x| ,

x0

|x0|), we rewrite H(x0) as

H(x0) := {x ∈ Rd : |x0| ≤ |x| cos θ}.

12



Recalling the change of variable at (3.1), let T λ(x0) := (v0, h0), so that h0 = R2
λ(1 −

|x0|/Rλ). We may rewrite H(x0) as

H(x0) := {x ∈ Rd : R2
λ(1−

|x0|
Rλ cos θ

) ≥ R2
λ(1−

|x|
Rλ

)}.

Thus T (λ) transforms H(x0) into

T (λ)(H(x0)) := [Π↓(v0, h0)]
(λ) := {(v, h) ∈ Wλ, h ≤ R2

λ −
R2

λ − h0

cos[eλ(v, v0)]
}. (3.5)

Noting that Rd \ co(X ) is the union of half-spaces not containing points in X , it

follows that T (λ) transforms Rd \ co(X ) into the subset of Wλ given by

Φ(λ)(T (λ)(X )) :=
∪

{
w∈Wλ

[Π↓(w)](λ)∩T (λ)(X )=∅

[Π↓(w)](λ).

Thus T (λ) sends the boundary of co(X ) to the continuous function on Wλ whose graph

coincides with the upper boundary of Φ(λ)(T (λ)(X )). There is thus a 1−1 correspondence

between convex hull boundaries and a subset of the continuous functions on Rd−1 ×R.
This contrasts with Eddy [15], who mapped support functions of convex hulls into a

subset of the continuous functions on Rd−1 × R.
The random sets Ψ(λ)(P(λ)) and Φ(λ)(P(λ)) link the geometry of the convex hull Kλ

with that of the limit paraboloid germ-grain models Ψ(P) and Φ(P). Theorem 1.2 and

the upcoming Proposition 5.1 show that the boundaries ∂Ψ(λ)(P(λ)) and ∂Φ(λ)(P(λ))

respectively converge in probability to ∂(Ψ(P)) and to ∂(Φ(P)) as λ → ∞.

The next lemma is suggestive of this convergence and shows for fixed w ∈ Wλ that

[Π↑(w)](λ) and [Π↓(w)](λ) locally approximate the paraboloids [Π↑(w)](∞) := Π↑(w) and

[Π↓(w)](∞) := Π↓(w), respectively. We may henceforth refer to [Π↑(w)](λ) and [Π↓(w)](λ)

as quasi-paraboloids. Recalling that Bd−1(v, r) is the (d− 1) dimensional ball centered

at v ∈ Rd−1 with radius r, define the cylinder C(v, r) ⊂ Rd−1 × R by

C(v, r) := Cd−1(v, r) := Bd−1(v, r)× R. (3.6)

Lemma 3.1 For all w := (v, h) ∈ Wλ, L ∈ (0,∞), and all λ ∈ [λ0,∞), we have

||∂([Π↑(w)](λ) ∩ C(v, L))− ∂([Π↑(w)](∞) ∩ C(v, L))||∞ ≤ cL3R−1
λ + chL2R−2

λ (3.7)

and

||∂([Π↓(w)](λ) ∩ C(v, L))− ∂([Π↓(w)](∞) ∩ C(v, L))||∞ ≤ cL3R−1
λ + chL2R−2

λ . (3.8)
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Proof. We first prove (3.7). For w1 := (v1, h1) ∈ Wλ we recall from (3.2) that

∂([Π↑(w1)]
(λ)) := {(v, h) ∈ Wλ, h = h1 +R2

λ(1− cos[eλ(v, v1)])− h1(1− cos[eλ(v, v1)])}.
(3.9)

For v ∈ Bd−1(v1, L), notice that

eλ(v, v1) = |R−1
λ v −R−1

λ v1|+O(|R−1
λ v −R−1

λ v1|2) (3.10)

and thus

1− cos(eλ(v, v1)) =
|R−1

λ v −R−1
λ v1|2

2
+O(L3R−3

λ ).

It follows that

R2
λ(1− cos(eλ(v, v1))) =

(v − v1)
2

2
+O(L3R−1

λ )

and

|h1(1− cos(eλ(v, v1)))| = O(h1L
2R−2

λ ).

Thus the boundary of [Π↑(w1)]
(λ) ∩C(v1, L) is within cL3R−1

λ + ch1L
2R−2

λ of the graph

of

v 7→ h1 +
|v − v1|2

2
,

which establishes (3.7). The proof of (3.8) is similar, and goes as follows. For w1 :=

(v1, h1) ∈ Wλ we get from (3.5) that

∂([Π↓(w1)]
(λ)) := {(v, h) ∈ Wλ, h = R2

λ −
R2

λ − h1

cos[eλ(v, v1)]
}. (3.11)

Using (3.10), Taylor expanding cos θ up to second order, and writing 1/(1 − r) =

1 + r + r2 + ... gives

∂([Π↓(w1)]
(λ)) := {(v, h) ∈ Wλ, h = h1−

|v − v1|2

2
+O(Rλ|v−v1|3)+O(h1R

−2
λ |v−v1|2)},

(3.12)

and (3.8) follows.

3.2. The weak limit of T (λ)(Pλ). Put

P(λ) := T (λ)(Pλ).

Part (a) of the next result is the analog of Lemma 3.1 of [11] and the discussion around

(2.14) of [12]. Let Vold denote d-dimensional volume measure on Rd and recall the

definition of P at (1.1).
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Lemma 3.2 As λ → ∞, we have

(a) P(λ) D−→ P, and

(b) T (λ)(Rλ · Vold)
D−→ Vold.

The convergence is in the sense of total variation convergence on compact sets.

Remarks. (i) It is likewise the case that the image of the binomial point process
∑

x∈Xn
δx

under T (n) converges in distribution to P as n → ∞.

(ii) The transformation T (λ) carries Pλ into a point process on Rd−1 × R which in the

large λ limit is stationary in the spatial coordinate. This contrast with the transfor-

mation of Eddy [15] (and generalized in Eddy and Gale [16]) which carries
∑

x∈Xn
δx

into a point process (Tk, Zk) on R×Rd−1 where Tk, k ≥ 1, are points of a Poisson point

process on R with intensity e−hdh and Zk, k ≥ 1, are i.i.d. standard Gaussian on Rd−1.

Proof. Representing x ∈ Rd by x = ur, u ∈ Sd−1, r ∈ [0,∞), we find the image by T (λ)

of the Poisson measure on Rd with intensity

λϕ(x)dx = λϕ(ur)rd−1drdσd−1(u). (3.13)

Make the change of variables

v := Rλ exp
−1
d−1(u) = Rλvu, h := R2

λ(1−
r

Rλ

),

The exponential map expd−1 : Tu0Sd−1 → Sd−1 has the following expression:

expd−1(v) = cos(|v|)(0, · · · , 0, 1) + sin(|v|)( v

|v|
, 0), v ∈ Rd−1 \ {0}. (3.14)

Therefore, since vu := exp−1
d−1(u) we have

dσd−1(u) = sind−2(|vu|)d(|vu|)dσd−2(
vu
|vu|

) =
sind−2(|vu|)dvu

|vu|d−2
.

Since vu = R−1
λ v, this gives

dσd−1(u) =
sind−2(R−1

λ |vu|)
|R−1

λ v|d−2
(R−1

λ )d−1dv. (3.15)

We also have

rd−1dr = |Rλ(1−
h

R2
λ

)|d−1R−1
λ dh (3.16)

as well as

λϕ(x) = λϕ(uRλ(1−
h

R2
λ

)) =

√
2 · (2π)d · log λ

(2π)d/2
exp

(
h− h2

2R2
λ

)
. (3.17)

15



Combining (3.13) and (3.15)-(3.17), we get that P(λ) has intensity density

dP(λ)

dvdh
((v, h)) =

√
2 log λ

Rλ

sind−2(R−1
λ |v|)

|R−1
λ v|d−2

|(1− h

R2
λ

)|d−1e
h− h2

2R2
λ , (v, h) ∈ Wλ. (3.18)

Given a fixed compact subset D of Wλ, this intensity converges in the L1(D) sense to

the intensity of P , completing the proof of part (a).

Part (b) follows by replacing the intensity λϕdx with dx in the above computations,

which gives the intensity density

dVold
dvdh

((v, h)) =
sind−2(R−1

λ |v|)
|R−1

λ v|d−2
|(1− h

R2
λ

)|d−1R−1
λ , (v, h) ∈ Wλ. (3.19)

The product of this intensity density with Rλ converges pointwise to 1 as λ → ∞,

showing part (b).

3.3. Re-scaled k-face and volume functionals ξ(λ). Fix λ ∈ [λ0,∞). Let ξk, k ∈
{0, 1, ..., d − 1}, be a generic k-face functional, as in Definition 2.3. Given X ⊂ Wλ,

we say that w ∈ X is extreme with respect to [T (λ)]−1 if [T (λ)]−1(x) is extreme in

[T (λ)]−1(X ). Write Ext(λ)(X ) for the set of points in X which are extreme with respect to

[T (λ)]−1. The inverse transformation [T (λ)]−1 defines generic re-scaled k-face functionals

ξ(λ) defined for w ∈ Wλ and X ⊂ Wλ by

ξ(λ)(w,X ) := ξ
(λ)
k (w,X ) := ξk([T

(λ)]−1(w), [T (λ)]−1(X )). (3.20)

It follows for all k ∈ {0, 1, ..., d − 1}, λ ∈ [λ0,∞), that ξk(x,Pλ) := ξ
(λ)
k (T (λ)(x),P(λ)).

Note that for all λ ∈ [λ0,∞), k ∈ {0, 1, ..., d − 1}, w ∈ Wλ, and X ⊂ Wλ, that

ξ
(λ)
k (w,X ) is the product of (k+1)−1 and the number of quasi-parabolic k-dimensional

faces of Φ(λ)(X ) := ∂(
∪

x∈X [Π
↓(x)](λ)) which contain w, w ∈ Ext(λ)(X ), otherwise

ξ
(λ)
k (w,X ) = 0.

Define the re-scaled volume functional ξ
(λ)
V similarly, that is to say for w ∈ Wλ and

X ⊂ Wλ we have

ξ
(λ)
V (w,X ) := ξV ([T

(λ)]−1(w), [T (λ)]−1(X )). (3.21)

Let Vol
(λ)
d be the image of Vold under T (λ). For w ∈ Ext(λ)(X ) we have

ξ
(λ)
V (w,X ) = Vol

(λ)
d ({(v, h) : 0 ≤ h ≤ ∂Φ(λ)(X )(v), v ∈ Cyl(λ)(w),Φ(λ)(X )(v) ≥ 0})−

(3.22)

−Vol
(λ)
d ({(v, h) : Φ(λ)(X )(v) ≤ h ≤ 0, v ∈ Cyl(λ)(w),Φ(λ)(X )(v) < 0}).

where Cyl(λ)(w) denotes the projection onto Rd−1 of the quasi-parabolic faces of Φ(λ)(X )

containing w. When w /∈ Ext(λ)(X ) we put ξ
(λ)
V (w,X ) = 0.
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Let Ξ(λ) denote the collection of re-scaled functionals ξ
(λ)
k , k ∈ {0, 1, ..., d − 1}, to-

gether with ξ
(λ)
V . Write Ξ for Ξ(1). Our main goal in the next section is to show that,

given a generic ξ(λ) ∈ Ξ(λ), λ ∈ [λ0,∞), the means and covariances of ξ(λ)(·,P(λ)) con-

verge as λ → ∞ to the respective means and covariances of ξ(∞)(·,P), with ξ(∞) ∈ Ξ(∞).

4 Properties of re-scaled k-face and volume func-

tionals

To establish convergence of the re-scaled functionals ξ(λ) ∈ Ξ(λ), λ ∈ [λ0,∞), to their

respective counterparts ξ(∞) ∈ Ξ(∞), we first need to show that ξ(λ) ∈ Ξ(λ), λ ∈ [λ0,∞]

satisfy a localization in the spatial and time coordinates v and h, respectively. These

localization results are the analogs of Lemmas 7.2 and 7.3 of [12] and they hold for all

k-face functionals ξk, k ∈ {0, 1, ..., d − 1} as well as the volume functional ξV . In the

following the point process P(λ), λ = ∞, is taken to be P and the set Wλ, λ = ∞, is

taken to be Rd.

4.1. Localization of ξ(λ). We establish localization properties of the functionals in

Ξ(λ), λ ∈ [λ0,∞], in both the space and time domains. Recall the definition of the

cylinder C(v, r) := Cd−1(v, r) := Bd−1(v, r) × R at (3.6). Given a generic functional

ξ(λ), λ ∈ [λ0,∞], and w := (v, h) ∈ Wλ, we shall write

ξ
(λ)
[r] (w,P

(λ)) := ξ(λ)(w,P(λ) ∩ Cd−1(v, r)). (4.1)

Given ξ(λ), λ ∈ [λ0,∞], recall from [12, 26] that a random variable R := Rξ(λ) [w] :=

Rξ(λ) [w,P(λ)] ∈ N is a spatial localization radius for ξ(λ) at w with respect to P(λ) iff a.s.

ξ(λ)(w,P(λ)) = ξ
(λ)
[r] (w,P

(λ)) for all r ≥ R. (4.2)

There are in general more than one R satisfying (4.2) and we shall henceforth assume R

is the smallest integer satisfying (4.2). As seen in [20], R is measurable. The functionals

ξ(λ) ∈ Ξ(λ), λ ∈ [λ0,∞], admit spatial localization radii with tails decaying super-

exponentially fast.

Lemma 4.1 For each ξ ∈ Ξ, there are constants c ∈ (0,∞) and λ1 ∈ [λ0,∞) such that

the localization radius Rξ(λ) [w] for all λ ∈ [λ0,∞] satisfies for every w := (v, h) ∈ Wλ,

and t ≥ (−h ∨ 4)

P [Rξ(λ) [w] > t] ≤ c exp(−t2

c
). (4.3)
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Proof. We first prove (4.3) for λ = ∞. Since P := P(∞) is stationary with respect to the

spatial coordinate, it suffices to consider Rξ(∞)
[w0], with w0 := (0, h). For t ≥ (−h ∨ 4)

we have

{Rξ(∞)

[w0] > t} ⊂ E1 ∪ E2,

where

E1 :=
{
Rξ(∞)

[w0] > t, w0 /∈ Ext(P)
}

and E2 :=
{
Rξ(∞)

[w0] > t, w0 ∈ Ext(P)
}
.

We may rewrite E1 as

E1 = {w0 /∈ Ext(P), w0 ∈ Ext(P ∩ C(0, t))}.

If E1 occurs then there is

w1 := (v1, h1) ∈ ∂
(
Π↑(w0)

)
∩ C(0, t)

which belongs to some Π↑(y), y ∈ P ∩ Cc(0, t), but w1 /∈
∪

w∈P∩C(0,t)Π
↑(w). In other

words, w1 is covered by paraboloids with apices in P , but not by paraboloids with

apices restricted to P ∩ C(0, t). This means that the down paraboloid Π↓(w1) must

contain a point of P in C(0, t)c. In other words, if

F1 :={∃w1 := (v1, h1) ∈ ∂(Π↑(w0)) ∩ C(0, t) : w0 ∈ ∂Π↓(w1), h1 ∈ (−∞, t),

Π↓(w1) ∩ C(0, t) ∩ P = ∅ ,Π↓(w1) ∩ C(0, t)c ∩ P ̸= ∅}

and if

F2 :={∃w1 := (v1, h1) ∈ ∂(Π↑(w0)) ∩ C(0, t) : w0 ∈ ∂Π↓(w1), h1 ∈ [t,∞),

Π↓(w) ∩ C(0, t) ∩ P = ∅},

then we have E1 ⊂ F1 ∪ F2.

If E2 happens then there is w1 := (v1, h1) ∈ C(0, t)c ∩ Π↑(w0) which is not covered

by paraboloids with apices in P and w0 belongs to a hyperface of Π↓(w1). Also, h1

satisfies h1 ≥ t2/2 + h ≥ t whenever t ≥ (−h ∨ 4). Thus we have

E2 ⊂ Ẽ2 :=
{
w0 ∈ Ext(P) belongs to a hyperface of Π↓(w1), h1 ∈ [t,∞)

}
. (4.4)

On Ẽ2, Π
↓(w1) does not contain points in P and therefore it doesn’t contain points of

P ∩ C(0, t). Thus Ẽ2 ⊂ F2 and we have

E1 ∪ E2 ⊂ E1 ∪ Ẽ2 ⊂ F1 ∪ F2.

We bound separately the probability of events F1 and F2.
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Upper-bound for P [F1]. Let us consider a fixed w1 ∈ ∂Π↑(w0) with h1 = h + 1
2
v21 ≤

t. The probability that Π↓(w1) ∩ C(0, t)c ∩ P ̸= ∅ is bounded by the dP measure

of Π↓(w1) ∩ C(0, t)c. A small calculation shows that the maximal height of a point

in Π↓(w1) ∩ C(0, t)c is h1 − 1
2
(t −

√
2(h1 − h))2. Consequently, the dP measure of

Π↓(w1) ∩ C(0, t)c is bounded by the dP measure of Π↓(w1) ∩ {(v, h′) : h′ ≤ h1 − 1
2
(t−√

2(h1 − h))2}. Recall that c is a constant which changes from line to line. Up to a

multiplicative constant, the dP measure of Π↓(w1) ∩ C(0, t)c is bounded by∫ h1− 1
2
(t−

√
2(h1−h))2

−∞
eh

′
(2(h1 − h′))

d−1
2 dh′ = eh1

∫ +∞

1
2
(t−

√
2(h1−h))2

e−u(2u)
d−1
2 du

≤ c exp

(
h1 −

1

c
(
t2

2
+ h1 − h− t

√
2(h1 − h))

)
,

where the equality follows with u := h1 − h′.

Consequently, discretizing ∂Π↑(w0) ∩ (Rd−1 × (−∞, t]), we get

P [F1] ≤ ce−t2/(2c)

∫ t

h

(2(h1 − h))
d−2
2 e(1−1/c)h1+h/c+t

√
h1−h/cdh1

≤ ce−t2/(2c)

∫ t−h

0

(2h1)
d−2
2 e(1−1/c)h1+h+t

√
h1/cdh1

≤ ce−(1/c)(t2−t3/2−t)

≤ ce−t2/c.

When λ is fixed, we proceed as follows. Let w0 := (v0, h0). Recall from (3.9) that

[Π↑(v0, h0)]
(λ) := {(v, h) ∈ Wλ, h ≥ h0 +R2

λ(1− cos[eλ(v, v0)])− h0(1− cos[eλ(v, v0)])}.

We claim that for λ large and independent of t, that [Π↑(v0, h0)]
(λ) ∩ (Rd−1 × (−∞, t])

has a spatial diameter (in the v coordinates) bounded by c1
√
t. We see this as follows.

Let (v, h) ∈ [Π↑((v0, h0))]
(λ) ∩ (−∞, t]. When h ≤ t and |h0| ≤ t we get R2

λ(1 −
cos[eλ(v, v0)]) ≤ 3t. Thus 1− cos[eλ(v, v0)] ≤ 3tR−2

λ . We may without loss of generality

assume t ≤ Rλ, since the stabilization radius never exceeds the spatial diameter of Wλ.

It follows that 1 − cos[eλ(v, v0)] is small when λ exceeds some λ1 (independent of t),

that is to say there is c such that

ceλ(v, v0)
2 ≤ 1− cos[eλ(v, v0)] ≤ 3tR−2

λ

which gives |v − v0| ≤ c1
√
t, since eλ(v, v0)

2 ≥ (v − v0)
2R−2

λ (geodesic distance exceeds

Euclidean distance). Let

w1 := (v1, h1) ∈ ∂[(Π↑(w0)]
(λ) ∩ C(v0, t).
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We now estimate the maximal height of a point on [(Π↓(w1)]
(λ) ∩ C(v0, t)

c. If (v, h)

belongs to the boundary of [(Π↓(w1)]
(λ) then we have from (3.11) that

h = R2
λ −

R2
λ − h1

cos[eλ(v, v1)]

which gives

cos[eλ(v, v1)] = 1− h1 − h

R2
λ − h

.

Now cos x ≤ 1− c2x
2 for x ∈ [0, π], giving

1− h1 − h

R2
λ − h

≤ 1− c2eλ(v, v1)
2.

This gives

c2(v1 − v)2

R2
λ

≤ c2eλ(v, v1)
2 ≤ h1 − h

R2
λ − h

≤ h1 − h

R2
λ − t

≤ h1 − h

R2
λ −Rλ

where we use that without loss of generality t ≤ Rλ. In other words, since R2
λ − Rλ

exceeds R2
λ/2 we have

h ≤ h1 − c3(v − v1)
2. (4.5)

The maximal height of a point on [(Π↓(w1)]
(λ) ∩C(v0, t)

c is found by setting v equal to

v0 + t in the above, giving that maximal height is at most

≤ h1 − c3(v0 + t− v1)
2.

Now |v1 − v0| ≤ c1
√
t (v1 ≤ v0 + c1

√
t) which shows that the maximal height is at most

≤ h1 − c3(t− c1
√
t)2 ≤ t− c3(t− c1

√
t)2.

Now we follow the proof for the case λ = ∞. The dP(λ) measure of [(Π↓(w1)]
(λ) ∩

C(v0, t)
c is bounded by the dP(λ) measure of

[(Π↓(w1)]
(λ) ∩ {(v, h) : h ≤ t− c3(t− c1

√
t)2}.

The intensity measure of dP(λ) is upper bounded by

≤ C|(1− h

R2
λ

)|d−1eh/2, (v, h) ∈ Wλ.

The cross section of [(Π↓(w1)]
(λ) at height h ∈ (−∞, h1] has radius which may be upper

bounded by solving for |v − v1| in (4.5). This gives

|v − v1| ≤ c−1
3

√
h1 − h.
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The dP(λ) measure of [(Π↓(w1)]
(λ) ∩ C(v0, t)

c is thus bounded by

C

∫ t−c3(t−c1
√
t)2

−∞
|(1− h

R2
λ

)|d−1eh/2(h1 − h)(d−1)/2dh.

Let c4 = c3/2. For t large the upper limit of integration is at most −c4t
2, independent of

the choice of h. There is a small positive constant c5 such that |(1− h
R2

λ
)|d−1eh/2 ≤ ec5h

holds for all h ∈ (−∞, 0]. Also,

(h1 − h)(d−1)/2 ≤ C(t(d−1)/2 + |h|(d−1)/2).

Putting these estimates together shows that the dP(λ) measure of [(Π↓(w1)]
(λ)∩C(v0, t)

c

is bounded by

C

∫ −c4t2

−∞
ec5h(t(d−1)/2 + |h|(d−1)/2)dh.

This last integral is bounded by ≤ c6 exp(−t2/c6).

Consequently, discretizing ∂Π↑(w0)
(λ) ∩ (Rd−1 × (−∞, t]), we get

P [F1] ≤ c6e
−t2/c6

∫ t

h

(c1
√

h1 − h)d−2dh1

≤ c7e
−t2/c7

Upper-bound for P [F2]. Suppose h1 ∈ [t,∞). Since w1 /∈
∪

w∈P∩C(0,t)Π
↑(w), it follows

that the downward paraboloid Π↓(w1) does not contain points in P ∩C(0, t). Now the

dP measure of Π↓(w1)∩C(0, t) is bounded below by its dP measure ‘above’ Rd−1, which

is at least as large as chd
1e

h1/2 which we generously bound below by eh1/2. Thus the

probability that Π↓(w1) does not contain points in P∩C(0, t) is bounded by exp(−eh1/2).

Discretizing (Rd−1 × [t,∞)) ∩ C(0, t) into unit cubes, we see that the probability

that there is w1 := (v1, h1) ∈ ∂
(
Π↑(w0)

)
∩ C(0, t) such that Π↓(w1) does not contain

points in P ∩ C(0, t) is bounded by

c

∫ ∞

t

td−1 exp(−eh1/2)dh1 ≤ ctd−1 exp(
−et/2

c
).

Thus there is a constant c such that P [F2] ≤ c exp(−t2/c) for t ≥ (−h ∨ 4).

When λ is fixed, we consider w1 = (v1, h1) ∈ ∂
[
Π↑(w0)

](λ)∩C(0, t) such that h1 ≥ t

and
[
Π↓(w1)

](λ) ∩C(0, t)∩P = ∅. We use the same notations x0 = [T (λ)]−1((0, h)) and

x1 = [T (λ)]−1(w1). We recall that x1 is on the sphere of diameter [0, x0] and that the
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inverse image of
[
Π↓(w1)

](λ)
by [T (λ)]−1 is the half-space containing x1, orthogonal to x1

and not containing the origin. We denote by C ′
x1,t,λ

the intersection of that half-space

with the cone {x ∈ Rd : dSd−1(x/|x|, u0) ≤ t/Rλ}. Let us find a lower bound for the

dPλ measure of C ′
x1,t,λ

: we recall that a point x is on the hyperplane containing x1 and

orthogonal to x1 if |x| = |x1|/ cos(θ) where θ = dSd−1( x1

|x1| ,
x
|x|). Consequently, we verify

that there exists c > 0 such that when θ ≤ c
√
h1Rλ, we have |x| ≤ Rλ(1 − h1

2R2
λ
). In

particular, C ′
x1,t,λ

contains the set

{x ∈ Rd : |x| ≥ Rλ(1−
h1

2R2
λ

)} ∩ {x ∈ Rd : dSd−1(x/|x|, u0) ≤ t/Rλ}

∩ {x ∈ Rd : dSd−1(x/|x|, x1/|x1|) ≤ c
√

h1/Rλ}.

The area measure of the intersection of the two cones {x ∈ Rd : dSd−1(x/|x|, u0) ≤
t/Rλ} ∩ {x ∈ Rd : dSd−1(x/|x|, x1/|x1|) ≤ c

√
h1/Rλ} with the unit-sphere is at least

c(
√
h ∧ t/Rλ)

d−1, i.e. at least cR
−(d−1)
λ if t ≥ 1. Consequently, the dPλ measure of

C ′
x1,t,λ

satisfies

dPλ(C
′
x1,t,λ

) ≥ cλR
−(d−1)
λ

∫ ∞

ρ=Rλ(1−
h1
2R2

λ

)

e−ρ/2ρd−1dρ

≥ cλR
−(d−1)
λ Rd−2

λ (1− h1

2R2
λ

)d−2 exp

(
−R2

λ(1−
h1

2R2
λ

)2/2

)
≥ cλR−1

λ e−R2
λ/2eh1/2e−h2

1/(8Rλ)
2

≥ cR−1
λ

√
log(λ)eh1/2

≥ ceh1/2 ≥ cet/2.

Notice that we use that h1 ≤ R2
λ to get (1− h1

2Rλ
) ≥ 1/2.

In particular, the probability that C ′
x1,t,λ

is empty is upper-bounded by e−cet/2 . We

discretize the set which is the intersection of the sphere of diameter [0, x0] with the

cone {x ∈ Rd : dSd−1(x/|x|, u0) ≤ t/Rλ} and the ball centered at the origin and of

radius Rλ(1 − t/R2
λ). That set has an area of order Θ(1). Consequently, we have

P [F2] ≤ e−cet/2 .

Therefore,

P [E1] + P [E2] ≤ P [F1] + P [F2] ≤ c exp(−t2

c
),

showing (4.3) as desired.

Whereas the previous lemma localizes k-face and volume functionals in the spatial

domain, we now localize in the height/time domain. We show that the boundaries of
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the paraboloid germ-grain processes Ψ(λ)(P(λ)) and Φ(λ)(P(λ)), λ ∈ [λ0,∞], are not too

far from Rd−1. Recall that the point process P(λ), λ = ∞, is taken to be P and we also

write Ψ(P) for Ψ(∞)(P∞). We also localize the height coordinate of faces containing

extreme points. If w ∈ Ext(λ)(P(λ)) we put H(w) := H(w,P(λ)) to be the maximal

height coordinate (with respect to Rd−1) of a parabolic face in Φ(λ)(P(λ)) containing w,

otherwise we put H(w) = 0.

Lemma 4.2 (a) There is a constant c such that for all λ ∈ [λ1,∞], w = (v1, h1) ∈ P (λ),

and t ≥ (−h ∨ 4) we have

P [H(w,P(λ)) ≥ t] ≤ c exp(−et

c
). (4.6)

(b) There is a constant c such that for all L ∈ (0,∞), t ∈ (0,∞), λ ∈ [λ1,∞] and

(v1, h1) ∈ Wλ we have

P [d((∂Ψ(λ)(P(λ)) ∩ C(v1, L)), Bd−1(v1, L)) > t] ≤ cLd−1e−
t
c . (4.7)

The bounds (4.6)-(4.7) also hold for the dual processes Φ(λ)(P(λ)).

Proof. The bound (4.6) is just a restatement of the probability bound P [Ẽ2], with Ẽ2

defined at (4.5).

We now prove (4.7). Recall that we write P for P(∞). We bound the probability of

the two events

E3 := {∂Ψ(λ)(P(λ)) ∩ {(v, h) : |v − v1| ≤ L, h > t} ̸= ∅}

and

E4 := {∂Ψ(λ)(P(λ)) ∩ {(v, h) : |v − v1| ≤ L, h < −t} ̸= ∅}.

When in E3, there is a point w := (v, h) ∈ Ext(λ)(P(λ)), h ∈ [t,∞), |v− v1| ≤ L. By

(4.6) and discretization of {(v, h) : |v−v1| ≤ L, h ∈ [t,∞)} into unit volume sub-cubes,

we get

P [E3] ≤ cLd−1 exp(−et/c).

On the event E4, there exists a point (v2, h2) in {(v, h) : |v−v1| ≤ L, h ∈ (−∞,−t)}
which is on the boundary of an upward paraboloid with apex in P(λ). The apex of

this upward paraboloid is contained in the union of all down paraboloids with apex

on Bd−1(v1, L) × {h2}. The dP(λ) measure of this union is bounded by c exp(h2/c).

Consequently, the probability that the union is not devoid of points from P(λ) is less than

1− exp(−ceh2/c) ≤ c exp(h2/c), i.e., the probability that the union contains points from

P(λ) is less than c exp(h2/c). It remains to discretize and integrate over h2 ∈ (−∞,−t).

This goes as follows.
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Discretizing C(v1, L)× [−t−1,−t] into unit volume subcubes, we get that the prob-

ability there exists (v2, h2) ∈ Rd−1 × (−t− 1,−t] on the boundary of an up paraboloid,

is bounded by cLd−1 exp(−t/c). The probability there exists (v2, h2) ∈ Rd−1× (−∞,−t]

on the boundary of an up paraboloid is thus bounded by

cLd−1

∫ −t

−∞
eh2/ceh2dh2

This establishes (4.7). The same argument applies to the dual process Φ(λ)(P(λ)) and

so (4.7) holds for Φ(λ)(P(λ)), as claimed.

4.2. Moment bounds for ξ(λ), λ ∈ [λ1,∞]. For a random variable W and all

p ∈ (0,∞), we let ||W ||p := (E |W |p)1/p.

Lemma 4.3 For all p ∈ (0,∞), k ∈ {0, 1, ..., d− 1} there is c1 := c1(p, k, d) such that

for all (v, h) ∈ Wλ, λ ∈ [λ1,∞], we have

E [|ξ(λ)k ((v, h)),P(λ))|p] ≤ c1(−h ∨ 4)c1 exp(−eh∨0

c1
). (4.8)

For all p ∈ (0,∞), there is c2 := c2(p, d) such that for all (v, h) ∈ Rd−1 × R we have

E [|ξ(∞)
V ((v, h),P)|p] ≤ c2(−h ∨ 4)c2 exp(−eh∨0

c2
) (4.9)

whereas for all (v, h) ∈ Wλ, λ ∈ [λ1,∞), we have

E [|Rλξ
(λ)
V ((v, h),P(λ))|p] ≤ c2(−h ∨ 4)c2 exp(−eh∨0

c2
). (4.10)

Proof. We start by showing for all λ ∈ [λ1,∞]

sup
v∈Rd−1

E [|ξ(λ)k ((v, h),P(λ))|p] ≤ c1(−h ∨ 4)c1 . (4.11)

Put w0 = (v, h). Let N := N(w0) := card{Ext(λ)(P(λ)) ∩ C(v,R)} with R := Rξ
(λ)
k the

radius of spatial localization for ξ
(λ)
k at w0. Clearly

ξ
(λ)
k (w0,P) ≤

(
N

k − 1

)
.

To show (4.11), it suffices to show there is a constant c1 := c1(p, k, d) such that

EN(w0)
p(k−1) ≤ c1(−h ∨ 4)c1 .
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For fixed r ∈ (0,∞) we may write

card{Ext(λ)(P(λ)) ∩ C(v, r)} =
∑

x∈P(λ)∩C(v,r)

e(x,P(λ))

where e(x,P(λ)) = 1 if x ∈ Ext(λ)(P(λ)) and otherwise e(x,P(λ)) = 0. By Lemma

4.2(b), for all λ ∈ [λ1,∞] we have E e((0, h),P(λ)) ≤ c exp(−eh/c) and it follows that

for all r ∈ (0,∞) and p ∈ (0,∞) that

E (card{Ext(λ)(P(λ)) ∩ C(v, r)})p ≤ c(p)rd−1. (4.12)

Thus for all λ ∈ [λ1,∞] we have

EN(w0)
p(k−1)

=
∞∑
i=0

E [(card{Ext(λ)(P(λ)) ∩ C(v,R)})p(k−1)1(i ≤ R < i+ 1)]

≤ c1(−h ∨ 4)c1 +
∞∑

i=(−h∨4)

(E [(card{Ext(λ)(P(λ)) ∩ C(v, i+ 1)})2p(k−1))1/2(P [R > i])1/2

≤ c1(−h ∨ 4)c1 +
∞∑

i=(−h∨4)

c(p, k)(i+ 1)(d−1)p(k−1)(P [R > i])1/2,

where the last two inequalities follow by the Cauchy-Schwarz inequality and (4.12),

respectively. Now (4.11) follows since R has exponentially decaying tails.

To deduce (4.8), we argue as follows. First consider the case h ∈ [0,∞). By the

Cauchy-Schwarz inequality

E [|ξ(λ)((0, h),P(λ))|p]
≤ (E |ξ(λ)((0, h),P(λ))|2p)1/2P [|ξ(λ)((0, h),P(λ))| > 0]1/2

≤ (c1(2p, k, d))
1/2(−h ∨ 4)c1(p,k,d)P [|ξ(λ)((0, h),P(λ))| ̸= 0]1/2

by (4.11). The event {|ξ(λ)((0, h), v)| ̸= 0} is a subset of the event that (0, h) is

extreme in P(λ) and we may now apply (4.6) for t = h, which is possible since we have

assumed h is positive. This gives (4.8) for h ∈ [0,∞). When h ∈ (−∞, 0) we bound

P [|ξ(λ)((0, h),P(λ))| > 0]1/2 by c exp(−e0/c), c large, which shows (4.8) for h ∈ (−∞, 0).

This concludes the proof of (4.8).

We now prove (4.9). Put w0 := (v, h). Notice that ξ
(∞)
V (w0,P) is bounded by

the Lebesgue measure of B(v,R) × [−D(R), D(R)], where for all L ∈ (0,∞) we put

D(L) := d((∂Φ(P) ∩ C(v, L)), Bd−1(v, L)). We have

E |ξ(∞)
V (w0,P)|p ≤ cE (Rd−1D(R))p ≤ c||Rp(d−1)||2||D(R)p||2,
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by the Cauchy-Schwarz inequality. By the tail behavior forR we have ERr = r
∫∞
0

P [R >

t]tr−1dt ≤ c(r)(−h ∨ 4)r for all r ∈ [1,∞). Also, for all r ∈ [1,∞) we have

ED(R)r =
∞∑
i=0

E (D(R))r1(i ≤ R < i+ 1)

≤
∞∑
i=0

||D(i+ 1))r||2P [R ≥ i]1/2.

By Lemma 4.2 we have ||D(i + 1))r||2 ≤ c(r)(i + 1)d−1. We also have that P [R ≥ i]

decays exponentially fast, showing that

ED(R)r ≤ c(r)(−h ∨ 4)d−1.

It follows that

E |ξ(∞)
V (w0,P)|p ≤ ||Rp(d−1)||2||D(R)p||2 ≤ c(p, d)(−h ∨ 4)p(d−1)(−h ∨ 4)(d−1)/2,

which gives

E [|ξ(∞)
V (w0,P)|p] ≤ c2(−h ∨ 4)c2 . (4.13)

The bound (4.9) follows from (4.13) in the same way that (4.11) implies (4.8). The

proof of (4.10) follows similarly.

4.3. Scaling limits. The next two lemmas justify the assertion that the functionals

in Ξ(∞) are indeed scaling limits of their counterparts in Ξ(λ).

Lemma 4.4 For all w ∈ Wλ, r ∈ (0,∞), and ξ a generic k-face functional we have

lim
λ→∞

E ξ
(λ)
[r] (w,P

(λ)) = E ξ
(∞)
[r] (w,P). (4.14)

If ξ is the volume functional ξV then

lim
λ→∞

ERλξ
(λ)
[r] (w,P

(λ)) = E ξ
(∞)
[r] (w,P). (4.15)

Proof. We prove (4.14) for w0 := (0, h), as the proof for other choices of w is no

different. Put S(r,H) := Bd−1(0, r) × [−H,H], with H a fixed deterministic height.

By Lemma 4.2 and the Cauchy-Schwarz inequality, it is enough to show

lim
λ→∞

E ξ
(λ)
[r] (w0,P(λ) ∩ S(r,H))] = E ξ

(∞)
[r] (w0,P ∩ S(r,H)).

It is understood that the left-hand side is determined by the geometry of the quasi-

paraboloids {[Π↑(w)](λ)}, w ∈ P (λ) ∩ S(r,H)) and similarly for the right-hand side.
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Equip the collection X (r,H) of locally finite point sets in S(r,H) with the discrete

topology. Thus if Xi, i ≥ 1, is a sequence in X (r,H) and if

lim
i→∞

Xi = X , then Xi = X for i ≥ i0. (4.16)

Recall that [Π↓(w′)](∞) coincides with Π↓(w′). For all λ ∈ [λ0,∞], w ∈ Wλ, and X ∈
X (r,H) we define gk,λ : Wλ × X (r,H) 7→ R by taking gk,λ(w,X ) to be the product of

(k + 1)−1 and the number of quasi parabolic k-dimensional faces of
∪

w′∈X [Π
↓(w′)](λ)

which contain w, if w is a vertex in X , otherwise gk,λ(w,X ) = 0. Thus gk,λ(w,X ) :=

ξ
(λ)
[r] (w,X ∩ S(r,H))).

Let X be in regular position, that is to say the intersection of k quasi-paraboloids

contains at most (d−k+1) points of X for all 1 ≤ k ≤ d. Thus P is in regular position

with probability one. To apply the continuous mapping theorem (Theorem 5.5 in [9]),

by (4.16), it is enough to show that gk,λ(w0,X ) coincides with gk,∞(w0,X ) for λ large

enough. Let ε > 0 be the minimal distance between any down paraboloid containing

d points of X and the rest of the point set. Perturbations of the paraboloids within

an ε parallel set does not change the number of k-dimensional faces. In particular,

for λ large enough, the set ∂
(
∪w′∈X [Π

↓(w′)](λ)
)
is included in that parallel set so that

the number of k-dimensional faces does not change. Thus gk,λ(w0,X ) coincides with

gk,∞(w0,X ) for large λ.

Since P(λ) D−→ P , we may apply the continuous mapping theorem to get

ξ
(λ)
[r] (w0,P(λ))

D−→ ξ
(∞)
[r] (w0,P)

as λ → ∞. The convergence in distribution extends to convergence of expectations by

the uniform integrability of ξ
(λ)
[r] , which follows from moment bounds for ξ

(λ)
[r] (w0,P(λ))

analogous to those for ξ
(λ)
k (w0,P(λ)) as given in Lemma 4.3. This proves (4.14) when ξ

is a generic k-face functional.

Next we show for ξ := ξV , r ∈ (0,∞) that

lim
λ→∞

E [Rλξ
(λ)
[r] (w0,P(λ) ∩ S(r,H))] = E [ξ

(∞)
[r] (w0,P ∩ S(r,H))].

This will yield (4.15). Recall that Vol
(λ)
d is the image of Vold under T (λ). For λ ∈

[λ0,∞)], we define this time g̃k,λ : (Rd−1 × R)× S(r,H) 7→ R by

g̃k,λ(w,X ) = Rλξ
(λ)
[r] (w,X ∩ S(r,H))

= RλVol
(λ)
d ({(v, h) ∈ S(r,H) : 0 ≤ h ≤ ∂Φ(λ)(X )(v), v ∈ Cyl(λ)(w),Φ(λ)(X )(v) ≥ 0})

−RλVol
(λ)
d ({(v, h) ∈ S(r,H) : Φ(λ)(X )(v) ≤ h ≤ 0, v ∈ Cyl(λ)(w),Φ(λ)(X )(v) < 0}).
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When λ = ∞ we put

g̃k,∞(w,X ) = ξ
(∞)
[r] (w,X ∩ S(r,H))

= Vold({(v, h) ∈ S(r,H) : 0 ≤ h ≤ ∂Φ(X )(v), v ∈ Cyl(w),Φ(X )(v) ≥ 0})

−Vold({(v, h) ∈ S(r,H) : Φ(X )(v) ≤ h ≤ 0, v ∈ Cyl(w),Φ(X )(v) < 0}).

Recalling (4.16), it is enough to show for a fixed point set X in regular position that

lim
λ→∞

|g̃k,λ(w,X )− g̃k,∞(w,X )| = 0.

We show that the first term comprising g̃k,λ(w,X ) converges to the first term comprising

g̃k,∞(w,X ). In other words, setting

F (X , λ) := {(v, h) ∈ S(r,H) : 0 ≤ h ≤ ∂Φ(λ)(X )(v), v ∈ Cyl(λ)(w),Φ(λ)(X )(v) ≥ 0}

and

F (X ) := {(v, h) ∈ S(r,H) : 0 ≤ h ≤ ∂Φ(X )(v), v ∈ Cyl(w),Φ(X )(v) ≥ 0}

we show

lim
λ→∞

|RλVol
(λ)
d (F (X , λ))− Vold(F (X ))| = 0.

The proof that the second term comprising g̃k,λ(w,X ) converges to the second term

comprising g̃k,∞(w,X ) is identical. We have

|RλVol
(λ)
d (F (X , λ))− Vold(F (X ))| ≤ |RλVol

(λ)
d (F (X , λ))−RλVol

(λ)
d (F (X ))| (4.17)

+|RλVol
(λ)
d (F (X ))− Vold(F (X ))|.

Since ∂Φ(λ)(X ) converges uniformly to ∂Φ(X ) on compacts and since dH(Cyl(λ)(w),Cyl(w))

decreases to zero as λ → ∞ (indeed ∂(Cyl(λ)(w)) → ∂Cyl(w) uniformly), we get for

λ ≥ λ0 that F (X , λ)∆F (X ) is a subset of a set A(X ) ⊂ Rd of arbitrarily small volume.

So |RλVol
(λ)
d (F (X , λ)) − RλVol

(λ)
d (F (X ))| ≤ RλVol

(λ)
d (A(X )). By Lemma 3.2, we have

RλVol
(λ)
d

D−→ Vold and thus the first term in (4.17) goes to zero as λ → ∞. Appealing

again to RλVol
(λ)
d

D−→ Vold, the second term in (4.17) likewise tends to zero, showing

(4.15) as desired.

Lemma 4.5 For all h ∈ R and ξ a generic k-face functional we have

lim
λ→∞

E [ξ(λ)((0, h),P(λ))] → E [ξ(∞)((0, h),P)].

If ξ is the volume functional ξV then the left-hand sides require an additional prefactor

of Rλ.
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Proof. We prove the first limit as follows. Let w0 := (0, h). By Lemma 4.4, given ϵ > 0,

we have for all λ ≥ λ0(ϵ)

|E ξ
(λ)
[r] (w0,P(λ))− E ξ

(∞)
[r] (w0,P))| < ϵ. (4.18)

We now show that replacing ξ
(λ)
[r] and ξ

(∞)
[r] by ξ(λ) and ξ(∞), respectively, introduces

negligible error in (4.18). Write

|E ξ
(λ)
[r] (w0,P(λ))− E ξ(λ)(w0,P(λ)))|

= |E (ξ
(λ)
[r] (w0,P(λ))− ξ(λ)(w0,P(λ)))1(Rξ(λ) [w0] < r)|

+ |E (ξ
(λ)
[r] (w0,P(λ))− ξ(λ)(w0,P(λ)))1(Rξ(λ) [w0] > r)|.

The first term vanishes by definition of Rξ(λ) [w0]. By the Cauchy-Schwarz inequality,

the second term is bounded by

||ξ(λ)[r] (w0,P(λ))− ξ(λ)(w0,P(λ))||2P [Rξ(λ) [w0] > r]1/2 ≤ cP [Rξ(λ) [w0] > r]1/2 ≤ ϵ (4.19)

if r ≥ (−h ∨ 4) is large enough. It follows that for r ≥ r0(ϵ) and λ ≥ λ0(ϵ)

|E ξ(λ)(w0,P(λ))− E ξ
(λ)
[r] (w0,P(λ))| < ϵ. (4.20)

Similarly for r ≥ r1(ϵ) we have

|E ξ(∞)(w0,P)− E ξ
(∞)
[r] (w0,P)| < ϵ. (4.21)

Combining (4.18)-(4.21) and using the triangle inequality we get for r ≥ (r0(ϵ) ∨ r1(ϵ)

and λ ≥ λ0(ϵ)

|E ξ(λ)(w0,P(λ))− E ξ(∞)(w0,P)| < 3ϵ.

Since ϵ is arbitrary we have shown Lemma 4.5.

4.4. Two point correlation function for ξ(λ). For all h ∈ R, (v′, h′) ∈ Wλ, and ξ a

generic k-face functional, we extend the definition (2.3) by putting for all λ ∈ [λ0,∞]

c(λ)((0, h), (v′, h′)) := cξ
(λ)
k ((0, h), (v′, h′)) :=

E [ξ
(λ)
k ((0, h),P(λ) ∪ (v′, h′))× ξ

(λ)
k ((v′, h′),P(λ) ∪ (0, h))]−

E ξ
(λ)
k ((0, h),P(λ))E ξ

(λ)
k ((v′, h′),P(λ)).

If ξ is the volume functional ξV we likewise put for λ ∈ [λ0,∞)

cξ
(λ)
V ((0, h), (v′, h′)) :=
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E [Rλξ
(λ)
V ((0, h),P(λ) ∪ (v′, h′))×Rλξ

(λ)
V ((v′, h′),P(λ) ∪ (0, h))]−

ERλ(ξ
(λ)
V ((0, h),P(λ))ERλξ

(λ)
V ((v′, h′),P(λ)).

The next lemma shows convergence of the re-scaled two-point correlation functions

on re-scaled input P(λ) to their counterpart correlation functions on the limit input P .

Lemma 4.6 For all h ∈ R, (v′, h′) ∈ Wλ and ξ ∈ Ξ we have

lim
λ→∞

cξ
(λ)

((0, h), (v′, h′)) = cξ
(∞)

((0, h), (v′, h′)).

Proof. We prove the convergence only for ξk as the method would be the same for ξV .

We deduce from Lemma 4.5 that

lim
λ→∞

E ξ
(λ)
k ((0, h),P(λ))E ξ

(λ)
k ((v′, h′),P(λ))] = E ξ

(∞)
k ((0, h),P(λ))E ξ

(∞)
k ((v′, h′),P(λ)).

Now by the Cauchy-Schwarz inequality, we get

|E [ξ
(λ)
k ((0, h),P(λ) ∪ (v′, h′))× ξ

(λ)
k ((v′, h′),P(λ) ∪ (0, h))]

− E [ξ
(∞)
k ((0, h),P(λ) ∪ (v′, h′))× ξ

(∞)
k ((v′, h′),P(λ) ∪ (0, h))]| ≤ T1 + T2

where

T1 = E [|ξ(λ)k ((0, h),P(λ) ∪ (v′, h′))− ξ
(∞)
k ((0, h),P(λ) ∪ (v′, h′))|2]1/2E [|ξ(λ)k ((v′, h′),P(λ) ∪ (0, h))|2]1/2,

T2 = E [|ξ(λ)k ((v′, h′),P(λ) ∪ (0, h))− ξ
(∞)
k ((v′, h′),P(λ) ∪ (0, h))|2]1/2E [|ξ(∞)

k ((0, h),P(λ) ∪ (v′, h′))|2]1/2.

It is enough to show that the term T1 goes to zero as the proof would be similar for T2.

We have showed in the proof of Lemma 4.4 that ξ
(λ)
[r] ((0, h),P(λ) ∪ (v′, h′)) converges in

distribution to ξ
(λ)
[r] ((0, h),P(∞) ∪ (v′, h′)) for every r > 0. Lemma 4.3 implies that this

family is uniformly integrable so the convergence occurs in L2 also. Using the same

method as in the proof of Lemma 4.5, we obtain that

lim
λ→∞

E [|ξ(λ)k ((0, h),P(λ) ∪ (v′, h′))− ξ
(∞)
k ((0, h),P(λ) ∪ (v′, h′))|2] = 0. (4.22)

By Lemma 4.3, the variables ξ
(λ)
k ((v′, h′),P(λ) ∪ (0, h)) are uniformly bounded in L2 so

we deduce from (4.22) that the term T1 tends to zero.

The next lemma shows that the re-scaled and limit two point correlation function

decays exponentially fast with the distance between spatial coordinates of the input

and super-exponentially fast with respect to positive height coordinates.
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Lemma 4.7 There is a constant c3 := c3(k, d) ∈ (0,∞) such that for all h ∈ R,
(v′, h′) ∈ Wλ, and all ξ ∈ Ξ, we have for |v′| ≥ 2max(−h ∨ 4,−h′ ∨ 4) and λ ∈ [λ0,∞]

|cξ(λ)((0, h), (v′, h′))| ≤ c3(−h ∨ 4)c3(−h′ ∨ 4)c3 exp

(
−1

c3
(|v′|2 + eh∨0 + eh

′∨0)

)
. (4.23)

Proof. We first show these bounds for the k-face functional ξk. Put r := |v′|/2. We

have

|cξ(λ)((0, h), (v′, h′))| ≤ |cξ
(λ)
[r] ((0, h), (v′, h′))|+ T1 + T2 (4.24)

where

T1 = |E [ξ(λ)((0, h),P(λ) ∪ (v′, h′))ξ(λ)((v′, h′),P(λ) ∪ (0, h))]

− E [ξ
(λ)
[r] ((0, h),P

(λ) ∪ (v′, h′))ξ
(λ)
[r] ((v

′, h′),P(λ) ∪ (0, h))]|,

T2 = |E [ξ(λ)((0, h),P(λ) ∪ (v′, h′))]E [ξ(λ)((v′, h′),P(λ) ∪ (0, h))]

− E [ξ
(λ)
[r] ((0, h),P

(λ) ∪ (v′, h′))]E [ξ
(λ)
[r] ((v

′, h′),P(λ) ∪ (0, h))]|.

This choice of r ensures that C(0, r) and C(v′, r) do not intersect and therefore by

independence we have

cξ
(λ)
[r] ((0, h), (v′, h′)) = 0. (4.25)

Since r ≥ max(−h ∨ 4,−h′ ∨ 4), we get from the Cauchy-Schwarz inequality, (4.3)

and (4.8) with p = 2 that there is a constant c := c(k) ∈ (0,∞) with

|E [ξ
(λ)
[r] ((0, h),P

(λ) ∪ {(v′, h′)})]− E [ξ(λ)((0, h),P(λ) ∪ {(v′, h′)})]|

≤ c∥ξ(λ)[r] ((0, h),P
(λ) ∪ {(v′, h′)})− ξ(λ)((0, h),P(λ) ∪ {(v′, h′)})∥2P [Rξ(λ) [(0, h)] > r]1/2

≤ c(−h ∨ 4)c exp(
−1

c
(|v′|2 + eh∨0)), (4.26)

where the last inequality uses r = |v′|/2. The same inequality holds when the roles of

(0, h) and (v′h′) are exchanged. Consequently, using (4.26) and (4.8) for p = 1, we

deduce that

T2 ≤ c(−h ∨ 4)c(−h′ ∨ 4)c exp(
−1

c
(|v′|2 + eh∨0 + eh

′∨0)). (4.27)

In the same way, we have

T1 ≤ ∥ξ(λ)((0, h),P(λ) ∪ (v′, h′))− ξ
(λ)
[r] ((0, h),P

(λ) ∪ (v′, h′))∥2∥ξ(λ)((v′, h′),P(λ) ∪ (0, h))]∥2
+ ∥ξ(λ)((v′, h′),P(λ) ∪ (0, h))− ξ

(λ)
[r] ((v

′, h′),P(λ) ∪ (0, h))∥2∥ξ(λ)[r] ((0, h),P
(λ) ∪ (v′, h′))∥2.

31



Using (4.8) and the same method as for (4.26) with L2 norms instead of expectation,

we get that

T1 ≤ c(−h ∨ 4)c(−h′ ∨ 4)c exp(
−1

c
(|v′|2 + eh∨0 + eh

′∨0)). (4.28)

Combining (4.24), (4.27) and (4.28), we get the required result. To show these bounds

hold for the volume functional ξV , we may follow the above arguments verbatim, re-

placing ξk by RλξV .

5 Proofs of main results

5.1. Proof of Theorems 1.1 and 1.2. The next result contains Theorem 1.2 and it

yields Theorem 1.1, since it implies that the extreme points of P(λ) converge in law to

Ext(P) as λ → ∞.

Proposition 5.1 Fix L ∈ (0,∞). The boundary of Ψ(P(λ)) converges in probability

as λ → ∞ to the boundary of Ψ(P) in the space C(Bd−1(0, L))) equipped with the

supremum norm. Similarly, the boundary of Φ(P(λ)) converges in probability as λ → ∞
to the Burgers festoon ∂(Φ(P)).

Proof. We only prove the convergence of Ψ(P(λ)), as the convergence of Φ(P(λ)) is

handled similarly. We show for fixed L ∈ (0,∞) that the boundary of Ψ(λ)(P(λ))

converges in law to ∂(Ψ(P)) in the space C(Bd−1(0, L))). With L fixed, for all H ∈
[0,∞) and λ ∈ [0,∞), let E(L,H, λ) be the event that the heights of ∂(Ψ(λ)(P(λ))) and

∂(Ψ(P)) belong to [−H,H] over the spatial region Bd−1(0, L). By Lemma 4.2, we have

that P [E(L,H, λ)]c decays exponentially fast in H, uniformly in λ, and so it is enough

to show, conditional on E(L,H, λ), that ∂(Ψ(λ)(P(λ))) is close to ∂(Ψ(P)) in the space

C(Bd−1(0, L)), λ large.

Recalling the definition of Ψ(λ)(P(λ)) at (3.4), we need to show, conditional on

E(L,H, λ), that the boundary of∪
w∈P(λ)∩C(0,L)

([Π↑(w)](λ) ∩ C(0, L))

is close to the boundary of ∪
w∈P∩C(0,L)

(Π↑(w) ∩ C(0, L)). (5.1)

By Lemma 3.1, given w1 := (v1, h1) ∈ P (λ) ∩ C(0, L), it follows that on E(L,H, λ)

the boundary of [Π↑(w1)]
(λ) ∩ C(0, L) coincides with the graph of

v 7→ h1 +
|v − v1|2

2
+O(R−1

λ ),
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that is coincides to within O(R−1
λ ) of the boundary of Π↑(w1). The boundary of

Ψ(λ)(P(λ))∩C(0, L) is a.s. the finite union of graphs of the above form and is thus a.s.

within O(R−1
λ ) of the boundary of∪

w∈P(λ)∩C(0,L)

(Π↑(w) ∩ C(0, L)).

It therefore suffices to show that the boundary of
∪

w∈P(λ)∩C(0,L)(Π
↑(w) ∩ C(0, L)) is

close to the boundary of the set given at (5.1). However, we may couple P(λ) and P on

Bd−1(0, L) × [−H,H] so that they coincide except on a set with probability less than

ϵ, showing the desired closeness with probability at least 1− ϵ.

5.2. Proof of expectation asymptotics (2.5). For g ∈ C(Sd−1), we have

E [⟨gRλ
, µξ

λ⟩] =
∫
Rd

g(
x

Rλ

)E [ξ(x,Pλ)]λϕ(x)dx. (5.2)

Given x ∈ Rd, let θ := θx be the rotation sending x/|x| to u0 := (0, 0, ..., 1) ∈
Sd−1. Let xθ denote the point x rotated by the angle θ, and similarly for Pθ

λ. Thus

E ξ(x,Pλ) = E ξ(xθ,Pθ
λ). Concerning the expectation inside the integral, we may with-

out loss of generality assume x/|x| = u0 and T (λ)(x) = ((0, h)). Thus E ξ(x,Pλ) =

E [ξ(λ)
(
(0, h),P(λ)

)
]. Recalling x = u · Rλ(1 − h/R2

λ), and writing dx = |Rλ(1 −
h/R2

λ)|d−1R−1
λ dhdσd−1(u), and recalling (3.16), we see that R

−(d−1)
λ E [⟨gRλ

, µξ
λ⟩] trans-

forms to

=

∫
u∈Sd−1

∫
h∈(−∞,R2

λ]

g(u(1− h

R2
λ

))E
[
ξ(λ)

(
(0, h),P(λ)

)]
ϕ̃λ(u, h)|Rλ(1−

h

R2
λ

)|d−1dhdσd−1(u),

where ϕ̃ : Sd−1 × R → R is given by

ϕ̃λ(u, h) :=
λ

Rλ

ϕ(u ·Rλ(1−
h

R2
λ

)). (5.3)

By (3.17) we have for all u ∈ Sd−1 that

ϕ̃λ(u, h) =

√
2 log λ

Rλ

exp

(
h− h2

2R2
λ

)
.

Thus there is c ∈ (0,∞) such that for all h ∈ R we have

sup
u∈Sd−1

sup
λ≥3

ϕ̃λ(u, h) ≤ ceh (5.4)

and for all u ∈ Sd−1

lim
λ→∞

ϕ̃λ(u, h) = eh. (5.5)
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By the continuity of g, Lemma 4.5 and the limit (5.5), we have for h ∈ (−∞, R2
λ) that

the integrand converges to g(u)E
[
ξ(∞) ((0, h),P)

]
eh as λ → ∞. Moreover, by (5.4)

and the moment bounds of Lemma 4.3, the integrand is dominated by the product

of a polynomial in h and an exponentially decaying function of h. The dominated

convergence theorem gives the claimed result (2.5).

5.3. Proof of variance asymptotics (2.6). For g ∈ C(Sd−1), we have

Var[⟨gRλ
, µξ

λ⟩]

=

∫
Rd

g(
x

Rλ

)2E
[
ξ(x,Pλ)

2
]
λϕ(x)dx

+

∫
Rd

∫
Rd

g(
x

Rλ

)g(
y

Rλ

)[E ξ(x,Pλ ∪ y)ξ(y,Pλ ∪ x)− E ξ(x,Pλ)E ξ(y,Pλ)]λ
2ϕ(y)ϕ(x)dydx

:= I1(λ) + I2(λ). (5.6)

We examine limλ→∞ R
−(d−1)
λ I1(λ) and limλ→∞R

−(d−1)
λ I2(λ) separately. As in the proof

of expectation asymptotics (2.5), we have

lim
λ→∞

R
−(d−1)
λ I1(λ) =

∫ ∞

−∞
E ξ

(∞)
k ((0, h),P)2ehdh

∫
Sd−1

g(u)2du. (5.7)

Next consider limλ→∞ R
−(d−1)
λ I2(λ). For x ∈ Rd we write

x = uRλ(1− h/R2
λ), (u, h) ∈ Sd−1 × R. (5.8)

We now re-scale the integrand in I2(λ) as follows. Given u := ux ∈ Sd−1 in the definition

of x, define T (λ) as in (1.3), but with u0 there replaced by u. Write T
(λ)
u to denote the

dependency on u. Denoting by (0, h) and (v′h′) the images under T
(λ)
u (x) of x and y

respectively, we notice that R
−(d−1)
λ I2(λ) is transformed as follows.

(i) The ‘covariance’ term [E ξ(x,Pλ∪y)ξ(y,Pλ∪x)−E ξ(x,Pλ)E ξ(y,Pλ)] transforms to

c(λ)((0, h), (v′, h′)). By Lemma 4.6 we have uniformly in v′ ∈ T
(λ)
u (Sd−1) and h, h′ ∈ R

that

lim
λ→∞

c(λ)((0, h), (v′, h′)) = cξ
(∞)

((0, h), (v′, h′)). (5.9)

(ii) The product g( x
Rλ

)g( y
Rλ

) becomes

f1,λ(u, h, v
′, h′) := g(u(1− h

R2
λ

))g(R−1
λ [T (λ)

u ]−1((v′, h′))).
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Using (1.3) and (5.8), we notice that [T
(λ)
u ]−1((v′, h′)) =

(
1− h′

R2
λ

)
expd−1R

−1
λ v′ and

consequently

lim
λ→∞

R−1
λ [T (λ)

u ]−1((v′, h′)) = u.

By continuity of g, we then have uniformly in v′ ∈ T
(λ)
u (Sd−1) and h, h′ ∈ R that

lim
λ→∞

f1,λ(u, h, v
′, h′) = g(u)2. (5.10)

(iii) The double integral over (x, y) ∈ Rd×Rd transforms into a quadruple integral over

(u, h, v′, h′) ∈ Sd−1 × (−∞, R2
λ]× T

(λ)
u (Sd−1)× (−∞, R2

λ].

(iv) By (3.18), the differential λϕ(y)dy transforms to

sind−2(R−1
λ |v′|)

|R−1
λ v′|d−2

√
2 log λ

Rλ

|(1− h′

R2
λ

)|d−1e
h′− h′2

2R2
λ dv′dh′

whereas R
−(d−1)
λ λϕ(x)dx transforms to

ϕ̃λ(u, h)|(1−
h

R2
λ

)|d−1dhdσd−1(u).

Thus the product R
−(d−1)
λ λ2ϕ(y)ϕ(x)dydx transforms to

f2,λ(u, h, v
′, h′)dσd−1(u)dh(v)dv

′dh′

where

f2,λ(u, h, v
′, h′) :=

sind−2(R−1
λ |v′|)

|R−1
λ v′|d−2

√
2 log λ

Rλ

|(1− h′

R2
λ

)|d−1e
h′− h′2

2R2
λ ϕ̃λ(u, h)|(1−

h

R2
λ

)|d−1.

By Lemma 3.2 and (5.5) we have uniformly in u ∈ Sd−1, v′ ∈ T (λ)(Sd−1) and h, h′ ∈ R
that

lim
λ→∞

f2,λ(u, h, v
′, h′) = eh+h′

. (5.11)

We re-write R
−(d−1)
λ I2(λ) as

=

∫
u∈Sd−1

∫
h∈(−∞,R2

λ]

∫
T

(λ)
u (Sd−1)

∫
h′∈(−∞,R2

λ]

Fλ(u, h, v
′, h′)dh′dv′dhdσd−1(u),

where

Fλ(u, h, v
′, h′) := f1,λ(u, h, v

′, h′)c(λ)((0, h), (v′, h′))f2,λ(u, h, v
′, h′).
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Combining the limits (5.10)- (5.11), it follows for all u ∈ Sd−1, h, h′ ∈ R and v′ ∈
T (λ)(Sd−1), that we have the pointwise convergence

lim
λ→∞

Fλ(u, h, v
′, h′) = g(u)2cξ

(∞)

((0, h), (v′, h′))eh+h′
.

By Lemma 4.7, we get that

|Fλ(u, h, v
′, h′)| ≤ c(−h ∨ 4)c3(−h′ ∨ 4)c3 exp

(
−1

c3
(|v′|2 + eh∨0 + eh

′∨0) + h+ h′
)
.

Using that there exists c′ > 0 such that 1
c3
eh∨0−h ≥ 1

c′
eh∨0, we obtain that Fλ(u, h, v

′, h′)

is dominated by an exponentially decaying function of all arguments which is integrable.

The dominated convergence theorem gives

lim
λ→∞

R
−(d−1)
λ I2(λ) = (5.12)∫

Sd−1

∫
Rd−1

∫
h∈(−∞,∞)

∫
h′∈(−∞,∞)

g(u)2cξ
(∞)

((0, h), (v′, h′))eh+h′
dhdh′dv′dσd−1(u).

Combining (5.7) and (5.12) gives the claimed variance asymptotics (2.6). The positivity

of Fk,d is established in [8], concluding the proof of (2.6).

5.4. Proof of Theorem 2.2. It suffices to follow the proof of Theorem 2.1 nearly

verbatim. As in (5.2), we have

E [⟨gRλ
, µξV

λ ⟩] =
∫
Rd

g(
x

Rλ

)E [ξV (x,Pλ)]λϕ(x)dx. (5.13)

Multiplying through by R
−(d−2)
λ gives that R

−(d−2)
λ E [⟨gRλ

, µξV
λ ⟩] becomes

=

∫
u∈Sd−1

∫
h∈(−∞,R2

λ]

g(u(1− h

R2
λ

))E
[
Rλξ

(λ)
V

(
(0, h),P(λ)

)]
ϕ̃λ(u, h)|(1−

h

R2
λ

)|d−1dhdσd−1(u).

We obtain (2.7) by following the proof of (2.5) for the k-face functional nearly verbatim,

appealing to the limit limλ→∞ E [Rλξ
(λ)
V ((0, h),P(λ))] = E [ξ

(∞)
V ((0, h),P)] as given in

Lemma 4.5.

The proof of the asserted variance asymptotics (2.8) for Var[⟨gRλ
, µξV

λ ⟩], follows

verbatim the proof of (2.6), replacing ξk(·) by RλξV (·).

5.5. Proof of Corollary 1.1. Define ξ(x,P) to be one if x ∈ Ext(P ), otherwise put

ξ(x,P) = 0. Put

µλ :=
∑

x∈Ext(P )∩Q̃λ

ξ(x,P ∩ Q̃λ)δx.
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Note that E [card(Ext(P ∩ Q̃λ))] = E [⟨1, µλ⟩].
Then writing points in Rd−1 × R as (v, h) we have

(volQλ)
−1E [⟨1, µλ⟩] = (volQλ)

−1

∫
Qλ

∫ ∞

−∞
E ξ((v, h),P ∩ Q̃λ)e

hdhdv.

Put P̃λ := P ∩ Q̃λ. By translation invariance of ξ we have

ξ((v, h), P̃λ) = ξ((0, h), P̃λ − (v, 0))

that is to say

(volQλ)
−1E [⟨1, µλ⟩] =

∫ ∞

−∞
E ξ((0, h), P̃λ − (v, 0))ehdhdv.

The functional ξ satisfies the localization and moment conditions of those functionals

in Ξ(∞) and consequently we have

lim
λ→∞

E [ξ((0, h), P̃λ − (v, 0))] = E [ξ((0, h),P)].

As in Lemma 4.3, we may show that E [ξ((0, h), P̃λ)]e
h is dominated by an exponentially

decaying function of h, uniformly in λ. Thus by the dominated convergence theorem

we get

lim
λ→∞

(volQλ)
−1E [⟨1, µλ⟩] =

∫ ∞

−∞
E [ξ((0, h),P))]ehdh.

To prove variance asymptotics, we argue as follows. For all h ∈ R, and (v′, h′) ∈
Rd−1 × R, we abuse notation and put

cξ((0, h), (v′, h′), P̃λ) := E [ξ((0, h), P̃λ ∪ (v′, h′))× ξ((v′, h′), P̃λ ∪ (0, h))]−

E [(ξ((0, h), P̃λ)]E [ξ((v′, h′), P̃λ)].

Then we have

(volQλ)
−1Var[⟨1, µλ⟩]

= (volQλ)
−1

∫
Qλ

∫ ∞

−∞
E ξ((v, h), P̃λ)e

hdhdv

+ (volQλ)
−1

∫
Qλ

∫ ∞

−∞

∫
Qλ−v

∫ ∞

−∞
cξ((0, h), (v′, h′), P̃λ)e

h+h′
dhdh′dv′dv

=

∫ ∞

−∞
E ξ((v, h), P̃λ)e

hdhdv

+

∫ ∞

−∞

∫
Qλ−v

∫ ∞

−∞
cξ((0, h), (v′, h′), P̃λ)e

h+h′
dhdh′dv′dv.
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Now for all h, h′ and v′ we have

lim
λ→∞

cξ((0, h), (v′, h′), P̃λ)e
h+h′

= cξ((0, h), (v′, h′),P)eh+h′
,

where for all w1, w2 ∈ Rd, we put

cξ(w1, w2,P) := E ξ(w1,P ∪ {w2})ξ(w2,P ∪ {w1})− E ξ(w1,P)E ξ(w2,P). (5.14)

Moreover, as in the proof of Lemma 4.7, we may show that cξ((0, h), (v′, h′), P̃λ)e
h+h′

is dominated by an exponentially decaying function of h, h′, and v′, uniformly in λ ∈
[λ0,∞). The dominated convergence theorem shows that

lim
λ→∞

(volQλ)
−1Var[⟨1, µλ⟩] =

∫ ∞

−∞
E [ξ((0, h),P))]ehdh +

+

∫ ∞

−∞

∫
Rd−1

∫ ∞

−∞
cξ((0, h), (v′, h′),P)eh+h′

dhdv′dh′.

This concludes the proof of Corollary 1.1.

5.6 Proof of Theorem 2.4. To prove Theorem 2.4, we follow the same method and

notations as on pages 54-55 in [12]: for any k-dimensional linear subspace L and any

convex setK, we denote byK|L the orthogonal projection ofK onto L. We consider the

function ϑL(x,K) = 1({x ̸∈ K|L}) and the so-called projection avoidance functional

ϑk(x,K) =

∫
G(lin[x],k)

ϑL(x,K)dν
lin[x]
k (L)

where lin[x] is the one-dimensional linear space spanned by x, G(lin[x], k) is the set

of k-dimensional linear subspaces of Rd containing lin[x] and ν
lin[x]
k is the normalized

Haar measure on G(lin[x], k) (see (2.7) in [12]). We obtain the following rewriting of

the defect intrinsic volume of Kλ:

Vk(Bd(0, Rλ))− Vk(Kλ) =

(
d−1
k−1

)
κd−k

∫
Rd

[ϑk(x,Kλ)− ϑk(x,Bd(0, Rλ))]
dx

|x|d−k
.

In particular, we have the decomposition :

Vk(Bd(0, Rλ))− Vk(Kλ) =
∑
x∈Pλ

ξV,k(x,Pλ)

where

ξV,k(x,Pλ) = d−1

(
d−1
k−1

)
κd−k

∫
C(x,Pλ)

[ϑk(y,Kλ)− ϑk(y,Bd(0, Rλ))]
dy

|y|d−k
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if x is extreme and ξV,k(x,Pλ) = 0 otherwise.

We notice that the equalities (5.2) and (5.6) hold for ξ = ξV,k. Let us define

ξ
(λ)
V,k(w,P

(λ)) = ξV,k([T
(λ)]−1(w),Pλ), w ∈ Rd.

We observe from the proof of Theorem 2.1 that it is enough to show the convergence up

to a multiplicative rescaling of each of the quantities E [ξ
(λ)
V,k(w,P(λ))], E [ξ

(λ)
V,k(w,P(λ))2]

and cξ
(λ)
V,k(w,w′) where w,w′ ∈ Rd as well as bounds similar to those in Lemmas 4.3 and

4.7.

Let us explain for instance how to show the convergence of E [ξ
(λ)
V,k(w,P(λ))]. We first

notice that the localization radius associated with ξ
(λ)
V,k is the same as for ξ

(λ)
V . We also

need to introduce

ξ
(∞)
V,k (w,P) = d−1

(
d−1
k−1

)
κd−k

∫
Cyl(w)

[ϑ∞
k (y,Φ)− 1({y ∈ Rd−1 × R−})]dy

where ϑ∞
k (y) is defined in equality (3.19) from [12]. Let us denote by mk the measure

1
|x|d−kdx. Using that T λ(Rd+1−k

λ dmk) converges to the Lebesgue measure of Rd, we get

a statement similar to Lemma 4.4 and we deduce from Lemma 4.1 that

lim
λ→∞

E [Rd+1−k
λ ξ

(λ)
V,k(w,P

(λ))] = E [ξ
(∞)
V,k (w,P))].
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