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Dedicated to the memory of Tomasz Schreiber

Schreiber and Yukich [Ann. Probab. 36 (2008) 363–396] establish an
asymptotic representation for random convex polytope geometry in the unit
ball B

d , d ≥ 2, in terms of the general theory of stabilizing functionals of
Poisson point processes as well as in terms of generalized paraboloid growth
processes. This paper further exploits this connection, introducing also a dual
object termed the paraboloid hull process. Via these growth processes we es-
tablish local functional limit theorems for the properly scaled radius-vector
and support functions of convex polytopes generated by high-density Pois-
son samples. We show that direct methods lead to explicit asymptotic expres-
sions for the fidis of the properly scaled radius-vector and support functions.
Generalized paraboloid growth processes, coupled with general techniques
of stabilization theory, yield Brownian sheet limits for the defect volume and
mean width functionals. Finally we provide explicit variance asymptotics and
central limit theorems for the k-face and intrinsic volume functionals.

1. Introduction. Let K be a smooth convex set in R
d of unit volume. Letting

Pλ be a Poisson point process in R
d of intensity λ, we let Kλ be the convex hull

of K ∩ Pλ. The random polytope Kλ, together with the analogous polytope Kn,
obtained by considering n i.i.d. uniformly distributed points in K , are well-studied
objects in stochastic geometry.

The study of the asymptotic behavior of the polytopes Kλ and Kn, as λ→∞
and n→∞, respectively, has a long history originating with the work of Rényi
and Sulanke [23]. Letting S

d−1 denote the unit sphere, the following functionals
of Kλ have featured prominently:

• the volume Vol(Kλ) of Kλ, abbreviated as V (Kλ);
• the number of k-dimensional faces of Kλ, denoted fk(Kλ), k ∈ {0,1, . . . , d−1};

in particular f0(Kλ) is the number of vertices of Kλ;
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• the mean width W(Kλ) of Kλ;
• the distance between ∂Kλ and ∂K in the direction u ∈ S

d−1, here denoted
rλ(u), u �= 0;

• the distance between the boundary of the Voronoi flower, defined by Pλ and ∂K ,
in the direction u ∈ S

d−1, here denoted sλ(u);
• the kth intrinsic volumes of Kλ, here denoted Vk(Kλ), k ∈ {1, . . . , d − 1}.

The mean values of these functionals on general convex polytopes, as well
as their counterparts for Kn, have been widely studied, and for a complete ac-
count we refer to the surveys of Affentranger [1], Buchta [6], Gruber [11], Re-
itzner [22], Schneider [25, 27] and Weil and Wieacker [34], together with Chap-
ter 8.2 in Schneider and Weil [28]. There has been recent progress in establishing
higher order and asymptotic normality results for these functionals, for various
choices of K . We signal the important breakthroughs by Reitzner [21], Bárány
and Reitzner [3], Bárány et al. [2], Pardon [14] and Vu [32, 33]. These results,
together with those of Schreiber and Yukich [30], are difficult and technical, with
proofs relying upon tools from convex geometry and probability, including mar-
tingales, concentration inequalities and Stein’s method. When K is the unit radius
d-dimensional ball B

d centered at the origin, Schreiber and Yukich [30] establish
variance asymptotics for f0(Kλ) as λ→∞, but up to now little is known regard-
ing explicit variance asymptotics for other functionals of Kλ.

This paper has the following goals. We first study two processes in formal
space–time R

d−1 × R+, one termed the paraboloid growth process and denoted
by � , and a second termed the paraboloid hull process, denoted by �. While the
first process was introduced in [30], the second has apparently not been consid-
ered before. When K = B

d , an embedding of convex sets into the space of con-
tinuous functions on S

d−1, together with a re-scaling, show that these processes
are naturally suited to the study of Kλ. Their spatial localization can be exploited
to describe first and second order asymptotics of functionals of Kλ. Many of our
main results, described as follows, are obtained via geometric properties of the
processes � and �. Our goals are as follows:
• Show that the distance between Kλ and ∂B

d , upon re-scaling in a local regime,
converges in law as λ →∞, to a continuous path stochastic process defined in
terms of �, adding to Molchanov [13]; similarly, we show that the distance be-
tween ∂B

d and the Voronoi flower defined by Pλ converges in law to a continuous
path stochastic process defined in terms of � . In the two-dimensional case the fidis
(finite-dimensional distributions) of these distances, when re-scaled, are shown to
converge to the fidis of � and �, whose description is given explicitly, adding to
work of Hsing [12].
• Show, upon re-scaling in a global regime, that the suitably integrated local

defect width and defect volume functionals, when considered as processes indexed
by points in R

d−1 mapped on ∂B
d via the exponential map, satisfy a functional

central limit theorem, that is, converge in the space of continuous functions on
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R
d−1 to a Brownian sheet on the injectivity region of the exponential map, whose

respective variance coefficients σ 2
W and σ 2

V are expressed in closed form in terms
of � and �. To the best of our knowledge, this connection between the geometry
of random polytopes and Brownian sheets is new. In particular we show

lim
λ→∞λ(d+3)/(d+1) Var[W(Kλ)] = σ 2

W(1.1)

and

lim
λ→∞λ(d+3)/(d+1) Var[V (Kλ)] = σ 2

V .(1.2)

This adds to Reitzner’s central limit theorem (Theorem 1 of [21]) and his variance
approximation Var[V (Kλ)] ≈ λ−(d+3)/(d+1) (Theorem 3 and Lemma 1 of [21]),
both valid when K is an arbitrary smooth convex set. It also adds to Hsing [12],
which is confined to the case K = B

2.
• Establish central limit theorems and variance asymptotics for the number of

k-dimensional faces of Kλ, showing for all k ∈ {0,1, . . . , d − 1},
lim

λ→∞λ−(d−1)/(d+1) Var[fk(Kλ)] = σ 2
fk

,(1.3)

where σ 2
fk

is described in terms of the processes � and �. This improves upon
Reitzner (Lemma 2 of [21]), whose breakthrough paper showed Var[fk(Kλ)] ≈
λ(d−1)/(d+1), and builds upon [30], which establishes (1.3) when k = 0.
• Establish central limit theorems and variance asymptotics for the intrinsic

volumes Vk(Kλ), establishing for all k ∈ {1, . . . , d − 1} that

lim
λ→∞λ(d+3)/(d+1) Var[Vk(Kλ)] = σ 2

Vk
,(1.4)

where again σ 2
Vk

is described in terms of the processes � and �. This adds to

Bárány et al. (Theorem 1 of [2]), which shows Var[Vk(Kn)] ≈ n−(d+3)/(d+1).
Limits (1.1)–(1.4) resolve the issue of finding variance asymptotics for face

functionals and intrinsic volumes, a long-standing problem put forth this way in
the 1993 survey of Weil and Wieacker (page 1431 of [34]): “We finally emphasize
that the results described so far give mean values hence first-order information on
random sets and point processes. . . There are also some less geometric methods to
obtain higher-order informations or distributions, but generally the determination
of the variance, for example, is a major open problem.”

These goals are stated in relatively simple terms, and yet they and the methods
behind them suggest further objectives involving additional explanation. One of
our chief objectives is to carefully define the growth processes � and � and exhibit
their geometric properties making them relevant to Kλ, including their localization
in space, known as stabilization. The latter property is central to establishing vari-
ance asymptotics and the limit theory of functionals of Kλ. A second objective is to
describe two natural scaling regimes, one suited for locally defined functionals of
Kλ, and the other suited for the integrated characteristics of Kλ, namely the width
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and volume functionals. A third objective is to extend the afore-mentioned results
to ones holding on the level of measures. In other words, functionals considered
here are naturally associated with random measures, and we shall show variance
asymptotics for such measures and also convergence of their fidis to those of a
Gaussian process under suitable global scaling. We originally intended to restrict
attention to convex hulls generated from Poisson points with intensity density λ,
but realized that the methods easily extend to treat intensity densities decaying as
a power of the distance to the boundary of the unit ball as given by (2.1) below,
and so we shall include this more general case without further complication. These
major objectives are discussed further in the next section.

The extension of the variance asymptotics (1.2) and (1.3) to smooth compact
convex sets with a C3 boundary of positive Gaussian curvature is nontrivial and
is addressed in [7]. We expect that much of the limit theory described here can be
“de-Poissonized,” that is to say, extends to functionals of the polytope Kn. This
extension involves challenging technical questions which we do not address here.

2. Basic functionals and their scaled versions. Given a locally finite subset
X of R

d , we denote by conv(X ) the convex hull generated by X . For a given com-
pact convex set K ⊂R

d containing the origin, we let hK : Sd−1 →R be the support
function of K, that is to say, for all u ∈ S

d−1, we let hK(u) := sup{〈x,u〉, x ∈K}.
It is easily seen for X ⊂R

d and u ∈ S
d−1 that

hconv(X )(u)= sup
{
h{x}(u), x ∈ X

}= sup{〈x,u〉, x ∈ X }.
For u ∈ S

d−1, the radius-vector function of K in the direction of u is given by

rK(u) := sup{� > 0, �u ∈K}.
For λ > 0 and δ > 0 we abuse notation and henceforth denote by Pλ := Pλ(δ) the
Poisson point process in B

d of intensity

λ(1− |x|)δ dx, x ∈ B
d .(2.1)

The parameter δ shall remain fixed throughout, and therefore we suppress mention
of it. Further, abusing notation we put

Kλ := conv(Pλ).

The principal characteristics of Kλ studied here are the following functionals, the
first two of which represent Kλ in terms of continuous functions on S

d−1:
• The defect support function. For all u ∈ S

d−1, we define

sλ(u) := s(u, Pλ),(2.2)

where for X ⊆ B
d we define s(u, X ) := 1 − hconv(X )(u). In other words, sλ(u)

is the defect support function of Kλ in the direction u. It is easily verified that



54 P. CALKA, T. SCHREIBER AND J. E. YUKICH

s(u, X ) is the distance in the direction u between the sphere S
d−1 and the Voronoi

flower

F(X ) := ⋃
x∈X

Bd

(
x

2
,
|x|
2

)
,(2.3)

where for x ∈R
d and r > 0 we let Bd(x, r) denote the d-dimensional radius r ball

centered at x.
• The defect radius-vector function. For all u ∈ S

d−1, we define

rλ(u) := r(u, Pλ),(2.4)

where for X ⊆ B
d and u ∈ S

d−1 we put r(u, X ) := 1− rconv(X )(u). Thus, rλ(u)

is the distance in the direction u between S
d−1 and Kλ. The convex hull Kλ con-

tains the origin, except on a set of exponentially small probability as λ→∞, and
thus for asymptotic purposes we assume without loss of generality that Kλ always
contains the origin, and therefore the radius vector function rλ(·) is well defined.
• The numbers of k-faces. Let fk;λ := fk(Kλ), k ∈ {0,1, , . . . , d − 1}, be the

number of k-dimensional faces of Kλ. In particular, f0;λ and f1;λ are the number
of vertices and edges, respectively. The spatial distribution of k-faces is captured
by the k-face empirical measure (point process) μ

fk

λ on B
d given by

μ
fk

λ := ∑
f∈Fk(Kλ)

δTop(f ).(2.5)

Here Fk(Kλ) is the collection of all k-faces of Kλ and Top(f ), f ∈ Fk(Kλ), is the
point of f which is closest to S

d−1, with ties ignored as they occur with probability
zero (there are other conceivable choices for Top(f ), but we find this one to be as
good as any). The total mass μ

fk

λ (Bd) coincides with fk;λ.
• Projection avoidance functionals. Representing intrinsic volumes of Kλ as the

total masses of the corresponding curvature measures, while suitable in the local
scaling regime, turns out to be less useful in the global scaling regime, as it leads to
an asymptotically vanishing add-one cost for related stabilizing functionals, thus
precluding normal use of stabilization theory. To overcome this problem, we shall
use the following consequence of Crofton’s general formula, usually going under
the name of Kubota’s formula; see (5.8) and (6.11) in [28]. We write

Vk(Kλ)= d!κd

k!κk(d − k)!κd−k

∫
G(d,k)

Volk(Kλ|L)dνk(L),(2.6)

where G(d, k) is the kth Grassmannian of R
d , νk is the normalized Haar measure

on G(d, k) and Kλ|L is the orthogonal projection of Kλ onto the k-dimensional
linear space L ∈G(d, k). We shall only focus on the case k ≥ 1 because for k = 0,
we have V0(Kλ)≡ 1 for all nonempty, compact convex Kλ; see page 601 in [28].
Write ∫

G(d,k)
Volk(Kλ|L)dνk(L)=

∫
G(d,k)

∫
L
[1− ϑL(x, Pλ)]dx dνk(L),
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where ϑL(x, X ) := 1({x /∈ conv(X )|L}). Putting x = ru,u ∈ S
d−1, r ∈ [0,1], this

yields∫
G(d,k)

Volk(Kλ|L)dνk(L)

=
∫
G(d,k)

∫
Sd−1∩L

∫ 1

0
[1− ϑL(ru, Pλ)]rk−1 dr dσk−1(u) dνk(L)

=
∫
G(d,k)

∫
Sd−1∩L

∫ 1

0

1

rd−k
[1− ϑL(ru, Pλ)]rd−1 dr dσk−1(u) dνk(L).

Noting that dx = rd−1 dr dσd−1(u) and interchanging the order of integration, we
conclude, in view of the discussion on pages 590–591 of [28], that the considered
expression equals

kκk

dκd

∫
Bd

1

|x|d−k

∫
G(lin[x],k)

[1− ϑL(ru, Pλ)]dν
lin[x]
k (L)dx,

where lin[x] is the 1-dimensional linear space spanned by x, G(lin[x], k) is the
set of k-dimensional linear subspaces of R

d containing lin[x] and ν
lin[x]
k is the

corresponding normalized Haar measure; see [28]. Thus, putting

ϑ X
k (x) :=

∫
G(lin[x],k)

ϑL(x, X ) dν
lin[x]
k (L), x ∈ B

d, x �= 0,(2.7)

and using (2.6), we are led to

Vk(B
d)− Vk(Kλ)= (d−1

k−1)

κd−k

∫
Bd

1

|x|d−k
ϑ

Pλ

k (x) dx

(2.8)

= (d−1
k−1)

κd−k

∫
Bd\Kλ

1

|x|d−k
ϑ

Pλ

k (x) dx.

We will refer to ϑ
Pλ

k as the projection avoidance function for Kλ.
The large λ asymptotics of the above characteristics of Kλ are studied in two

natural scaling regimes, the local and the global one, as discussed below.
Local scaling regime and locally re-scaled functionals. The first scaling we con-

sider is referred to as the local scaling in the sequel. It stems from the following
observation, which, while considered before in [3], shall be discussed here in the
context of stabilization of growth processes. If we consider the local behavior of
functionals of Kλ in the vicinity of two fixed boundary points u,u′ ∈ S

d−1, with
λ →∞, then these behaviors become asymptotically independent. Moreover, if
u′ := u′(λ) approaches u slowly enough as λ→∞, the asymptotic independence
is preserved. On the other hand, if the distance between u and u′ := u′(λ) decays
rapidly enough, then both behaviors coincide for large λ, and the resulting picture
is rather uninteresting. As in [30], it is therefore natural to ask for the frontier of
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these two asymptotic regimes and to expect that this corresponds to the natural
characteristic scale between the observation directions u and u′ where the crucial
features of the local behavior of Kλ are revealed.

To render the characteristic scale as transparent as possible, we start with some
simple yet important observations, which shall eventually lead to asymptotic inde-
pendence of local convex hull geometries and which shall also suggest the proper
scaling limits of convex hull statistics. For arbitrary points x1, . . . , xk ∈ B

d , the
support function of the convex hull conv(x1, . . . , xk) satisfies for all u ∈ S

d−1, the
relation

hconv(x1,...,xk)(u)= max
1≤i≤k

hxi
(u).

We make the fundamental observation that the epigraph of s(u, {xi}ki=1) := 1 −
hconv(x1,...,xk)(u) is thus the union of epigraphs which, locally near the apices, are
of parabolic structure. Any scaling transformation for Kλ on the characteristic
scale must preserve this structure, as should the scaling limit for Kλ.

To determine the proper local scaling for our model, we consider the following
intuitive argument. To obtain a nontrivial limit behavior we should re-scale Kλ in
a neighborhood of S

d−1, both in the d − 1 surfacial (tangential) directions with
factor λβ and radial direction with factor λγ with suitable scaling exponents β and
γ so that:
• The re-scaling compensates the intensity of Pλ with growth factor λ. In other

words, a subset of B
d in the vicinity of S

d−1, having a unit volume scaling image,
should host on average �(1) points of the point process Pλ. Since the integral
of the intensity density (2.1) scales as λβ(d−1), with respect to the d − 1 tangen-
tial directions, and since it scales as λγ (1+δ) with respect to the radial direction,
where we take into account the integration over the radial coordinate, we are led
to λβ(d−1)+γ (1+δ) = λ and thus

β(d − 1)+ γ (1+ δ)= 1.(2.9)

• The local behavior of the convex hull close to the boundary of S
d−1, as

described by the locally parabolic structure of sλ, should preserve parabolic
epigraphs, implying for u ∈ S

d−1 that (λβ |u|)2 = λγ |u|2, and thus

γ = 2β.(2.10)

Solving the system (2.9), (2.10) we end up with the following scaling expo-
nents:

β = 1

d + 1+ 2δ
, γ = 2β.(2.11)

We next describe scaling transformations for Kλ. Fix u0 ∈ S
d−1, and let

Tu0 := Tu0S
d−1 denote the tangent space to S

d−1 at u0. The exponential map
expu0

:Tu0S
d−1 → S

d−1 maps a vector v of the tangent space Tu0 to the point
u ∈ S

d−1, such that u lies at the end of the geodesic of length |v| starting at u0 and
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having direction v. Note that S
d−1 is geodesically complete in that the exponential

map expu0
is well defined on the whole tangent space R

d−1 � Tu0S
d−1, although

it is injective only on {v ∈ Tu0S
d−1, |v| < π}. Instead of expu0

, we shall write
expd−1 or simply exp, and we make the default choice u0 := (0,0, . . . ,1). We use
the isomorphism Tu0S

d−1 � R
d−1 without further mention, and we shall denote

the closure of the injectivity region {v ∈ Tu0S
d−1, |v|< π} of the exponential map

simply by Bd−1(π). Thus we have exp(Bd−1(π))= S
d−1.

Further, consider the following scaling transform T λ mapping B
d into R

d−1 ×
R+

T λ(x) :=
(
λβ exp−1

d−1

(
x

|x|
)
, λγ (1− |x|)

)
, x ∈ B

d \ {0}.(2.12)

Here exp−1(·) is the inverse exponential map, which is well defined on S
d−1 \

{−u0} and which takes values in the injectivity region Bd−1(π). For formal com-
pleteness, on the “missing” point −u0, we let exp−1 admit an arbitrary value, say
(0,0, . . . , π), and likewise we put T λ(0) := (0, λγ ), where 0 denotes either the
origin of R

d−1 or R
d , according to the context. It is easily seen that T λ is a.e. (with

respect to Lebesgue measure on B
d ) a bijection from B

d onto the d-dimensional
solid cylinders

Rλ := λβ
Bd−1(π)× [0, λγ ).(2.13)

Throughout points in B
d are written as x := (r, u), and we represent generic points

in R
d−1×R+ by (v, h), whereas we write (v′, h′) to represent points in the scaled

region Rλ. We assert that the transformation T λ, defined at (2.12), maps the Pois-
son point process Pλ to P (λ), where P (λ) is the dilated Poisson point process in
the region Rλ having intensity

(v′, h′) �→ sind−2(λ−β |v′|)
|λ−βv′|d−2 (1− λ−γ h′)d−1h′δ dv′ dh′(2.14)

at (v′, h′) ∈ Rλ. Indeed, this intensity measure is the image by the transformation
T λ of the measure on B

d given by

λ(1− |x|)δ dx = λ(1− r)δrd−1 dr dσd−1(u)(2.15)

introduced in (2.1), where we put x = (r, u). To obtain (2.14), we first make a
change of variables,

h′ := λγ (1− r) and v′ := λβ exp−1
d−1(u) := λβv.

Next, notice that the exponential map expd−1 :Tu0S
d−1 → S

d−1 has the following
expression:

expd−1(v
′)= cos(|v′|)(0, . . . ,0,1)+ sin(|v′|)

(
v′

|v′| ,0
)
,(2.16)
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with v′ ∈R
d−1 \ {0}. Therefore, since v := exp−1

d−1(u), we have

dσd−1(u)= sind−2(|v|)d(|v|) dσd−2

(
v

|v|
)
= sind−2(|v|) dv

|v|d−2 .

Since v′ = λβv, this gives

dσd−1(u)= sind−2(λ−β |v′|)
|λ−βv′|d−2 λ−β(d−1) dv′.(2.17)

We also have that

(1− r)δrd−1 dr = λ−γ δh′δ(1− λ−γ h′)d−1λ−γ dh′.(2.18)

Inserting (2.17) and (2.18) in (2.15) and using (2.9) to obtain λλ−β(d−1)λ−γ (1+δ) =
1, we obtain (2.14).

In Section 4, following [30], we shall embed T λ(Kλ) into a space of paraboloid
growth processes on Rλ. One such process, denoted by �(λ) and defined at (4.2),
is a generalized growth process with overlap whereas the second, a dual process
denoted by �(λ) and defined at (4.8) is termed the paraboloid hull process. Infinite
volume counterparts to �(λ) and �(λ), described fully in Section 3 and denoted by
� and �, respectively, play a natural role in describing the asymptotic behavior of
our basic functionals of interest, re-scaled as follows:
• The re-scaled versions of the defect support function (2.2) and the radius

support function (2.4), defined, respectively, by

ŝλ(v) := λγ sλ(expd−1(λ
−βv)), v ∈R

d−1,(2.19)

r̂λ(v) := λγ rλ(expd−1(λ
−βv)), v ∈R

d−1.(2.20)

• The re-scaled version of the projection avoidance function (2.7) defined by

ϑ̂
Pλ

k (x) := ϑ
Pλ

k ([T λ]−1(x)), x ∈ Rλ.(2.21)

Global scaling regime and globally re-scaled functionals. The asymptotic inde-
pendence of local convex hull geometries at distinct points of S

d−1, as discussed
above, suggests that the global behavior of both sλ and rλ is, in large λ asymptotics,
that of the white noise. Therefore it is natural to consider the corresponding inte-
gral characteristics of Kλ and to ask whether, under proper scaling, they converge
in law to a Brownian sheet. Define the processes

Wλ(v) :=
∫

exp([0,v])
sλ(u) dσd−1(u), v ∈R

d−1,(2.22)

and

Vλ(v) :=
∫

exp([0,v])
rλ(u) dσd−1(u), v ∈R

d−1,(2.23)
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where the “segment” [0, v] for v ∈ R
d−1 is the rectangular solid in R

d−1 with
vertices 0 and v, that is to say, [0, v] :=∏d−1

i=1 [min(0, v(i)),max(0, v(i))], with v(i)

standing for the ith coordinate of v. We shall also consider the cumulative values

Wλ :=Wλ(∞) :=
∫

Sd−1
sλ(u) dσd−1(u);

(2.24)
Vλ := Vλ(∞) :=

∫
Sd−1

rλ(u) dσd−1(u).

Notice that the radius-vector function of the Voronoi flower F(Pλ) coincides
with the support function of Kλ. In particular, the volume outside F(Pλ) is equal
to ∫

Sd−1

[∫ 1

1−sλ(u)
ρd−1 dρ

]
dσd−1(u)=

∫
Sd−1

1− (1− sλ(u))d

d
dσd−1(u).(2.25)

Since sλ goes to 0 uniformly, the volume outside F(Pλ) is asymptotically equiva-
lent to the integral of the defect support function, which in turn is proportional to
the defect mean width by Cauchy’s formula. Moreover, in two dimensions the
mean width is the ratio of the perimeter to π (see page 210 of [26]), and so
Wλ(∞)/π coincides with 2 minus the mean width of Kλ, and consequently Wλ(∞)

itself equals 2π minus the perimeter of Kλ for d = 2. On the other hand, Vλ(∞)

is asymptotic to the volume of B
d \Kλ, whence the notation W for (asymptotic)

width and V for (asymptotic) volume.
To get the desired convergence to a Brownian sheet, we put

ζ := β(d − 1)+ 2γ = d + 3

d + 1+ 2δ
;(2.26)

we show in Section 8 that it is natural to re-scale the processes (Wλ(v)−EWλ(v))

and (Vλ(v)−EVλ(v)) by λζ/2 and that the resulting re-scaled processes

Ŵλ(v) := λζ/2(
Wλ(v)−EWλ(v)

)
and

(2.27)
V̂λ(v) := λζ/2(

Vλ(v)−EVλ(v)
)
, v ∈R

d−1,

converge in law to a Brownian sheet with an explicit variance coefficient.

Putting the picture together. The remainder of this paper is organized as follows.
Section 3. Though the formulation of our results might suggest otherwise,

there are crucial connections between the local and global scaling regimes. These
regimes are linked by stabilization and the objective method, which together show
that the behavior of locally defined processes on the finite volume rectangular
solids Rλ, defined at (2.13), can be well approximated by the local behavior of
a related “candidate object,” either a generalized growth process � or a dual
paraboloid hull process �, on an infinite volume half-space. While generalized
growth processes were developed in [30] in a larger context, our limit theory de-
pends heavily on a new object, the dual paraboloid hull process. The purpose of
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Section 3 is to carefully define these processes and to establish properties relevant
to their asymptotic analysis.

Section 4. We show that as λ →∞, both ŝλ and r̂λ, defined, respectively, at
(2.19) and (2.20), converge in law to continuous path stochastic processes explic-
itly constructed in terms of the paraboloid generalized growth process � and the
paraboloid hull process �, respectively. This adds to Molchanov [13], who consid-
ers the “epiconvergence” in the space S

d−1 ×R of the random process, arising as
the binomial counterpart of λrλ. Molchanov’s results [13] are not framed in terms
of the rescaled function r̂λ, and thus they do not involve the paraboloid growth
processes described in this paper.

Section 5. When d = 2, after re-scaling in space by a factor of λ1/3 and in
time (height coordinate) by λ2/3, we use nonasymptotic direct considerations to
provide explicit asymptotic expressions for the fidis of ŝλ and r̂λ as λ→∞. These
distributions coincide with the fidis of the parabolic growth process � and the
parabolic hull process �, respectively.

Section 6. Both the paraboloid growth process � and its dual paraboloid hull
process � are shown to enjoy a localization property, which expresses, in geomet-
ric terms, a type of spatial mixing. This provides a direct route toward establishing
first and second order asymptotics for the convex hull functionals of interest.

Section 7. This section establishes closed form variance asymptotics for the to-
tal number of k-faces as well as the intrinsic volumes for the random polytope Kλ.
We also establish variance asymptotics and a central limit theorem for the prop-
erly scaled integrals of continuous test functions against the empirical measures
associated with the functionals under proper scaling.

Section 8. Using the stabilization properties established in Section 6, we estab-
lish a functional central limit theorem for Ŵλ and V̂λ, showing that these processes
converge, as λ→∞ in the space of continuous functions on R

d−1, to Brownian
sheets with variance coefficients given in terms of the processes � and �, respec-
tively.

3. Paraboloid growth and hull processes. In this section we introduce the
paraboloid growth and hull processes in the upper half-space R

d−1 × R+ often
interpreted as formal space–time below, with R

d−1 standing for the spatial dimen-
sion and R+ standing for the time dimension. Although this interpretation is purely
formal in the convex hull set-up, it provides a link to a well-established theory of
growth processes studied by means of stabilization theory; see below for further
details. These processes turn out to be infinite volume counterparts to finite volume
paraboloid growth processes, which are defined in the next section, and which are
used to describe the behavior of our basic re-scaled functionals and measures.

Poisson point process on half-spaces. Fix δ > 0, and let P(δ) be a Poisson point
process in R

d−1 ×R+ with intensity density

hδ dhdv at (v, h) ∈R
d−1 ×R+.(3.1)
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In the sequel we shall show that the scaled Poisson point process P (λ) := T λ(Pλ)

with intensity defined at (2.14) converges to P(δ) on compacts, but for now we use
the process P to define growth processes on half-spaces. As with Pλ and P (λ), we
suppress δ and simply write P for P(δ).

Paraboloid growth processes on half-spaces. We introduce the paraboloid gen-
eralized growth process with overlap (paraboloid growth process for short), spe-
cializing to our present set-up the corresponding general concept defined in Sec-
tion 1.1 of [30] and designed to constitute the asymptotic counterpart of the
Voronoi flower F(Kλ). Let �↑ be the epigraph of the standard paraboloid v �→
|v|2/2, that is,

�↑ :=
{
(v, h) ∈R

d−1 ×R+, h≥ |v|2
2

}
.

We introduce one of the fundamental objects of this paper.

DEFINITION 3.1. Given a locally finite point set X in R
d−1 × R+, the

paraboloid growth model �(X ) is defined as the Boolean model with paraboloid
grain �↑ and with germ collection X , namely

�(X ) := X ⊕�↑ = ⋃
x∈X

x ⊕�↑,(3.2)

where ⊕ stands for Minkowski addition. In particular, we define the paraboloid
growth process � :=�(P), where P is the Poisson point process defined at (3.1).

The model �(X ) arises as the union of upwards paraboloids with apices at the
points of X (see Figure 1), in close analogy to the Voronoi flower F(X ), where
to each x ∈ X we attach a ball Bd(x/2, |x|/2) (which asymptotically scales to an
upwards paraboloid as we shall see in the sequel) and take the union thereof.

The name generalized growth process with overlap comes from the original in-
terpretation of this construction [30], where R

d−1×R+ stands for space–time with
R

d−1 corresponding to the spatial coordinates and the semi-axis R+ correspond-
ing to the time (or height) coordinate, and where the grain �↑, possibly admitting

FIG. 1. Example of paraboloid and growth processes for d = 2.
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more general shapes as well, arises as the graph of the growth of a germ born at the
apex of �↑ and growing thereupon in time with properly varying speed. We say
that the process admits overlaps because the growth does not stop when two grains
overlap, unlike in traditional growth schemes. We shall often use this space–time
interpretation and refer to the respective coordinate axes as to the spatial and time
(height) axis.

The boundary ∂� of the random closed set � := �(P) constitutes a graph of
a continuous function from R

d−1 (space) to R+ (time), also denoted by ∂� in the
sequel. In what follows we interpret ŝλ, defined at (2.19), as the boundary of a
growth process �(λ), defined at (4.2) below, on the finite region Rλ at (2.13); we
shall see in Section 4 that ∂� is the scaling limit for the boundary of �(λ).

A germ point x ∈ P is called extreme in the paraboloid growth process � if
and only if its associated epigraph x ⊕ �↑ is not contained in the union of the
paraboloid epigraphs generated by other germ points in P, that is to say,

x ⊕�↑ �⊆ ⋃
y∈P,y �=x

(y ⊕�↑).(3.3)

For x to be extreme, it is sufficient, but not necessary, that x fails to be contained
in paraboloid epigraphs of other germs. Write ext(�) for the set of all extreme
points.

Paraboloid hull process on half-spaces. The paraboloid hull process � can
be regarded as the dual to the paraboloid growth process. At the same time, the
paraboloid hull process is designed to exhibit geometric properties analogous to
those of convex polytopes with paraboloids playing the role of hyperplanes, with
the spatial coordinates playing the role of spherical coordinates and with the
height/time coordinate playing the role of the radial coordinate. The motivation
of this construction is to mimic the convex geometry on second order paraboloid
structures in order to describe the local second order geometry of convex poly-
topes, which dominates their limit behavior in smooth convex bodies. As we shall
see, this intuition is indeed correct and results in a detailed description of the limit
behavior of Kλ.

To proceed with our definitions, we let �↓ be the downwards space–time
paraboloid hypograph

�↓ :=
{
(v, h) ∈R

d−1 ×R, h≤−|v|
2

2

}
.(3.4)

The idea behind our interpretation of the paraboloid process is that the shifts of �↓
correspond to half-spaces not containing 0 in the Euclidean space R

d . We shall
argue the paraboloid convex sets have properties strongly analogous to those re-
lated to the usual concept of convexity. The corresponding proofs are not difficult
and will be presented in enough detail to make our presentation self-contained,
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but it should be emphasized that alternatively the entire argument of this para-
graph could be re-written in terms of the following trick. Considering the trans-
form (v,h) �→ (v,h+ |v|2/2), we see that it maps translates of �↓ to half-spaces
and thus whenever we make a statement below in terms of paraboloids and claim
it is analogous to a standard statement of convex geometry, we can alternatively
apply the above auxiliary transform, use the classical result and then transform
back to our set-up. We do not choose this option here, finding it more aesthetic to
work directly in the paraboloid set-up, but we indicate at this point the availability
of this alternative.

The next definitions are central to the description of the paraboloid hull process.
Recall that the affine hull aff[v1, . . . , vk] is the set of all affine combinations α1v1+
· · · + αkvk,α1 + · · · + αk = 1, αi ∈R.

DEFINITION 3.2. For any collection x1 := (v1, h1), . . . , xk := (vk, hk), k ≤ d,

of points in R
d−1×R+ with affinely independent spatial coordinates vi, we define

�↓[x1, . . . , xk] to be the hypograph in aff[v1, . . . , vk]×R of the unique space–time
paraboloid in the affine space aff[v1, . . . , vk] ×R with quadratic coefficient −1/2
and passing through x1, . . . , xk.

In other words �↓[x1, . . . , xk] is the intersection of aff[v1, . . . , vk] × R and a
translate of �↓ having all x1, . . . , xk on its boundary; while such translates are
nonunique for k < d, their intersections with aff[v1, . . . , vk] all coincide.

DEFINITION 3.3. For x1 := (v1, h1) �= x2 := (v2, h2) ∈ R
d−1 × R+, the

parabolic segment �[·][x1, x2] is the unique parabolic segment with quadratic co-
efficient −1/2 joining x1 to x2 in aff[v1, v2] ×R. More generally, for any collec-
tion x1 := (v1, h1), . . . , xk := (vk, hk), k ≤ d, of points in R

d−1×R+ with affinely
independent spatial coordinates, we define the paraboloid face �[·][x1, . . . , xk] by

�[·][x1, . . . , xk] := ∂�↓[x1, . . . , xk] ∩ [conv(v1, . . . , vk)×R].(3.5)

Clearly, �[·][x1, . . . , xk] is the smallest set containing x1, . . . , xk and with
the paraboloid convexity property: For any two y1, y2 it contains, it also con-
tains �[·][y1, y2]. In these terms, �[·][x1, . . . , xk] is the paraboloid convex hull
p-hull({x1, . . . , xk}). In particular, we readily derive the property

�[·][x1, . . . , xi, . . . , xk] ∩�[·][xi, . . . , xk, . . . , xm]
(3.6)

=�[·][xi, . . . , xk], 1 < i < k.

Next, we say that A ⊆ R
d−1 × R+ is upwards paraboloid convex (up-convex

for short) if and only if:

• for each two x1, x2 ∈A we have �[·][x1, x2] ⊆A;
• and for each x = (v,h) ∈A we have x↑ := {(v,h′), h′ ≥ h} ⊆A.
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Whereas the first condition in the definition above is quite intuitive, the second
will be seen to correspond to our requirement that 0 ∈ Kλ as 0 gets transformed
to upper infinity in the limit of our re-scalings. Indeed, though T λ is not defined
at x = 0, the last coordinate of T λ(x) goes to λγ when x → 0, and λγ goes to ∞
when λ→∞.

With the notation introduced above, we now define the second fundamental
object of this paper.

DEFINITION 3.4. Given A⊆R
d−1 ×R+, by the paraboloid hull (up-hull for

short) of A, we mean the smallest up-convex set containing A. Given a locally
finite point set X ∈ R

d−1 × R+, we define the paraboloid hull �(X ) to be the
up-hull of X , that is,

�(X ) := up-hull(X ).

In particular, we define the paraboloid hull process � in R
d−1×R+ as the up-hull

of P, that is to say,

� :=�(P) := up-hull(P).(3.7)

For A ⊆ R
d−1 × R+ we put A↑ := {(v,h′), (v, h) ∈ A for some h ≤ h′} and

observe that if x′1 ∈ x
↑
1 , x′2 ∈ x

↑
2 , then

�[·][x′1, x′2] ⊂
[
�[·][x1, x2]]↑(3.8)

and, more generally, by definition of �[·][x1, . . . , xk] and by induction in k,

�[·][x′1, . . . , x′k] ⊂ [�[·][x1, . . . , xk]]↑. Consequently, we conclude that

�= [p-hull(P)]↑,(3.9)

which, in terms of our analogy between convex polytopes and paraboloid hulls
processes, reduces to the trivial statement that a convex polytope containing 0
arises as the union of radial segments joining 0 to convex combinations of its
vertices. This statement is somewhat more interesting in the present set-up where
0 disappears at infinity, and we formulate it here for further use.

LEMMA 3.1. With probability 1 we have

�= ⋃
{x1,...,xd }⊂P

[
�[·][x1, . . . , xd ]]↑.(3.10)

This statement corresponds to the property of d-dimensional polytopes contain-
ing 0, stating that the convex hull of a collection of points containing 0 is the
union of all d-dimensional simplices with vertex sets running over all cardinal-
ity (d + 1) sub-collections of the generating collection which contain 0. Subsets
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{x1, . . . , xd} ⊂ P have their spatial coordinates affinely independent with proba-
bility 1 and thus the right-hand side in (3.10) is a.s. well defined; in the sequel we
shall say that points of P are a.s. in general position.

PROOF. Observe that, in view of (3.9) and the fact that⋃
{x1,...,xd }⊂P

�[·][x1, . . . , xd ] ⊂ p-hull(P),

(3.10) will follow as soon as we show that

p-hull(P)⊂ ⋃
{x1,...,xd }⊂P

[
�[·][x1, . . . , xd ]]↑.(3.11)

To establish (3.11) it suffices to show that adding an extra point xd+1 in general
position to a set x̄ = {x1, . . . , xd} results in having

p-hull(x̄+ := x̄ ∪ {xd+1})⊂
d+1⋃
i=1

[
�[·][x̄+ \ {xi}]]↑,(3.12)

and inductive use of this fact readily yields the required relation (3.11). To ver-
ify (3.12) choose y := (v, h) ∈ p-hull(x̄+). Then there exists y′ = (v′, h′) ∈
�[·][x1, . . . , xd ] such that y ∈�[·][y′, xd+1]. Consider the section of �[·][x1, . . . ,

xd ] by the plane aff[v′, vd+1]×R and y′′ be its point with the lowest height coordi-
nate. Clearly then there exists xi, i ∈ {1, . . . , d} such that y′′ ∈�[·][x̄ \{xi}]. On the
other hand, by the choice of y′′ and by (3.8), y ∈�[·][y′, xd+1] ⊂ [�[·][y′, y′′]]↑ ∪
[�[·][y′′, xd+1]]↑. Consequently, y ∈ [�[·][x̄]]↑ ∪ [�[·][x̄+ \ {xi}]]↑, which com-
pletes the proof of (3.12) and thus also of (3.11) and (3.10). This completes the
proof of Lemma 3.1. �

To formulate our next statement, we say that a collection {x1, . . . , xd} is extreme
in P if and only if �[·][x1, . . . , xd ] ⊂ ∂�. Note that, by (3.8) and Lemma 3.1, this
is equivalent to having

�∩�↓[x1, . . . , xd ] =�[·][x1, . . . , xd ].(3.13)

Each such �[·][x1, . . . , xd ] is referred to as a paraboloid sub-face. Further, say that
two extreme collections {x1, . . . , xd} and {x′1, . . . , x′d} in P are co-paraboloid if and
only if �↓[x1, . . . , xd ] = �↓[x′1, . . . , x′d ]. By a (d − 1)-dimensional paraboloid
face of �, we shall understand the union of each maximal collection of co-
paraboloid sub-faces. Clearly, these correspond to (d − 1)-dimensional faces of
convex polytopes. It is not difficult to check that (d − 1)-dimensional paraboloid
faces of � are p-convex, and their union is ∂�. In fact, since P is a Poisson pro-
cess, with probability one all (d − 1)-dimensional faces of � consist of precisely
one sub-face; in particular all (d − 1)-dimensional faces of � are bounded. By
(3.13) we have for each (d − 1)-dimensional face f ,

�∩�↓[f ] = f,(3.14)



66 P. CALKA, T. SCHREIBER AND J. E. YUKICH

which corresponds to the standard fact of the theory of convex polytopes, stating
that the intersection of a d-dimensional polytope containing 0 with a half-space de-
termined by a (d − 1)-dimensional face, and looking away from 0, is precisely the
face itself. Further, pairs of adjacent (d−1)-dimensional paraboloid faces intersect
yielding (d − 2)-dimensional paraboloid manifolds, called (d − 2)-dimensional
paraboloid faces. More generally, (d − k)-dimensional paraboloid faces arise as
(d − k)-dimensional paraboloid manifolds obtained by intersecting suitable k-
tuples of adjacent (d − 1)-dimensional faces. Finally, we end up with zero di-
mensional faces, which are the vertices of �, and which are easily seen to belong
to P . The set of vertices of � is denoted by Vertices(�). In other words, we obtain
a full analogy with the geometry of faces of d-dimensional polytopes. Clearly, ∂�

is the graph of a continuous piecewise paraboloid function from R
d−1 to R.

As a consequence of the above description of the geometry of � in terms of its
faces, particularly (3.14), we conclude that

�= cl
([ ⋃

f∈Fd−1(�)

�↓[f ]
]c)

= ⋂
f∈Fd−1(�)

cl([�↓[f ]]c),(3.15)

with cl(·) standing for the topological closure, and with (·)c denoting the comple-
ment in R

d−1 × R+. This is the parabolic counterpart to the standard fact that a
convex polytope is the intersection of closed half-spaces determined by its (d−1)-
dimensional faces and containing 0. From (3.15) it follows that for each point
x /∈ �, there exists a translate of �↓ containing x, but not intersecting �, hence
in particular not intersecting P, which is the paraboloid version of the standard
separation lemma of convex geometry. On the other hand, if x is contained in a
translate of �↓ not hitting P , then x /∈�. Consequently

�=
[ ⋃
x∈Rd−1×R+,[x⊕�↓]∩P=∅

x ⊕�↓
]c

(3.16)
= ⋂

x∈Rd−1×R+,[x⊕�↓]∩P=∅

[x ⊕�↓]c.

Alternatively, � arises as the complement of the morphological opening of R
d−1×

R+ \ P with downwards paraboloid structuring element �↓, that is to say,

�c = [P c ��↓] ⊕�↓

with� standing for Minkowski erosion. In intuitive terms this means that the com-
plement of � is obtained by trying to fill R

d−1×R+ with downwards paraboloids
�↓ forbidden to hit any of the Poisson points in P —the random open set obtained
as the union of such paraboloids is precisely �c.

To link the paraboloid hull and growth processes, note that a point x ∈ P is
a vertex of � if and only if x /∈ up-hull(P \ {x}). By (3.16) this means that x ∈
Vertices(�) if and only if there exists y such that [y ⊕�↓] ∩ P = {x} and, since



CONVEX HULLS IN THE BALL 67

FIG. 2. Convex hull, Voronoi flower and their scaling limits.

the set of y such that y ⊕�↓ � x is simply x ⊕�↑, this condition is equivalent
to having x ⊕�↑ not entirely contained in [P \ {x}] ⊕�↑. In view of (3.3) this
means that

ext(�)=Vertices(�).(3.17)

The theory developed in this section admits a particularly simple form when
d = 2. To see it, say that two points x, y ∈ ext(�) are neighbors in �, with no-
tation x ∼� y or simply x ∼ y, if and only if there is no point in ext(�) with its
spatial coordinate between those of x and y. Then Vertices(�)= ext(�) as in the
general case, and F1(�) = {�[·][x, y], x ∼ y ∈ ext(�)}. In this context it is also
particularly easy to display the relationships between the parabolic growth process
� and the parabolic hull process � in terms of the analogous relations between
the convex hull Kλ and the Voronoi flower F(Pλ) upon the transformation T λ at
(2.12) in large λ asymptotics. To this end, see Figure 2 and note that, in large λ

asymptotics, we have:
• The extreme points in �, coinciding with Vertices(�), correspond to the ver-

tices of Kλ.

• Two points x, y ∈ ext(�) are neighbors x ∼ y if and only if the corresponding
vertices of Kλ are adjacent, that is to say, connected by an edge of ∂Kλ.

• The circles S1(x/2, |x|/2) and S1(y/2, |y|/2) of two adjacent vertices x, y of
Kλ, whose pieces mark the boundary of the Voronoi flower F(Pλ), are easily seen
to have their unique nonzero intersection point z collinear with x and y. Moreover,
z minimizes the distance to 0 among the points on the xy-line and xy⊥0z. For the
parabolic processes this is reflected by the fact that the intersection point of two
upwards parabolae with apices at two neighboring points x and y of Vertices(�)=
ext(�) coincides with the apex of the downwards parabola �↓[x, y] as readily
verified by a direct calculation.
• Finally, relation (3.15) becomes here �=⋂

x∼y∈ext(�) cl([�↓[x, y]]c) which
is reflected by the fact that Kλ coincides with the intersection of all closed half-
spaces containing 0 determined by segments of the convex hull boundary ∂Kλ.
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We conclude this paragraph by defining the paraboloid avoidance function
ϑ̂∞k , k ∈ {1,2, . . . , d}. To this end, for each x := (v, h) ∈ R

d−1 × R+ let x� :=
{(v, h′), h′ ∈R} be the infinite vertical ray (line) determined by x, and let A(x�, k)

be the collection of all k-dimensional affine spaces in R
d containing x�, regarded

as the asymptotic equivalent of the restricted Grassmannian G(lin[x], k) consid-
ered in the definition (2.7) of the nonrescaled function ϑ

Pλ

k . Next, for L ∈A(x�, k)

we define the orthogonal paraboloid surface �⊥[x;L] to L at x given by

�⊥[x;L]
(3.18)

:=
{
x′ = (v′, h′) ∈R

d−1 ×R, (x − x′)⊥L,h′ = h− d(x, x′)2

2

}
.

Note that this is an analog of the usual orthogonal affine space L⊥ + x to L at
x, with the second order parabolic correction typical in our asymptotic setting—
recall that nonradial hyperplanes get asymptotically transformed onto downwards
paraboloids. Further, for L ∈A(x�, k), we put

ϑ∞L (x) := 1({�⊥[x;L] ∩�=∅}).
Observe that this is a direct analog of ϑL(x, Pλ), assuming the value 1 precisely
when x /∈Kλ|L⇔ [L⊥ + x] ∩Kλ =∅. Finally, in full analogy to (2.7) set

ϑ∞k (x) :=
∫
A(x�,k)

ϑ∞L (x) dμx�
k (L)(3.19)

with μx�
k standing for the normalized Haar measure on A(x�, k); see page 591

in [28].

Duality relations between growth and hull processes. As already signaled, there
are close relationships between the paraboloid growth and hull processes, which
we refer to as duality. Here we discuss these connections in more detail. The first
observation is that

� =�⊕�↑ =Vertices(�)⊕�↑.(3.20)

This is verified either directly by the construction of � and �, or, less directly but
more instructively, by using the fact, established in detail in Section 4 below, that
� arises as the scaling limit of Kλ, whereas � is the scaling limit of the Voronoi
flower

F(Pλ)=
⋃

x∈Pλ

Bd

(
x

2
,
|x|
2

)
= ⋃

x∈Vertices(Kλ)

Bd

(
x

2
,
|x|
2

)
,

defined at (2.3) and then by noting that the balls Bd(x/2, |x|/2) asymptotically
either scale into upward paraboloids or they “disappear at infinity”; see the proof
of Theorem 4.1 below, and recall that the support function of Kλ coincides with
the radius-vector function of F(Kλ) as soon as 0 ∈ Kλ (which, recall, happens
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with overwhelming probability). Thus, it is straightforward to transform � into �.

To construct the dual transform, say that v ∈ R
d−1 is an extreme direction for

� if ∂� admits a local maximum at v. Further, say that x ∈ ∂� is an extreme
directional point for �, written x ∈ ext-dir(�), if and only if x = (v, ∂�(v)) for
some extreme direction v. Then we have

�c =�c ⊕�↓ and cl(�c)= ext-dir(�)⊕�↓.(3.21)

Again, this can be directly proved, yet it is more appealing to observe that this
statement is simply an asymptotic counterpart of the usual procedure of restoring
the convex polytope Kλ given its support function. Indeed, the complement of the
polytope arises as the union of all half-spaces of the form Hx := {y ∈ R

d, 〈y −
x, x〉 ≥ 0} (asymptotically transformed onto suitable translates of �↓ under the
action of T λ,λ →∞) with x ranging through x = ru, r > hKλ(u), r ∈ R, u ∈
S

d−1 which corresponds to taking x in the epigraph of hKλ (transformed onto
�c in our asymptotics). This explains the first equality in (3.21). The second one
comes from the fact that it is enough in the above procedure to consider half-
spaces Hx for x in extreme directions only, corresponding to directions orthogonal
to (d − 1)-dimensional faces of Kλ and marked by local minima of the support
function hKλ (asymptotically mapped onto local maxima of ∂�). It is worth noting
that all extreme directional points of � arise as d-fold intersections of boundaries
of upwards paraboloids ∂[x⊕�↑], x ∈ ext(�), although not all such intersections
give rise to extreme directional points [they do so precisely when the apices of d

intersecting upwards paraboloids are vertices of the same (d−1)-dimensional face
of �, which is not difficult to prove but which is not needed here].

4. Local scaling limits. The re-scaled processes ŝλ and r̂λ, defined at (2.19)
and (2.20), respectively, are locally parabolic, and here we show that their graphs
have scaling limits given by the boundaries of the paraboloid growth processes
� and �, respectively. Recall from Definition 3.1 that both � and � are defined
in terms of P , the Poisson point process in R

d−1 × R+ with intensity density
hδ dhdv. Recall that Bd(x, r) stands for the d-dimensional radius r ball centered
at x.

THEOREM 4.1. For any R > 0, the random functions ŝλ and r̂λ converge in
law as λ→∞ to ∂� and ∂�, respectively, in the space C(Bd−1(0,R)) of contin-
uous functions on Bd−1(0,R) endowed with the supremum norm.

REMARK. Theorem 4.1 adds to Molchanov [13], who establishes convergence
of the nonrescaled process nr(·, {Xi}ni=1) in S

d−1×R, where Xi are i.i.d. uniform
in B

d . It also adds to Eddy [10], who considers convergence of the properly scaled
defect support function for i.i.d. random variables with a circularly symmetric stan-
dard Gaussian distribution.
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PROOF OF THEOREM 4.1. The convergence in law for ŝλ may be shown to
follow from the more general theory of generalized growth processes developed
in [30], but we provide here an argument specialized to our present set-up. Recall
that we place ourselves on the event that 0 ∈Kλ which is exponentially unlikely to
fail as λ→∞ and thus, for our purposes, may be assumed to hold without loss of
generality. Further, the support function h{x} : Sd−1 →R of a point x ∈ B

d is given
for all u ∈ S

d−1 by h{x}(u)= |x| cos(dSd−1(u, x/|x|)) with dSd−1 standing for the
geodesic distance in S

d−1.

Recall that P (λ) := T λ(Pλ), where T λ is defined at (2.12) and where P (λ) has
density given by (2.14). Write x := (vx, hx) for the points in P (λ). Under T λ we
may write ŝλ(v), v ∈ λβ

Bd−1(π), as

ŝλ(v)= λγ
(
1− max

x=(vx,hx)∈P (λ)
[1− λ−γ hx]

× [cos[dSd−1(expd−1(λ
−βv), expd−1(λ

−βvx))]]
)

= λγ min
x∈P (λ)

[
1− (1− λ−γ hx)

(4.1)
× (

1− (
1− cos[dSd−1(expd−1(λ

−βv), expd−1(λ
−βvx))]))]

= min
x∈P (λ)

[
hx + λγ (

1− cos(dSd−1(expd−1(λ
−βv), expd−1(λ

−βvx)))
)

− hx

(
1− cos[dSd−1(expd−1(λ

−βv), expd−1(λ
−βvx))])]

.

Thus, by (2.2) and (2.19), the graph of ŝλ coincides with the lower boundary of
the following generalized growth process

�(λ) := ⋃
x∈P (λ)

[�↑](λ)
x ,(4.2)

where for x := (vx, hx) we have

[�↑](λ)
x = {

(v, h) ∈R
d−1 ×R+, h≥ hx

(4.3)
+ λγ (

1− cos[eλ(v, vx)])− hx

(
1− cos[eλ(v, vx)])}

,

with

eλ(v, vx) := dSd−1(expd−1(λ
−βv), expd−1(λ

−βvx)).(4.4)

We now show for fixed R ∈ (0,∞) that the lower boundary of the process �(λ)

converges in law to ∂� in the space C(Bd−1(0,R)). This goes as follows. With R

fixed, for all H ∈ R
+ and λ ∈ R

+, let E1(R,H,λ) be the event that the heights
of the lower boundaries of � and �(λ) are at most H over the spatial region
Bd−1(0,R). Interpreting the boundary ∂�(λ) as the graph of a function from R

d−1
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to R+, it follows from straightforward modifications of Lemma 3.2 in [30] that
there is a λ0 ∈ (0,∞) such that, uniformly for λ≥ λ0, we have

P
[

sup
v∈Bd−1(0,R)

∂�(λ)(v)≥H
]
≤C(R) exp

(−c
[
H(d+1)/2 ∧Rd−1H 1+δ])

(4.5)

with c > 0 and C(R) < ∞ (note that the extra term Rd−1H 1+δ in the expo-
nent corresponds to the probability of having Bd−1(0,R) × [0,H ] devoid of
points of P and P (λ)). Lemma 3.2 in [30] likewise gives a similar bound for
P [supv∈Bd−1(0,R) ∂�(v) ≥ H ]. Thus P [E1(R,H,λ)c] decays exponentially fast
in H , uniformly in λ and it is enough to show, conditional on E1(R,H,λ), that
ŝλ(·) converges to ∂� in the space C(Bd−1(0,R)).

Next, with H fixed, observe that for each R there exists a constant R′ :=
R′(R,H) such that for all λ large enough, the behavior of �(λ) and � restricted to
Bd−1(0,R)×[0,H ] only depends on the restriction to Bd−1(0,R′)×[0,H ] of the
processes P (λ) and P , respectively. For instance in the case of � it is enough that
the region Bd−1(0,R′)× [0,H ] contain the apices of all translates of �↑ which
hit Bd−1(0,R)× [0,H ], that is to say, the choice R′ :=R+√2H will suffice.

We also assert for these fixed R′ and H that P and P (λ) can be coupled on a
common probability space so that on a set E2(R

′,H,λ), with P [E2(R
′,H,λ)]→

1 as λ→∞, their restrictions agree on Bd−1(0,R′)× [0,H ]. This assertion, re-
ferred to as “total variation convergence on compact sets,” follows by combining
Theorem 3.2.2 in [20], which upper bounds total variation distance between Pois-
son measures by a multiple of the L1 norm of the difference of their densities, with
the observation that the intensity density of P (λ), as given by (2.14), converges in
L1(Bd−1(0,R′)× [0,H ]) to the intensity density of P , as given by (3.1).

Let E(R,H,λ) :=E1(R,H,λ)∩E2(R
′,H,λ) and note that P [E(R,H,λ)]→

1 as λ→∞. It is enough to show, conditional on the event E(R,H,λ), that ŝλ(·)
converges to ∂� in the space C(Bd−1(0,R)).

Now we examine the lower boundary of P (λ) given the event E(R,H,λ). On
this event we have

�(λ) := ⋃
x∈P

[�↑](λ)
x

with [�↑](λ)
x given by (4.3). Recalling the definition of eλ(v, vx) at (4.4) and re-

calling γ = 2β from (2.10) we have (using that the ratio of the Euclidean norm
and geodesic norm converges to 1)

λγ (eλ(v, vx))
2 = λγ

(
eλ(v, vx)

|λ−βv− λ−βvx |
)2

|λ−βv− λ−βvx |2 → |v− vx |2.

Using the Taylor expansion of the cosine function up to second order in (4.3), it
follows that on E(R,H,λ) the graph of the lower boundary of [�↑](λ)

x , x ∈ P ,
converges with respect to the sup norm distance on Bd−1(0,R′)× [0,H ]) to the
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graph of the lower boundary of the paraboloid v �→ hx+|v−vx |2/2, that is to say,
the lower boundary of x ⊕�↑. In the space C(Bd−1(0,R)) the lower boundary of
�(λ) is with probability one determined by a finite number of [�↑](λ)

x and thus as
λ→∞, ŝλ converges in law to ∂� , as claimed. This shows Theorem 4.1 for ŝλ.

To prove Theorem 4.1 for r̂λ, consider the spherical cap

capλ[v∗, h∗] := {x ∈ B
d, 〈x, expd−1(λ

−βv∗)〉 ≥ 1− λ−γ h∗},
(4.6)

(v∗, h∗) ∈R
d−1 ×R+,

and note that with x := (|x|, u) ∈ B
d , we equivalently have

capλ[v∗, h∗] :=
{
x ∈ B

d, (1− |x|)≤max
(

0,1− (1− λ−γ h∗)
cos θ

)}
,

where θ denotes the angle between x and expd−1(λ
−βv∗). Under the transforma-

tion T λ the cap transforms into

cap(λ)[v∗, h∗]
:=

{
(v, h) ∈ Rλ,

h≤ λγ max
(

0,1− 1− λ−γ h∗

cos(dSd−1(expd−1(λ
−βv), expd−1(λ

−βv∗)))

)}

=
{
(v, h) ∈ Rλ, h≤ λγ max

(
0,1− 1− λ−γ h∗

cos(eλ(v, v∗))

)}
,

where eλ(v, v∗) is as in (4.4).
Using that B

d \Kλ is the union of all spherical caps not hitting any of the points
in Pλ, we conclude that under the mapping T λ : Pλ → P (λ), the complement of
Kλ in B

d gets transformed into the union⋃{
cap(λ)[v∗, h∗], (v∗, h∗) ∈ Rλ, cap(λ)[v∗, h∗] ∩ P (λ) =∅

}
.(4.7)

Let the paraboloid hull process �(λ) be the complement of this union in R
d−1 ×

R+, that is,

�(λ) :=
(⋃{

cap(λ)[v∗, h∗], (v∗, h∗) ∈ Rλ, cap(λ)[v∗, h∗] ∩ P (λ) =∅
})c

.(4.8)

To prove the asserted convergence of r̂λ, we modify the approach given for
the convergence of ŝλ. Let F1(R,H,λ) be the event that the heights of the lower
boundaries of � and �(λ) are at most H over the spatial region Bd−1(0,R). As in
(4.5) we get that P [F1(R,H,λ)c] decays exponentially fast in H , uniformly in λ,
implying that it is enough to show, conditional on F1(R,H,λ), that r̂λ converges
to ∂� in C(Bd−1(0,R)).
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Both � and �(λ) are locally determined in the sense that for any R,H,ε > 0
there exist R′′,H ′′ > 0, such that, with probability at least 1 − ε, the restric-
tions of � and �(λ) to Bd−1(0,R) × [0,H ] are determined by the restrictions
to Bd−1(0,R′′) × [0,H ′′] of P (λ) and P , respectively. Indeed if the geome-
try of � within Bd−1(0,R) × [0,H ] were affected by the status of a point
x ∈R

d−1×R+, there would exist a translate of �↓ such that the translate: (i) hits
Bd−1(0,R)×[0,H ]; (ii) contains x on its boundary; (iii) is devoid of other points
of P . Thus the probability of such an influence being exerted by a faraway point
x tends to 0 with the distance of x from Bd−1(0,R)× [0,H ]. The argument for
�(λ) and P (λ) is analogous. Statements of this kind, going under the general name
of stabilization, shall be discussed in more detail in Lemma 6.1 below.

As above, we may couple P and P (λ) on a common probability space so
that their restrictions to Bd−1(0,R′′) × [0,H ′′] agree on a set F2(R

′′,H ′′, λ),
with P [Fc

2 (R′′,H ′′, λ)] → 0 as λ → ∞. Put F(R,H,λ) := F1(R,H,λ) ∩
F2(R

′′,H ′′, λ), and note that P [F(R,H,λ)] → 1 as λ→∞. We now show on
the event F(R,H,λ) that r̂λ(·) converges to ∂� as λ→∞.

We Taylor-expand the cosine function up to second order to get that

cap(λ)[v∗, h∗] =
{
(v, h) ∈ Rλ, h≤max

(
0, λγ − λγ − h∗

1− eλ(v, v∗)2/2+ · · ·
)}

.

Using the convergence λγ e2
λ(v, v∗)→ |v − v∗|2 and the expansion 1/(1 − r) =

1 + r + r2 + · · · for r small, we see that the upper boundary of cap(λ)[v∗, h∗]
converges as λ→∞with respect to the sup norm distance on Bd−1(0,R)×[0,H ]
to the graph of the upper boundary of the paraboloid{

(v, h) ∈R
d−1 ×R+, h≤ h∗ − |v − v∗|2

2

}
,

that is, the graph of the upper boundary of (v∗, h∗)⊕�↓. In the space C(Bd−1(0,

R)) the upper boundary of �(λ) is with probability one determined by a finite
number of [�↓](λ)

x .
This observation, the definition of r̂λ, and the relation (4.7), show that r̂λ con-

verges in law in the space C(Bd−1(0,R)) equipped with the supremum norm to
the continuous function determined by the upper boundary of the process⋃

x∈Rd−1×R+,[x⊕�↓]∩P=∅

x ⊕�↓,

which coincides with ∂� in view of (3.16). This completes the proof of Theo-
rem 4.1. �

5. Exact distributional results for scaling limits. This section is restricted
to dimension d = 2 and to the homogeneous Poisson point process in the unit-
disk. Here we provide explicit formulae for the fidis of the processes ŝλ and r̂λ and
give their explicit asymptotics, confirming a posteriori the existence of the limiting
parabolic growth and hull processes of Section 3.
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5.1. The process ŝλ. This subsection calculates the distribution of s(θ0, Pλ)

and establishes the convergence of the fidis of both the process and its re-scaled
version. Throughout this section we identify the unit sphere S

1 with the segment
[0,2π), whence the notation s(θ, ·), θ ∈ [0,2π), and likewise for the radius-vector
function r(θ, ·). A first elementary result is the following:

LEMMA 5.1. For every h > 0, u ∈ S
1 and λ > 0, we have

P [s(u, Pλ)≥ h] = exp
{−λ

(
arccos(1− h)− (1− h)

√
2h− h2

)}
.

PROOF. Notice that (s(u, Pλ) ≥ h) is equivalent to cap1[u,h] ∩ Pλ = ∅,
where cap1[u,h] is defined at (4.6). Since the Lebesgue measure �(cap1[u,h])
of cap1[u,h] satisfies

�(cap1[u,h])= arccos(1− h)− (1− h)

√
2h− h2,(5.1)

the lemma follows by the Poisson property of the process Pλ. �

We focus on the asymptotic behavior of the process s when λ is large. When
we scale in space, we obtain the fidis of white noise and when we scale in both
time and space to get ŝ, we obtain the fidis of the parabolic growth process �

defined in Section 3. Let N denote the positive integers. In dimension two, by the
representation (2.16), we notice that the exponential map obtained for the choice
u0 = (0,1) has the following basic expression:

exp1(θ)= (sin(θ), cos(θ)), θ ∈R.

PROPOSITION 5.1. Let n ∈ N, 0 ≤ θ1 < θ2 < · · ·< θn < 2π and hi ∈ (0,∞)

for all i = 1, . . . , n. Then

lim
λ→∞P [λ2/3s(exp1(θ1), Pλ)≥ h1; . . . ;λ2/3s(exp1(θn), Pλ)≥ hn]

=
n∏

k=1

exp
{
−4
√

2

3
h

3/2
k

}
.

Moreover, for every v1 < v2 < · · ·< vn ∈R, we have

lim
λ→∞P [λ2/3s(exp1(λ

−1/3v1), Pλ)≥ h1; . . . ;λ2/3s(exp1(λ
−1/3vn), Pλ)≥ hn]

= exp
(
−

∫ sup1≤i≤n(vi+√2hi)

inf1≤i≤n(vi−√2hi)
sup

1≤i≤n

[(
hi − 1

2
(u− vi)

2
)

× 1
(|u− vi | ≤

√
2hi

)]
du

)
.
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PROOF. The first assertion is obtained by noticing that the events
{s(exp1(θi), Pλ) ≥ λ−2/3hi},1 ≤ i ≤ n, are independent as soon as

hi ∈ (0, λ2/3

2 min1≤k≤n(1−cos(θk+1−θk))). We then apply Lemma 7.7 to estimate
the probability of each of these events. Let us recall beforehand that arccos(1− x)

is expanded as
√

2x +√2x3/12+ · · · when x → 0. For every 1≤ i ≤ n, we have

− logP [λ2/3s(exp1(θi), Pλ)≥ hi]
= λ

[
arccos(1− λ−2/3hi)− (1− λ−2/3hi)

√
2λ−2/3hi − λ−4/3h2

i

]
=

λ→∞λ

[√
2λ−1/3

√
hi +

√
2

12
λ−1h

3/2
i

− (1− λ−2/3hi)
√

2λ−1/3
√

hi

(
1− 1

4
λ−2/3hi

)
+ o(λ−1)

]
=

λ→∞

(
1

12
+ 1+ 1

4

)√
2h

3/2
i + o(1)

=
λ→∞

4

3

√
2h

3/2
i + o(1).

Here and elsewhere in this section, the terminology f (λ) ∼
λ→∞g(λ) [resp.,

f (λ) =
λ→∞o(g(λ))] signifies that limλ→∞ f (λ)/g(λ) = 1 [resp., limλ→∞ f (λ)/

g(λ)= 0]. For the second assertion, it suffices to determine the area �(Dn) of the
domain

Dn :=
⋃

1≤i≤n

capλ[vi, hi].

This set is contained in the angular sector between αn := inf1≤i≤n[λ−1/3vi −
arccos(1 − λ−2/3hi)] and βn := sup1≤i≤n[λ−1/3vi + arccos(1 − λ−2/3hi)]. De-
note by ρn(·) the radial function which associates to θ the distance between the
origin and the point in Dn closest to the origin lying on the half-line making angle
θ with the positive x-axis. Then

�
(

Dn

) =
∫ βn

αn

1

2

(
1− ρ2

n(θ)
)
dθ

= λ−1/3
∫ λ1/3βn

λ1/3αn

1

2

(
1− ρ2

n(λ−1/3u)
)
du

∼
λ→∞ λ−1/3

∫ sup1≤i≤n(vi+√2hi)

inf1≤i≤n(vi−√2hi)

(
1− ρn(λ

−1/3u)
)
du.

Each set capλ[vi, hi] is bounded by a line with the polar equation

ρ = 1− λ−2/3hi

cos(θ − λ−1/3vi)
.
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Consequently, the function ρn(·) satisfies, for every θ ∈ (0,2π),

1− ρn(θ)= sup
1≤i≤n

[
cos(θ − λ−1/3vi)− 1+ λ−2/3hi

cos(θ − λ−1/3vi)

× 1
(|θ − λ−1/3vi | ≤ arccos(1− λ−2/3hi)

)]
.

It remains to determine the asymptotics of the above function. We obtain that

1− ρn(λ
−1/3u) ∼

λ→∞λ−2/3 sup
1≤i≤n

[(
hi − 1

2
(u− vi)

2
)

1
(|u− vi | ≤

√
2hi

)]
.

Considering that the required probability is equal to exp(−λ�(Dn)), we complete
the proof. �

REMARK 1. Proposition 5.1 could have been obtained through the use of the
growth process �. Indeed, we have ∂�(vi) greater than hi for every 1 ≤ i ≤ n if
and only if none of the points (vi, hi) is covered by a parabola of �. Equivalently,
this means that there is no point of P in the region arising as union of translated
downward parabolae �↓ with peaks at (vi, hi). Calculating the area of this region
yields Proposition 5.1.

5.2. The process r̂λ. This subsection, devoted to distributional results for r̂λ,
follows the same lines as the previous one. The problem of determining the dis-
tribution of r(·, Pλ) seems to be a bit more tricky. To proceed, we fix a direction
u ∈ S

1 and a point x = (1− h)u (h ∈ [0,1]) inside the unit-disk B
2. Consider an

angular sector centered at x and opening away from the origin. Open the sector
until it first meets a point of the Poisson point process at the angle Aλ,h (the set
with dashed lines must be empty in Figure 3). Let Aλ,h be the minimal angle of

FIG. 3. When is a point included in the convex hull?



CONVEX HULLS IN THE BALL 77

opening from x = (1− h)u in order to meet a point of Pλ in the opposite side of
the origin. In particular, when Aλ,h = α, there is no point of Pλ in

Sα,h := {y ∈ B
2, 〈y − x,u〉 ≥ cos(α)|y − x|}.

Consequently, we have

P [Aλ,h ≥ π/2] = P [s(u, Pλ)≥ h].(5.2)

The next lemma provides the distribution of Aλ,h.

LEMMA 5.2. For every 0≤ α ≤ π/2 and h ∈ [0,1], we have

P [Aλ,h ≥ α] = exp{−λ�(Sα,h)}(5.3)

with

�(Sα,h)=
(
α+ (1− h)2

2
sin(2α)− (1− h) sin(α)

√
1− (1− h)2 sin2(α)

(5.4)

− arcsin
(
(1− h) sin(α)

))
.

When λ goes to infinity, Aλ,λ−2/3h converges in distribution to a measure with mass

0 on [0, π/2) and mass (1− exp{−4
√

2
3 h2/3}) on {π/2}.

PROOF. A quick geometric consideration shows that the set Sα,h is seen from
the origin with an angle equal to

2β = 2
[
α− arcsin

(
(1− h) sin(α)

)]
.(5.5)

To obtain (5.4), we first integrate in polar coordinates, giving

�(Sα,h)= 2
∫ β

0

[∫ 1

sin(α−γ )/sin(α−θ)
ρ dρ

]
dθ

=
∫ β

0

(
1− (1− h)2 sin2(α)

sin2(α − θ)

)
dθ

= β − (1− h)2 sin2(α)

(
1

tan(α − β)
− 1

tan(α)

)
.

We then use (5.5) to get (5.4).
Let us show now the last assertion of Lemma 5.2. Using Proposition 5.1 and

(5.2), we get that

lim
λ→∞P [Aλ,λ−2/3h ≥ π/2] = exp

(
−4
√

2

3
h2/3

)
.
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It remains to remark that for every α < π/2, limλ→∞P [Aλ,λ−2/3h ≥ α] = 1. In-
deed, a direct expansion in (5.4) shows that

�(Sα,λ−2/3h) ∼
λ→∞

(
sin(α) cos(α)+ 2

sin3(α)

cos(α)
− sin3(α)

2 cos3(α)

)
λ−4/3h2.

Inserting this estimation in (5.3) completes the proof. �

The next lemma provides the explicit distribution of r(u, Pλ) in terms of Aλ,h.

LEMMA 5.3. For all h ∈ [0,1] and u ∈ S
1,

P [r(u, Pλ)≥ h]
= P [s(u, Pλ)≥ h](5.6)

+ λ

∫ π/2

0

∂�(Sα,h)

∂α
exp

{−λ�
(
cap1

[
u,

(
1− (1− h) sin(α)

)])}
dα,

where �(cap1[u, (1− (1− h) sin(α))]) and �(Sα,h) are defined at (5.1) and (5.4),
respectively.

PROOF. For fixed h ∈ [0,1] and α ∈ [0, π/2), we define the set (which is
hatched in Figure 3)

Fh,α := cap1
[
rotα−π/2(u),

(
1− (1− h) sin(α)

)] \ Sα,h,

where rotθ is the classical rotation of angle θ ∈ [0,2π) defined on S
1.

We remark that x is outside the convex hull if and only if either Aλ,h is bigger
than π/2, or Fh,α is empty. Consequently, we have for u ∈ S

1

P [r(u, Pλ)≥ h] = P [Aλ,h ≥ π/2] +
∫ π/2

0
exp{−λ�(Fh,α)}dPAλ,h

(α),

where dPX denotes the distribution of X. Applying Lemma 5.2 yields the result.
�

The next proposition provides the asymptotic behavior of the distribution of
r̂λ(·):

PROPOSITION 5.2. We have for all h≥ 0 and u ∈ S
1,

lim
λ→∞P [λ2/3r(u, Pλ)≥ h] = exp

{
−4
√

2h3/2

3

}

+ 2
∫ ∞

0
exp

{
−4
√

2

3

(
h+ t2

2

)3/2}
t2 dt − 1.
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PROOF. We focus on the asymptotic behavior of the integral in the relation
(5.6) where h is replaced with λ−2/3h. We proceed with the change of variable
α = π

2 − λ−1/3t , which gives

λ

∫ π/2

0

∂�(Sα,h)

∂α
(α,λ−2/3h) exp

{−λ�
(
cap1

[
u,

(
1− (1− λ−2/3h) sin(α)

)])}
dα

= λ2/3
∫ (π/2)λ1/3

0

∂�(Sα,h)

∂α

(
π

2
− λ−1/3t, λ−2/3

)
(5.7)

× exp
{−λ�

(
cap1

[
u,

(
1− (1− λ−2/3h) cos(λ−1/3t)

)])}
dt.

Using (5.1), we find the exponential part of the integrand, which yields

lim
λ→∞ exp

{
−λ�

(
cap1

[
u,

(
1− (1− λ−2/3h) sin

(
π

2
− λ−1/3t

))])}
(5.8)

= exp
{
−4
√

2

3

(
h+ t2

2

)3/2}
.

Moreover, the derivative of the area of Sα,h is

∂�(Sα,h)

∂α
= 1+ (1− h)2 cos(2α)− 2(1− h) cos(α)

√
1− (1− h)2 sin2(α).

In particular, we have

∂�(Sα,h)

∂α

(
π

2
− λ−1/3t, λ−2/3h

)
∼

λ→∞2λ−2/3[
h+ t2 − t

√
2h+ t2

]
.(5.9)

Inserting (5.8) and (5.9) into (5.7) and using (5.6), we obtain the required result.
�

REMARK 2. In connection with Section 3, the above calculation could have
been alternatively based on the limiting hull process related to r̂ . Indeed, for fixed
v ∈ R, h ∈ R+, saying that ∂�(v) is greater than h means that there is no trans-
late of the standard downward parabola �↓ containing two extreme points on its
boundary and lying underneath the point (v, h). We define a random variable D

related to the point (v, h); see Figure 4. If P ∩ ((v, h)⊕�↓) is empty, then we take
D = 0. Otherwise, we consider all the translates of �↓ containing on the bound-
ary at least one point from P ∩ ((v, h)⊕�↓) and the point (v, h). There is almost
surely precisely one among them which has the farthest peak (with respect to the
first coordinate) from (v, h). The random variable D is then defined as the differ-
ence between the v-coordinate of the farthest peak and v. The distribution of |D|
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FIG. 4. Definition of the r.v. D.

can be made explicit:

P [|D| ≤ t] = exp
{−2

3(2h+ t2)3/2 + t
(
2h+ 2

3 t2)}
, t ≥ 0.

Conditionally on |D|, ∂�(v) is greater than h if and only if the region between the
v-axis and the parabola with the farthest peak does not contain any point of P in
its interior. Consequently, we have

P [∂�(v)≥ h] = P [D = 0]

+
∫ ∞

0
exp

{(
−4
√

2

3

(
h+ t2

2

)3/2

− 2

3
(2h+ t2)3/2 − t

(
2h+ 2

3
t2

))}
dP|D|(t),

which provides the result of Proposition 5.2.

The final proposition is the analog of Proposition 5.1 where the radius-vector
function of the flower is replaced by the one of the convex hull itself.

PROPOSITION 5.3. Let n ∈N, 0≤ θ1 < θ2 · · ·< θn < 2π and hi ∈ (0,∞) for
all i = 1, . . . , n. Then

P

[
λ2/3r(exp1(θ1), Pλ)≥ h1; . . . ;λ2/3r(exp1(θn), Pλ)≥ hn

]

∼
λ→∞

n∏
i=1

P [λ2/3r(exp1(θi), Pλ)≥ hi].

Moreover, for every v1 < v2 < · · ·< vn ∈R, we have

lim
λ→∞P [λ2/3r(exp1(λ

−1/3v1), Pλ)≥ h1; . . . ;λ2/3r(exp1(λ
−1/3vn), Pλ)≥ hn]

=
∫

Rn
exp{−F((ti, hi, vi)1≤i≤n)}dP(D1,...,Dn)(t1, . . . , tn),
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where D1, . . . ,Dn are symmetric variables such that

P [|D1| ≤ t1; . . . ; |Dn| ≤ tn]
(5.10)

= exp
(
−

∫
sup

1≤i≤n

[(
hi + t2

i

2
− (|v − vi | + ti)

2

2

)
∨ 0

]
dv

)
,

and F is the area

F((ti, hi, vi)1≤i≤n)=
∫

R

{
sup

1≤i≤n

[(
hi + t2

i

2
− (v − vi − ti)

2

2

)
∨ 0

]
(5.11)

− sup
1≤i≤n

[(
hi + t2

i

2
− (|v− vi | + ti)

2

2

)
∨ 0

]}
dv.

PROOF. We prove the first assertion and denote by A1, . . . , An the angles
(as defined by Lemma 5.2) corresponding to the couples (θ1, λ

−2/3h1), . . . , (θn,

λ−2/3hn). Conditionally on {Ai = αi}, the event {λ2/3r(exp1(θi), Pλ) ≥ hi} only
involves the points of the point process Pλ included in the circular cap cap1[θi −
π
2 + αi, (1− (1− λ−2/3hi) sin(αi))]; see the proof of Lemma 5.3. Moreover there
exists δ ∈ (0, π/2) such that for λ large enough and αi ∈ (δ, π

2 ) for every i,
these circular caps are all disjoint. Consequently, we obtain that, conditionally on
{Ai > δ ∀i}, the events {λ2/3r(exp1(θi), Pλ) ≥ hi} are independent. It remains to
remark that Lemma 5.2 implies

lim
λ→∞P [∃1≤ i ≤ n;Ai ≤ δ] = 0.

Let us consider now the second assertion, which could be obtained by a direct
estimation of the joint distribution of the angles Ai [corresponding to the points
(λ−1/3vi, λ

−2/3hi)]. But it is easier to prove it with the use of the boundary ∂�

of the hull process. As in Remark 2, we define for each point (vi, hi), the random
variable Di as the difference between the v-coordinate of the farthest peak of a
downward parabola arising as a translate of �↓ (denoted by Pari ) containing on
its boundary (vi, hi) and a point of P . Then |Di | is less than ti for every 1≤ i ≤ n

if and only if there is no point of P inside a region delimited by the v-axis and
the supremum of n functions g1, . . . , gn defined in the following way: gi(vi + ·)
is an even function with a support equal to [ti −

√
2hi + t2

i , ti +
√

2hi + t2
i ] and

identified with the parabola Pari (· − vi) on the segment [ti −
√

2hi + t2
i ,0]; see

Figure 4. We deduce from this assertion the result (5.10). Conditionally on {D1 =
t1, . . . ,Dn = tn}, ∂�(vi) is greater than hi for every i if and only if the region
between the functions gi and the parabolae Pari does not contain any point of P ;
see Figure 5. This implies result (5.11) and completes the proof. �

REMARK 3. Convergence of the fidis of the radius-vector function of the con-
vex hull of n uniform points in the disk has already been derived in Theorem 2.3
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FIG. 5. Definition of the area F (hatched region). The black points belong to P .

of [12]. Still we feel that the results presented in this section are obtained in a more
direct and explicit way. Moreover, they are characterized by the parabolic growth
and hull processes, which provides an elementary representation of the asymptotic
distribution. The explicit fidis and the convergence of these fidis to those of ∂�

and ∂� can be used to obtain explicit formulae for second-order characteristics of
the point process of extremal points.

6. Stabilizing functional representation for convex hull characteristics.
The purpose of this section is to link the convex hull characteristics considered
in Section 1 with the theory of stabilizing functionals, a tool for proving limit the-
orems in geometric contexts; see [4, 15–19] and [29].

The collection � of basic geometric functionals. We let � be the collection of
four basic functionals {ξs, ξr , ξϑk

, ξfk
}, where each ξ· is defined on pairs (x, X ),

with x ∈ X ⊂ B
d , according to the following definitions. When x /∈ X , we write

ξ(x, X ) instead of ξ(x, X ∪ {x}).
The point-configuration functional ξs(x, X ), x ∈ X ⊂ B

d, for finite X ⊂ B
d is

set to be zero if x is not a vertex of conv(X ), and otherwise it is defined as fol-
lows. Let F (x, X ) be the (possibly empty) collection of faces f in Fd−1(conv(X ))

such that x = Top(f ), where we recall from (2.5) that Top(f ) is the point in f

which is closest to S
d−1. Let cone(F (x, X )) := {ry, r > 0, y ∈ F (x, X )} be the

corresponding cone. Recalling that F(·) is the Voronoi flower defined at (2.3), for
x /∈ ext(X ), we put ξs(x, X )= 0, and for x ∈ ext(X ), we put

ξs(x, X ) :=Vol
([Bd \ F(X )] ∩ cone(F (x, X ))

)
.

Then the volume of B
d \ F(Pλ) equals

∑
x∈Pλ

ξs(x, Pλ). Also, we know from
(2.25) that Wλ is asymptotically equivalent to the volume of B

d \ F(Pλ).
Likewise, given x ∈ X ⊂ B

d, for x /∈ ext(X ), we put ξr(x, X )= 0, and other-
wise we put

ξr(x, X )=Vol
([Bd \ conv(X )] ∩ cone(F (x, X ))

)
.
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Thus the volume of B
d \Kλ equals

∑
x∈Pλ

ξr (x, Pλ), and we note that Vλ is asymp-
totically equivalent to the volume of B

d \Kλ.
The kth order projection avoidance functional ξϑk

(x, X ), x ∈ X ⊂ B
d, with k ∈

{1, . . . , d} is zero if x /∈ ext(X ), and otherwise equal to

ξϑk
(x, X ) :=

∫
[Bd\conv(X )]∩cone(F (x,X ))

1

|x|d−k
ϑ X

k (x) dx;
see (2.7). In particular, (2.8) yields

Vk(B
d)− Vk(Kλ)= (d−1

k−1)

κd−k

[ ∑
x∈Pλ

ξϑk
(x, Pλ)

]
.(6.1)

The k-face functional ξfk
(x;X ), defined for finite X in B

d , x ∈ X and
k ∈ {0,1, . . . , d − 1}, is the number of k-dimensional faces f of conv(X )

with x = Top(f ), if x belongs to Vertices[conv(X )], and zero otherwise. Thus∑
x∈X ξfk

(x, X ) is the total number of k-faces in conv(X ). In particular, setting

X := Pλ, the total mass of μ
fk

λ is

fk(Kλ)=
∑

x∈Pλ

ξfk
(x, Pλ).(6.2)

It is readily seen by the definition of μ
fk

λ at (2.5) that

μ
fk

λ := μ
ξfk

λ := ∑
x∈Pλ

ξfk
(x, Pλ)δx.(6.3)

The collection �(∞) of scaling counterparts to elements of �. In the spirit of the
local scaling Section 4, we shall construct scaling counterparts to each functional
ξ ∈ �; we shall define these counterparts in terms of the paraboloid growth and
hull processes. To reflect this correspondence we write ξ

(∞)· to denote the local
scaling limit analog of ξ· with the (∞) superscript.

The functional ξ
(∞)
s (x, P) is defined to be zero if x /∈ ext(�) and otherwise

is defined as follows. Let F∞(x, P) stand for the collection of paraboloid faces
f of � for which x = Top(f ) [recall (2.5)] and let v-cone(F∞(x, P)) be the
cylinder (vertical cone) in R

d−1 × R+ generated by F∞(x, P), that is to say,
v-cone(F∞(x, P)) := {(v, h),∃h′ : (v, h′) ∈ F∞(x, P)}. Then, if x ∈ ext(�), we
set

ξ (∞)
s (x, P) :=Vol

(
v-cone(F∞(x, P)) \�

)
.

Formally we should define ξ
(∞)
s (x;X ) for general X rather than just for P, but

we bypass this formality so as to avoid extra notation. We will mainly consider
X = P anyway and the general definition can be readily recovered by formally
conditioning on P = X . This simplifying convention will also be applied for the
remaining local scaling functionals below.
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Likewise, ξ
(∞)
r (x, P) is zero if x /∈ ext(�), and otherwise

ξ (∞)
r (x, P) :=Vol

(
v-cone(F∞(x, P)) \�

)
.

The kth order projection avoidance functional ξ
(∞)
ϑk

(x, P) is zero if x /∈ ext(�),
and otherwise

ξ
(∞)
ϑk

(x, P) :=
∫
v-cone(F∞(x,P))\�

ϑ∞k (u) du(6.4)

with ϑ∞k (·) defined in (3.19). Note that the extra factor 1
|x|d−k in (2.8), where x ∈

B
d \Kλ, converges to one under the scaling T λ defined at (2.12), and thus is not

present in the asymptotic functional.
The k-face functional ξ

(∞)
fk

(x, P), defined for x ∈ P , and k ∈ {0,1, . . . , d − 1},
is the number of k-dimensional paraboloid faces f of the hull process � for which
x = Top(f ), if x belongs to ext(�)=Vertices(�), and zero otherwise.

The collection �(λ) of finite-size scaling counterparts to elements of �. For each
of the four basic functionals ξ ∈ �, and each λ ≥ 1, consider the collection �(λ)

of the finite-size scaling counterparts ξ (λ) given by

ξ (λ)(x, X ) := ξ([T λ]−1x, [T λ]−1X ), x ∈ X ⊂ Rλ ⊂R
d−1 ×R+,(6.5)

where T λ is the scaling transform (2.12) and Rλ its image (2.13). Again resorting
to the theory developed in Section 4, we see for ξ ∈ � that ξ (λ) can be regarded
as interpolating between ξ and ξ (∞); as such it is the analog of ξ (λ) defined at
(1.17) of [30]. However, due to the differing natures of the functionals considered
here, different scaling pre-factors are needed to ensure nontrivial scaling behaviors.
More precisely, for each ξ (λ) ∈ �(λ) we define its proper scaling prefactor λη[ξ ]
where:

• η[ξs] = η[ξr ] = η[ξϑk
] = β(d − 1)+ γ, k ∈ {0,1, . . . , d − 1}, since for each of

these three functionals, the spatial scaling involves dilation by λβ , whereas the
time scaling involves λγ . [Note that the re-scaled projection avoidance function
(2.21) involves no scaling prefactor.]

• η[ξfk
] = 0 because the number of k-faces does not undergo any scaling.

To proceed, for any measurable D ⊆ R
d−1 × R+ and generic scaling limit

functional ξ (∞) ∈ �(∞), by its restricted version we mean by ξ
(∞)
D (x, P) :=

ξ (∞)(x, P ∩D), x ∈ R
d−1 × R+. Note that the so-defined restricted functionals

in case of D bounded, or of bounded spatial extent, clearly involve growth and
hull processes built on input of bounded spatial extent, in which case the definition
(3.7) for P replaced with P ∩D yields infinite vertical faces at the boundary of
D′s spatial extent. This makes some of the functionals considered in this paper
infinite or even undefined for points close to these infinite faces. For such points
x, x := (vx, hx), and such sets D, we may formally put ξ

(∞)
D =∞. Fortunately,

such pathologies do not arise in the sequel. Indeed, we will restrict to cylinder sets
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D centered around the vertical axis {(vx, h), h ≥ 0} whose radius (termed stabi-
lization radius below) is sufficiently large so that with probability one the faces
meeting x, as defined by the input P ∩D, coincide with the faces meeting x when
the input is P . We now make these ideas precise.

Having now defined the class � of four basic functionals, together with the
finite-size scaling version �(λ), λ ≥ 1, and the infinite scaling version �(∞), we
are ready to establish some crucial localization properties of the functionals in
�(λ) and �(∞). Recalling that Bd−1(v, r) is the (d − 1) dimensional ball centered
at v ∈ R

d−1 with radius r , let Cd−1(v, r) be the cylinder Bd−1(v, r)×R+. Given
a generic scaling limit functional ξ (∞) ∈�(∞), we shall write ξ

(∞)
[r] := ξ

(∞)
Cd−1(v,r).

Likewise, for the finite scaling functionals ξ (λ) ∈ �(λ), we shall use the notation
ξ

(λ)
[r] with a fully analogous meaning.

Given ξ (∞) ∈ �(∞), a random variable R := Rξ(∞)[x] is called a localization
radius for ξ (∞) if and only if a.s.

ξ (∞)(x, P)= ξ
(∞)
[r] (x, P) for all r ≥R.

Given ξ (λ) ∈ �(λ), we analogously define Rξ(λ)[x] to be a localization radius for
ξ (λ) if and only if a.s.

ξ (λ)(x, P (λ))= ξ
(λ)
[r]

(
x, P (λ)) for all r ≥R.

The notion of localization, developed in [30], is a variant of a general concept of
stabilization [4, 15, 18, 19]. A crucial property of the functionals ξ (λ) ∈�(λ), λ≥ 1
and ξ (∞) ∈ �(∞) is that they admit localization radii with tails decaying super-
exponentially fast.

LEMMA 6.1. For each ξ ∈ �, the functionals ξ (∞) and ξ (λ), λ ≥ 1, admit
localization radii with the property that

P
[
Rξ(∞)[x]> L

]≤ C exp
(
−Ld+1

C

)
and

(6.6)

P
[
Rξ(λ)[x]> L

]≤ C exp
(
−Ld+1

C

)
for some finite positive constant C, uniformly in λ large enough and uniformly
in x.

PROOF. The proof is given only for the scaling limit functionals ξ (∞) ∈�(∞);
the argument for the finite scaling functionals ξ (λ) ∈�(λ), λ≥ 1, is fully analogous
and is omitted.

For a point x := (v, h) ∈ P , denote by P[[x]] the collection of all vertices of
(d − 1)-dimensional faces of � meeting at x if x ∈Vertices(�) and P[[x]] := {x}
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otherwise. If x ∈Vertices(�), the collection P[[x]] uniquely determines the local
facial structure of � at x, understood as the collection of all (d − 1)-dimensional
faces f1[x], . . . , fm[x],m = m[x] < ∞ meeting at x. We shall show that there
exists a random variable R′ := R′[x] with these two properties:
• With probability one the facial structure P[r][[x]] at x determined upon re-

stricting to P := P ∩CRd−1(v, r) coincides with P[[x]] for all r ≥R′; in the sequel
we say that P[[x]] is fully determined within radius R′ in such a case.
• We have

P [R′ > L] ≤ C exp
(
−Ld+1

C

)
.(6.7)

Before proceeding, we note that to conclude the statement of Lemma 6.1, it is
enough to establish (6.7). Indeed, this is because of these three observations:
• The values of functionals ξ

(∞)
s , ξ∗r and ξ

(∞)
fk

, k ∈ {0, . . . , d − 1}, at x ∈ P , are
uniquely determined given P[[x]], and thus R′ can be taken as the localization
radius.
• The values of functionals ξ

(∞)
ϑk

(x, P), k ∈ {1, . . . , d − 1}, x := (v, h),

are determined, given the intersection of the hull process � with
�[x] := [v-cone(F (∞)(x, P)) \ �] ⊕ �↓; see (3.19) and the definition of ξ

(∞)
ϑk

at (6.4). It is readily seen that this intersection �[x] ∩� is in its turn uniquely de-
termined by �[x] ∩Vertices(�). Thus, to know it, it is enough to know the facial
structure at x and at all vertices of � falling into �[x]. To proceed, note that the
spatial diameter of �[x] is certainly bounded by R′[x] plus 2

√
2 times the square

root of the highest height coordinate of ∂� within spatial distance R′[x] from v.

Use (4.5) to bound this height coordinate and thus to establish a superexponential
bound exp(−�(Ld+1)) for tail probabilities of the spatial diameter R′′[x] of �[x].
Finally, we set the localization radius to be maxy∈Vertices(�),y∈C

Rd−1 (v,R′′[x]) R′[y]
which is again easily verified to exhibit the desired tail behavior as the number of
vertices within CRd−1(v,R′′[x]) grows polynomially in R′′[x] with overwhelming
probability; see Lemma 3.2 in [30].

To proceed with the proof, suppose first that x is not extreme in �. Then, by
Lemma 3.1 in [30] and its proof, there exists R′ = R′[x] satisfying (6.7) and such
that the extremality status of x localizes within radius R′. In this particular case
of x not extreme in �, this also implies localization for P[[x]] = {x}. Assume
now that x is an extreme point in P . Enumerate the (d − 1)-dimensional faces
meeting x by f1, . . . , fm. The local facial structure P[[x]] is determined by the
parabolic faces of the space–time region

⋃
i≤m �↓[fi], which by (3.16) is devoid

of points from P . Note that this region contains all vertices of f1, . . . , fm on its
upper boundary. Moreover, Poisson points outside this region do not change the
status of the faces f1, . . . , fm as these faces will not be subsumed by larger faces
meeting x unless Poisson points lie on the boundary of the hull process, an event
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of probability zero. It follows that P[[x]] is fully determined by the point configu-
ration P ∩Cd−1(v,R′) where R′ is the smallest integer r such that⋃

i≤m

[�↓[fi] ∩ (Rd−1 ×R+)] ⊂ Cd−1(v, r).(6.8)

To establish (6.7) for R′, we note that if R′ exceeds L, then, by standard geometry,
within distance O(L2) from x, we can find a point x′ in Z

d with the properties
that:

• the downwards parabolic solid x′ ⊕�↓ is contained in
⋃

i≤m �↓[fi] and thus
in particular devoid of points of P;

• the spatial diameter (the diameter of spatial projection on R
d−1) of [x′ ⊕�↓] ∩

(Rd−1 ×R+) does exceed L/2.

Since the intensity measure of P assigns to such [x′ ⊕�↓]∩ (Rd−1×R+) mass of
order at least �(Ld+1) [in fact even �(Ld+1+2δ); see the proof of Lemma 3.1 in
[30] for details in a much more general set-up], the probability of having x′ ⊕�↓
devoid of points of P is exp(−�(Ld+1)). Since the cardinality of Bd(x,L2) ∩
Z

d−1 is bounded by CL2d, Boole’s inequality gives

P [R′ > L] ≤ CL2d exp
(
−Ld+1

C

)
,

which yields the required inequality (6.7) and thus completes the proof of
Lemma 6.1. �

7. Variance asymptotics and Gaussian limits for empirical measures. Sec-
tions 1–5 establish the asymptotic embedding in R

d−1 × R+ of convex polytope
characteristics, whereas Section 6 establishes their localization properties. The
present section establishes variance asymptotics and Gaussian limits of these char-
acteristics by exploiting this embedding within the framework of general methods
of stabilization theory for point processes on R

d−1 ×R+.
Given a generic functional ξ ∈�, recall from (6.5) its finite size scaling coun-

terpart ξ (λ) ∈�(λ), namely

ξ (λ)(x, X ) := ξ([T λ]−1x, [T λ]−1X ), x ∈ X ⊂ Rλ ⊂R
d−1 ×R+.

Put

μ
ξ
λ :=

∑
x∈P (λ)

ξ (λ)(x, P (λ))δx(7.1)

and μ̄
ξ
λ := μ

ξ
λ −Eμ

ξ
λ.

As in Section 6, we write ξ (∞) ∈�(∞) to denote the local scaling limit analog
of ξ ; ξ (∞) is defined on pairs (x, X ), with x ∈ X ⊂R

d−1 ×R+. Recall that when
x /∈ X , we write ξ(x, X ) instead of ξ(x, X ∪ {x}), with a similar convention for
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ξ (λ). Recall from Definition 3.1 that P is a Poisson point process in the upper half-
space R

d−1 × R+ with intensity density hδ dhdv. Following [30], we define the
second order correlation functions for ξ (∞) given by

ςξ(∞) (x) := E
[
ξ (∞)(x, P)

]2
, x ∈R

d−1 ×R+,(7.2)

whereas, for all x, y ∈R
d−1 ×R+, we put

ςξ(∞) (x, y) := E
[
ξ (∞)(x, P ∪ {y})ξ (∞)(y, P ∪ {x})]

(7.3)
−E

[
ξ (∞)(x, P)

]
E

[
ξ (∞)(y, P)

]
.

Define also the asymptotic variance expression

σ 2(
ξ (∞)) := ∫ ∞

0
ςξ(∞) ((0, h))hδ dh

(7.4)
+

∫ ∞
0

∫ ∞
0

∫
Rd−1

ςξ(∞) ((0, h), (v′, h′))hδh′δ dhdh′ dv′.

These expressions are the counterparts to (1.7) and (1.8) in [30]; recall that here
we are working in the isotropic regime, corresponding to ρ0 ≡ 1 in [30].

Given ξ ∈ �, consider the sum
∑

x∈P (λ) λη[ξ ]ξ (λ)(x, P (λ)). There are roughly
λβ(d−1) terms which do not vanish, and thus one expects growth of order λτ with

τ = β(d − 1)= d − 1

d + 1+ 2δ
.(7.5)

Upon centering and scaling by λ−τ/2, one may also expect asymptotic normality
as λ→∞. The following theorem, one of the main results of this paper, makes
this intuition precise. It establishes a weak law of large numbers, variance asymp-
totics and a central limit theorem for the afore-mentioned sums as well as for
λ−τ/2〈g,λη[ξ ]μξ

λ〉 = λζ/2〈g,μ
ξ
λ〉, g ∈ C(Bd), where we have ζ = −τ + 2η from

(2.26).

THEOREM 7.1. For all ξ ∈� and all g ∈ C(Bd), we have

lim
λ→∞λ−τ

E
[〈
g,λη[ξ ]μξ

λ

〉]= ∫ ∞
0

E
[
ξ (∞)(0, h)

]
hδ dh

∫
Sd−1

g(u)dσd−1(u).(7.6)

The integral in (7.4) converges, and for all g ∈ C(Bd), we have

lim
λ→∞λ−τ Var

[〈
g,λη[ξ ]μξ

λ

〉]= V ξ(∞)[g] := σ 2(
ξ (∞)) ∫

Sd−1
g2(u) dσd−1(u).(7.7)

Furthermore, the random variables λ−τ/2〈g,λη[ξ ]μ̄ξ
λ〉 converge in law to N(0,

V ξ(∞)[g]) as λ→∞. Finally, if σ 2(ξ (∞)) > 0, then for all g ∈ C(Bd) not identi-
cally zero, we have

sup
t

∣∣∣∣P [ 〈g,λη[ξ ]μ̄ξ
λ〉√

Var[〈g,λη[ξ ]μ̄ξ
λ〉]

≤ t

]
− P [N(0,1)≤ t]

∣∣∣∣
(7.8)

=O(λ−τ/2(logλ)3d+4δ+1).
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REMARKS. (i) The expectation limit (7.6) and variance limit (7.7) generalize
the analogous limits appearing at (2.2) and (2.3) in Theorem 2.1 of [30], which is
restricted to the case that ξ is the k-face functional with k = 0. Likewise, conver-
gence in law of λ−τ/2〈g,λη[ξ ]μ̄ξ

λ〉 and the rate result (7.8) extend the distributional
results of Theorem 2.1 of [30].

(ii) We refer to the statements (7.7) and (7.8) as measure-level variance asymp-
totics and measure level central limit theorems for λη[ξ ]μξ

λ, with scaling exponent
−τ/2 and with variance density σ 2(ξ (∞)). When g ≡ 1, we obtain the limit theory
for the total mass of μ

ξ
λ, giving scalar variance asymptotics and central limit the-

orems. For all ξ ∈ �, Theorem 7.1 admits a multivariate version giving a central
limit theorem for the random vector (λ−τ/2〈g1, λ

η[ξ ]μ̄ξ
λ〉, . . . , λ−τ/2〈gm,λη[ξ ]μ̄ξ

λ〉),
with gi ∈ C(Bd) for all i = 1, . . . ,m, which follows from the Cramér–Wold device.

(iii) Given ξ (∞) ∈ �(∞), the question whether σ 2(ξ (∞)) is strictly positive is
nontrivial, and the application of general techniques of stabilization theory de-
signed to check this condition may be far from straightforward. These issues are
discussed at the end of this section.

(iv) We have not tried for optimal rates in (7.8) and expect that the exponents
on the logarithm can be improved.

The proof of Theorem 7.1 depends on the following three lemmas, which es-
tablish further properties of the scaling limit functionals ξ (∞) ∈ �(∞) and local
scaling functionals ξ (λ) ∈�(λ), λ≥ 1.

LEMMA 7.1. For all p > 0 and all ξ ∈�, we have

sup
x∈Rd−1

E
[∣∣ξ (∞)(x, P)

∣∣p]
<∞ and

(7.9)
sup
λ≥1

sup
x∈Rλ

E
[∣∣λη[ξ ]ξ (λ)(x, P (λ))∣∣p]

<∞.

PROOF. We only give the proof for ξ (∞), the finite scaling case ξ (λ) being
fully analogous. This is done separately for all functionals considered.

For ξ
(∞)
s (x, P) and ξ

(∞)
r (x, P) we only consider the case of x extreme, for oth-

erwise both functionals are zero. With x ∈ Vertices(�) we make use of (4.5) to
bound the height and of (6.7) and (6.8) to bound the spatial size of the regions
whose volumes define ξ

(∞)
s and ξ

(∞)
r . Since these bounds yield superexponen-

tial decay rates on each dimension separately, the volume admits uniformly con-
trollable moments of all orders. Finally, by (6.4), 0 ≤ ξ

(∞)
ϑk

≤ ξ
(∞)
r whence (7.9)

follows for ξϑk
as well.

For ξ
(∞)
fk

(x, P), we only consider the case x ∈ Vertices(�), and we let N :=
N [x] be the number of extreme points in P ∩ Cd−1(v,R′[x]) with R′ as in (6.8).
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Then ξ
(∞)
fk

(x, P) is upper bounded by
( N
k−1

)
. By Lemma 3.2 of [30], the proba-

bility that a point (v1, h1) is extreme in � falls off superexponentially fast in h1;
see again (4.5). Consequently, in view of (6.7), the random variables

( N
k−1

)
and

ξ
(∞)
fk

(x, P) admit finite moments of all orders.
The proof of Lemma 7.1 is now complete. �

For all h ∈R+, (v′, h′) ∈ Rλ, and ξ ∈�, we put

c(λ)((0, h), (v′, h′)) := E
[
λη[ξ ]ξ (λ)((0, h), P (λ) ∪ (v′, h′)

)
× λη[ξ ]ξ (λ)((v′, h′), P (λ) ∪ (0, h)

)]
−E

[
λη[ξ ]ξ (λ)((0, h), P (λ))]

E
[
λη[ξ ]ξ (λ)((v′, h′), P (λ))]

.

The next lemma makes use of the moment bounds of Lemma 7.1 and is proved
through straightforward modifications of the proofs of Lemmas 3.3 and 3.4 in [30].

LEMMA 7.2. For all h ∈R+, (v′, h′) ∈ Rλ and ξ ∈� we have as λ→∞,

E
[
λη[ξ ]ξ (λ)((0, h), P (λ))]→ E

[
ξ (∞)((0, h), P)

]
and

c(λ)((0, h), (v′, h′))→ ςξ(∞) ((0, h), (v′, h′)).

The next lemma is the analog of Lemma 3.5 in [30] and is proved similarly.

LEMMA 7.3. There is a constant C <∞ such that for all h ∈ R+, (v′, h′) ∈
Rλ, and all ξ ∈�, we have∣∣c(λ)((0, h), (v′, h′))

∣∣≤ C exp
(−1

C
max(|v′|, h,h′)

)
and ∣∣ςξ(∞) ((0, h), (v′, h′))

∣∣≤ C exp
(−1

C
max(|v′|, h,h′)

)
.

Equipped with these lemmas, we now prove Theorem 7.1. We shall give sepa-
rate proofs for (7.6), (7.7) and (7.8), following closely the methods of [30].

Proof of the expectation formula (7.6). For g ∈ C(Bd), we have for all ξ ∈�,

E[〈g,μ
ξ
λ〉] = λ

∫
Bd

g(x)E[ξ(x, Pλ)](1− |x|)δ dx.(7.10)

By rotation invariance, we have that ξ(x, Pλ)
D= ξ(xθ , P θ

λ ), where xθ is x rotated
by the angle θ , and similarly for P θ

λ . Letting θ := θx be the rotation sending x/|x|
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to u0, gives Eξ(x, Pλ) = Eξ (λ)((0, h), P (λ)), where h := λγ (1 − |x|). Thus we
rewrite (7.10) as

E[〈g,μ
ξ
λ〉] = λ

∫
Bd

g(x)E
[
ξ (λ)((0, h), P (λ))]

λ−γ δhδ dx

= λ1−γ δ
∫

Sd−1

∫ λγ

0
g

(
u(1− λ−γ h)

)
E

[
ξ (λ)((0, h), P (λ))]

(7.11)

× hδ(1− λ−γ h)d−1λ−γ dhdσd−1(u).

Noting that τ = 1− δγ − γ and multiplying through by λ−τ+η[ξ ], we obtain

λ−τ+η[ξ ]
E[〈g,μ

ξ
λ〉] =

∫
Sd−1

∫ λγ

0
g

(
u(1− λ−γ h)

)
E

[
λη[ξ ]ξ (λ)((0, h), P (λ))]

(7.12) × (1− λ−γ h)d−1hδ dhdσd−1(u).

Notice that E[λη[ξ ]ξ (λ)((0, h), P (λ)]hδ is dominated by an integrable function
of h, as the contribution coming from large h is well controllable as in Lemma 3.2
in [30]—in particular we exploit that ξ(x, X ) = 0 whenever x is nonextreme in
X and, roughly speaking, only points close enough to the boundary S

d−1 have
a nonnegligible chance of being extreme in Pλ. Thus letting λ →∞ in (7.12),
applying the first part of Lemma 7.2, using limλ→∞(1 − λ−γ h)d−1 = 1 and
limλ→∞ g(u(1−λ−γ h))= g(u) for all u ∈ S

d−1 and applying the dominated con-
vergence theorem as in, for example, Section 3.2 in [30], we finally get from (7.12)
the required relation (7.6).

Proof of variance convergence (7.7). We have for g ∈ C(Bd) and ξ ∈�, that

λ−τ+2η[ξ ]Var[〈g,μ
ξ
λ 〉]

= λ−τ+2η[ξ ]+1
∫

Bd
g2(x)E[ξ(x, Pλ)

2](1− |x|)δ dx

+ λ−τ+2η[ξ ]+2
∫

Bd

∫
Bd

g(x)g(y)
(
E[ξ(x, Pλ ∪ y)ξ(y, Pλ ∪ x)]
−E[ξ(x, Pλ)]E[ξ(y, Pλ)])

× (1− |x|)δ(1− |y|)δ dx dy

:= I + II.

As in (7.11), we write term I as

I = λ−τ+2η[ξ ]+1
∫

Bd
g2(x)E

[
ξ (λ)((

0, λγ (1− |x|)), P (λ))2]
(1− |x|)δ dx.

Now put h := λγ (1− |x|), and write dx = (1− λ−γ h)d−1 dσd−1(u)λ−γ dh. This
transforms I as follows:

I = λ−τ+1−γ−δγ
∫

Sd−1

∫ λγ

0
g2(

u(1− λ−γ h)
)
E

[(
λη[ξ ]ξ (λ)((0, h), P (λ)))2]

× hδ(1− λ−γ h)d−1 dhdσd−1(u).
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Lemma 7.2 and the moment bounds of Lemma 7.1 give

lim
λ→∞E

[(
λη[ξ ]ξ (λ)((0, h), P (λ)))2]= E

[
ξ (∞)((0, h), P))2] := ςξ(∞) ((0, h)).

Since τ := 1 − δγ − γ , by the dominated convergence theorem, we obtain, as
λ→∞, that

I →
∫

Sd−1

∫ ∞
0

g2(u)ςξ(∞) ((0, h))hδ dhdσd−1(u).(7.13)

We now consider term II. Recall x := (ux, hx) ∈ B
d and y := (uy, hy) ∈ B

d .
We rotate all points in Pλ ∪ {x, y} in such a way that x/|x| gets sent to u0. Denote
the rotated point set by P ′

λ ∪ {x′, y′}, where x′ := (0, hx′), y′ := (vy′, hy′), with
hx′ = 1− |x′|, hy′ = 1− |y′|.

We write term II as

II = λ−τ+2−2γ δ
∫

Bd

∫
Bd

g(x′)g(y′)[· · ·]hδ
x′h

δ
y′ dx′ dy′,

where

[· · ·] := E[ξ(x′, Pλ ∪ {y′})ξ(y′, Pλ ∪ {x′})] −Eξ(x′, Pλ)Eξ(y′, Pλ).(7.14)

Write

T (λ)(x′) := (0, λγ hx′) := (0, h); T (λ)(y′) := (λβvy′, λ
γ hy′) := (v′, h′);

T (λ)(P ′
λ) := P ′(λ).

Under these transformations, the expression [· · ·] in (7.14) transforms to

[· · ·]′ = E
[
λη[ξ ]ξ (λ)((0, h), P ′(λ) ∪ (v′, h′)

)
λη[ξ ]ξ (λ)((v′, h′), P ′(λ) ∪ (0, h)

)]
(7.15)

−Eλη[ξ ]ξ (λ)((0, h), P ′(λ))λη[ξ ]
Eξ (λ)((v′, h′), P (λ)).

Recalling the definitions of x′ and y′, we obtain hδ
x′ = λ−γ δhδ , hδ

y′ = λ−γ δ(h′)δ ,
with

dx′ = (1− λ−γ h)d−1 dσd−1(u)λ−γ dh,

and

dy′ = λ−β(d−1) dv′λ−γ dh′.

Thus the polynomial λ multiplier in term II gets replaced by λ−τ+2−2γ δ ×
λ−2γ λ−β(d−1), and so the differential λ−τ+2−2γ δ dx′ dy′ on B

d × B
d in term II

transforms to the differential

λ−τ+2−2γ δλ−β(d−1)λ−2γ (1− λ−γ h)d−1 dσd−1(u) dv′ dh′ dh(7.16)
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on S
d−1×T (λ)(Sd−1)×[0, λγ ]× [0, λγ ]. The pre-factor in (7.16) involving pow-

ers of λ reduces to unity in view of the identity τ = 2 − 2γ − 2γ δ − β(d − 1).
Thus (7.16) transforms to

(1− λ−γ h)d−1 dσd−1(u)λ−γ dv′ dh′ dh.(7.17)

For all triples (v′, h′, h) ∈ T (λ)(Sd−1)× [0, λγ ] × [0, λγ ], the covariance term
[· · ·]′ at (7.15) may be expressed as

[· · ·]′ = c(λ)((0, h), (v′, h′)).(7.18)

By Lemma 7.2 we have for all triples (v′, h′, h) ∈ T (λ)(Sd−1)× [0, λγ ] × [0, λγ ],
that as λ→∞

[· · ·]′ = c(λ)((0, h), (v′, h′))→ ςξ(∞) ((0, h), (v′, h′)).(7.19)

Finally, for all y′ ∈ B
d , consider the factor g(y′) in the integrand of term II. The

factor g(y′) transforms to g((T (λ))−1(v′, h′)). For all pairs (v′, h′) ∈ T (λ)(Sd−1)×
[0, λγ ], we have (T (λ))−1(v′, h′) → (ux′,0) as λ →∞. By continuity of g we
obtain

g
((

T (λ))−1
(v′, h′)

)→ g(ux′,0)(7.20)

as λ→∞.
Therefore, combining (7.17), (7.18), we may rewrite term II as

II =
∫

Sd−1

∫
T (λ)(Sd−1)

∫ λγ

0

∫ λγ

0
g

((
u(1− λ−γ h)

)
g

((
T (λ))−1

(v′, h′)
)

× c(λ)((0, h), (v′, h′))
× hδh′δ(1− λ−γ h)d−1 dh′ dhdv′ dσd−1(u).

By Lemma 7.3, the integrand is dominated by the function

(u, v′, h′, h) �→ Chδh′δ exp
(−1

C
max(|v′|, h,h′)

)
,

which is integrable on S
d−1×R

d−1× (0,∞)2. The dominated convergence theo-
rem, combined with the limits (7.19) and (7.20), together with T (λ)(Sd−1) ↑R

d−1,
show that as λ→∞, we have

II →
∫

Sd−1

∫
Rd−1

∫ ∞
0

∫ ∞
0

g(u)2ςξ(∞) ((0, h), (v′, h′))
(7.21)

× hδh′δ dh′ dhdv′ dσd−1(u).

The second part of Lemma 7.3 implies that the integral in (7.21) is finite. Combin-
ing (7.13) with (7.21) gives the desired limit (7.7).

Proof of Gaussian convergence (7.8). The proof uses the Stein method for de-
pendency graphs and is inspired by the proof of Theorem 2.1 of [19], which in-
volves a dependency graph structure on nonscaled sample points in a rectangular
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solid. Since the sample points of this paper belong to the unit ball, we find it more
convenient to put a dependency graph on the re-scaled points P (λ) in Rλ. Addi-
tionally, we do not use all of the re-scaled points P (λ), but only those with a small
height coordinate. These differences complicate the approach and, in an effort to
make this paper reader friendly, we include the details. As in [19], the argument
makes use of the following lemma of Chen and Shao [8]. For any random variable
X and any p > 0, let ‖X‖p := (E|X|p)1/p. Let � denote the cumulative distribu-
tion function of the standard normal.

LEMMA 7.4 (See Theorem 2.7 of [8]). Let 2 < q ≤ 3. Let Wi, i ∈ V, be ran-
dom variables indexed by the vertices of a dependency graph. Let W =∑

i∈V Wi.

Assume that EW 2 = 1,EWi = 0, and ‖Wi‖q ≤ θ for all i ∈ V and for some θ > 0.

Then

sup
t
|P [W ≤ t] −�(t)| ≤ 75D5(q−1)|V|θq.(7.22)

Fix ξ ∈ � to be one of the basic functionals discussed in Section 6. For all
g ∈ C(Bd), we have〈

g,λη[ξ ]μξ
λ

〉= ∑
x∈Pλ

λη[ξ ]ξ(x, Pλ)g(x)= ∑
x′∈P (λ)

λη[ξ ]ξ (λ)(x′, P (λ))g([T λ]−1x′).

Recalling that x′ := (λβvx, h), we define for all L > 0 and g ∈ C(Bd),

T
ξ
λ (L,g) := ∑

x′∈P (λ),h≤L logλ

λη[ξ ]ξ (λ)(x′, P (λ))g([T λ]−1x′).

By the analog of Lemma 3.2 of [30], given K > 0 and large, we may choose
L := L(K) large so that 〈g,λη[ξ ]μξ

λ〉 and T
ξ
λ (L,g) coincide everywhere except on

a set with probability O(λ−K). It follows that 〈g,λη[ξ ]μξ
λ〉 and T

ξ
λ (L,g) have the

same asymptotic distribution as λ→∞, and it may be shown that they share the
same variance asymptotics. It suffices to find a rate of convergence to N(0,1) for

(T
ξ
λ (L,g)−ET

ξ
λ (L,g))/

√
Var[T ξ

λ (L,g)].
To prepare for dependency graph arguments, we put ρλ := L logλ, L a con-

stant, and we subdivide λβ
Bd−1(π) into V (λ) := (2πλβ)d−1(ρλ)

−(d−1) sub-cubes
Qi, i = 1, . . . , V (λ), of edge length ρλ and of volume (ρλ)

d−1. Enumerate the
points P (λ) ∩ [Qi ×L logλ] by {X′

ij }Ni

j=1 so that

T
ξ
λ (L,g)=

V (λ)∑
i=1

Ni∑
j=1

λη[ξ ]ξ (λ)(X′
ij , P (λ))g([T λ]−1X′

ij ).

The random variable Ni is Poisson whose mean νi equals the P (λ) intensity
measure of the rectangular solid Qi ×L logλ, and thus νi is bounded by the prod-
uct of Vol(Qi × L logλ) and the maximum of the intensity of P (λ) on this solid.
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Recalling the intensity of P (λ) at (2.14), we obtain

νi := ENi ≤ C
(
Vol(Qi ×L logλ)

)
(L logλ)δ = C(ρλ)

d+δ.

The following result is the analog of Lemma 4.3 of [19] and is proved similarly.
For 1≤ i ≤ V (λ), and for j ∈ {1,2, . . .}, we define for the fixed functional ξ ,

ξi,j :=
{

λη[ξ ]ξ (λ)(X′
i,j , P (λ)), if Ni ≥ j,X′

i,j ∈ λβ
Bd−1(π)× [0,L logλ],

0, otherwise.

With ξ ∈ � still fixed, note that ξ satisfies the moment condition (7.9) for all
p > q ≥ 1.

LEMMA 7.5. With p > q ≥ 1, there exists C := C(p,q), such that for 1≤ i ≤
V (λ), we have ∥∥∥∥∥

∞∑
j=1

|ξi,j |
∥∥∥∥∥
q

≤ Cρ
(d+δ)(p+1)/p
λ .

Continuing with the dependency graph arguments, we let p > q and q ∈ (2,3].
Recall from Section 6 that Rξ(λ)

(x) is localization radius for the functional ξ (λ) if
and only if a.s.

ξ (λ)(x, P (λ))= ξ
(λ)
[r]

(
x, P (λ))

for all r ≥Rξ(λ)
(x). Put U(t) := supλ≥1,x∈Rλ

P [Rξ(λ)
(x) > t], which is the analog

of the τ function defined at (2.2) of [19]. With the choice ρλ = L logλ, Lemma 6.1
implies that for L large, we have that U(ρλ) has polynomial decay of high order,
and so we have

V (λ)ρ
(d+δ)(p+1)/p
λ

(
λβ(d−1)(logλ)1+δU(ρλ)

)(q−2)/2q
< λ−3−(βd/2) and

(7.23)
U(ρλ) < λ−β(d−1)−3,

which is the analog of display (4.8) in [19]. We also have ρd+δ
λ < Cλp/(p+2), the

analog of display (4.9) in [19].
For all 1 ≤ i ≤ V (λ) and all j = 1,2, . . . , let R

(λ)
i,j denote the radius of stabi-

lization of ξ (λ) at X′
i,j if 1≤ j ≤Ni and X′

i,j ∈ λβ
Bd−1(π)× [0, λγ ]; let Ri,j be

zero otherwise. Let Ei,j := {R(λ)
i,j ≤ ρλ}. Let Eλ :=⋂V (λ)

i=1
⋂∞

j=1 Ei,j . Then

P [Ec
λ] ≤ E

[
V (λ)∑
i=1

Ni∑
j=1

1(Ec
i,j )

]

=
∫
λβBd−1(π)×[0,L logλ]

P
[
Rξ(λ)

(x)≥ ρλ

]
hδ dv dh(7.24)

≤ Cλβ(d−1)(logλ)1+δU(ρλ).
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We have thus

T
ξ
λ (L,g) :=

V (λ)∑
i=1

Ni∑
j=1

λη[ξ ]ξ (λ)(X′
i,j , P (λ))g([T λ]−1(X′

i,j )).

To obtain rates of normal approximation, we consider a modified version of
T

ξ
λ (L,g) having more independence between terms, namely

T ′λ(L,g) :=
V (λ)∑
i=1

Ni∑
j=1

λη[ξ ]ξ (λ)(X′
i,j , P (λ))1(Ei,j )g([T λ]−1(X′

i,j )).

For all 1≤ i ≤ V (λ), define

Si := SQi
:= (VarT ′λ(L,g))−1/2

Ni∑
j=1

λη[ξ ]ξ (λ)(X′
i,j , P (λ))1(Ei,j )g([T λ]−1(X′

i,j ))

and put

S := (VarT ′λ(L,g))−1/2(
T ′λ(L,g)−ET ′λ(L,g)

)= V (λ)∑
i=1

(Si −ESi).(7.25)

Note that VarS = ES2 = 1.
We define a graph Gλ := (Vλ, Eλ) as follows. The set Vλ consists of the sub-

cubes Q1, . . . ,QV (λ) and edges (Qi,Qj ) belong to Eλ if d(Qi,Qj )≤ 2ρλ, where
d(Qi,Qj ) := inf{|x − y|, x ∈Qi,y ∈Qj }. To prepare for dependency graph ar-
guments, we make the following five observations, paralleling those in [19]:

(i) V (λ) := |Vλ|.
(ii) Since the number of cubes in Q1, . . . ,QV distant at most 2ρλ from a given

cube is bounded by 5d , it follows that the maximal degree D of Gλ satisfies D :=
Dλ ≤ 5d .

(iii) For all 1≤ i ≤ V (λ) and all q ≥ 1, we have, by Lemma 7.5,

‖Si‖q ≤ C(VarT ′λ(l, g))−1/2

∥∥∥∥∥
∞∑

j=1

|ξi,j |
∥∥∥∥∥
q

(7.26)
≤ C(VarT ′λ(L,g))−1/2ρ

(d+δ)(p+1)/p
λ .

(iv) T ′λ(L,g) is the sum of V (λ) random variables, which, by the case q =
2 of Lemma 7.5, each have a variance bounded by a constant multiple of
ρ

2(d+δ)(p+1)/p
λ . The covariance of any pair of the V (λ) random variables is zero

when the indices of the random variables correspond to nonadjacent cubes. For
adjacent cubes, the Cauchy–Schwarz inequality implies that the covariance is also
bounded by a constant multiple of ρ

2(d+δ)(p+1)/p
λ . This gives the analog of (4.13)

of [19], namely

Var[T ′λ(L,g)] =O
(
ρ

2(d+δ)(p+1)/p
λ V (λ)

)
.(7.27)
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(v) Var[T ′λ(L,g)] is close to Var[T ξ
λ (L,g)] for λ large. We require more esti-

mates to show this. Note that |T ′λ(L,g)− T
ξ
λ (L,g)| = 0 except possibly on the set

Ec
λ. Lemma 7.5, along with Minkowski’s inequality, yields the upper bound∥∥∥∥∥

V (λ)∑
i=1

Ni∑
j=1

∣∣λη[ξ ]ξ (λ)(X′
i,j , P (λ))∣∣∥∥∥∥∥

q

≤ CV (λ)ρ
(d+δ)(p+1)/p
λ

(7.28)
= Cλβ(d−1)ρ

−(d−1)
λ ρ

(d+δ)(p+1)/p
λ .

Since T
ξ
λ (L,g)= T ′λ(L,g) on the event Eλ, as in [19], the Hölder and Minkowski

inequalities yield

‖T ξ
λ (L,g)− T ′λ(L,g)‖2 ≤ ‖T ξ

λ (L,g)− T ′λ(L,g)‖qP [Ec
λ](1/2)−(1/q)

≤ (‖T ξ
λ (L,g)‖q + ‖T ′λ(L,g)‖q

)
P [Ec

λ](q−2)/(2q).

Hence, by (7.24) and the first inequality in (7.29),

‖T ξ
λ (L,g)− T ′λ(L,g)‖2

≤ CV (λ)ρ
(d+δ)(p+1)/p
λ

(
λβ(d−1)(logλ)1+δU(ρλ)

)(q−2)/2q
.

By (7.23) this yields

‖T ξ
λ (L,g)− T ′λ(L,g)‖2 ≤ Cλ−3−βd/2(7.29)

which clearly implies

E[|T ′λ(L,g)− Tλ(L,g)|] ≤ Cλ−3,(7.30)

which we use later. As in [19], we obtain the analog of (4.17) of [19], that is,

|Var[T ξ
λ (L,g)] −Var[T ′λ(L,g)]| ≤ Cλ−2,(7.31)

concluding observation (v).
We may now use Lemma 7.4 and dependency graph arguments to establish the

error bound (7.8). We apply the bound (7.22) of Lemma 7.4 to Wi := Si−ESi,1≤
i ≤ V (λ), with

θ := C(VarT ′λ(L,g))−1/2ρ
(d+δ)(p+1)/p
λ .

Observe that EWi = 0, E(
∑V (λ)

i=1 Wi)
2 = 1, ‖Wi‖q ≤ θ and recall from (7.25)

that S =∑V (λ)
i=1 Wi . Lemma 7.4 along with observation (i) above yields the coun-

terpart of (4.18) of [19], namely

sup
t
|P [S ≤ t] −�(t)| ≤ CV (λ)(VarT ′λ(L,g))−q/2ρ

q(d+δ)(p+1)/p
λ

(7.32)
≤ CV (λ)(VarT ξ

λ (L,g))−q/2ρ
q(d+δ)(p+1)/p
λ .
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The last line follows since by (7.7) we have Var[T ξ
λ (L,g)] = �(λτ ), τ ∈ (0,1),

and thus by (7.31) we get for λ large that Var[T ′λ(L,g)] ≥ Var[T ξ
λ (L,g)]/2.

Now put q = 3 in (7.32). Since T
ξ
λ (L,g) and 〈g,λη[ξ ]μξ

λ〉 have the same vari-
ance asymptotics, it follows from the assumption σ 2(ξ (∞)) > 0 that when q = 3,
we have (VarT ξ

λ (L,g))−q/2 = �(λ−3τ/2). Since V (λ) = λτρ
−(d−1)
λ and since

q/p < 1, display (7.32) becomes

sup
t
|P [S ≤ t] −�(t)| ≤Cλ−τ/2(logλ)3d+4δ+1.

This gives a rate of convergence for S, as defined at (7.25). Following verbatim
the last part of the proof of Theorem 2.1 of [19] [starting three lines after (4.18) of
that paper], we deduce a rate of convergence for T

ξ
λ (L,g), namely

sup
t

∣∣∣∣P [
T

ξ
λ (L,g)−ET

ξ
λ (L,g)√

VarT ξ
λ (L,g)

≤ t

]
− P [N(0,1)≤ t]

∣∣∣∣≤ Cλ−τ/2(logλ)3d+4δ+1.

This yields (7.8), concluding the proof of Theorem 7.1.
Positivity of asymptotic variances. For ξ (∞) ∈�(∞), we now consider the ques-

tion whether σ 2(ξ∞) is strictly positive. Fortunately, the variances σ 2(ξ
(∞)
r ),

σ 2(ξ
(∞)
s ) and σ 2(ξ

(∞)
ϑk

), k ∈ {1, . . . , d − 1}, admit alternative expressions enjoy-
ing monotonicity properties in the underlying Poisson input process P , enabling
us to use suitable positive correlation inequalities and to conclude the required pos-
itivity for variance densities. The underlying Poisson input process P depends on
the parameter δ [recall (3.1)], and the following lemma holds for all δ > 0. More
precisely, we have:

LEMMA 7.6. We have

σ 2
s := σ 2(

ξ (∞)
s

)= ∫
Rd−1

Cov(∂�(0), ∂�(v)) dv,

σ 2
r := σ 2(

ξ (∞)
r

)= ∫
Rd−1

Cov(∂�(0), ∂�(v)) dv

and

σ 2
k := σ 2(

ξ
(∞)
ϑk

)= ∫
Rd−1

Cov
(∫ �(0)

0
ϑ∞k ((0, h)) dh,

∫ �(v)

0
ϑ∞k ((v, h)) dh

)
dv.

PROOF. We only consider the functional ξ
(∞)
s , as the remaining cases are

analogous. Recalling (7.2)–(7.4), the general theory of stabilizing functionals (see,
e.g., [4], [15]) shows that if ξ (∞) is a generic exponentially stabilizing functional
on the Poisson input P on R

d−1 ×R+, then

lim
T→∞

1

T d−1 Var
( ∑

x=(v,h)∈P,v∈[0,T ]d−1

ξ (∞)(x, P)

)
= σ 2(

ξ (∞)),
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that is to say, the scaled variance limit of
∑

x=(v,h)∈P,v∈[0,T ]d−1 ξ (∞)(x, P) coin-
cides with

lim
λ→∞λ−τ Var

( ∑
x∈P (λ)

ξ (λ)(x, P (λ)))
.

Since ξ
(∞)
s is an exponentially stabilizing functional on the Poisson input P

(recall Lemma 6.1), it follows that σ 2(ξ
(∞)
s ) is the asymptotic variance density for

ξ
(∞)
s , that is to say,

σ 2(
ξ (∞)
s

)= lim
T→∞

1

T d−1 Var
( ∑

x=(v,h)∈P,v∈[0,T ]d−1

ξ (∞)
s (x, P)

)
.

For x := (v, h) ∈ ext(�) = Vertices(�) denote by V [x] := V [x;P] the set of all
v′ ∈ R

d−1 for which there exists h′ with (v′, h′) ∈ F∞(x, P)—in other words,
V [x] is the spatial projection of all faces f of � with x = Top(f ). Clearly,
{V [x], x ∈ ext(�)}, forms a tessellation of R

d−1. Thus, by definition of ξ
(∞)
s ,

σ 2(
ξ (∞)
s

)= lim
T→∞

1

T d−1 Var
( ∑

x=(v,h)∈Vertices(�),v∈[0,T ]d−1

∫
V [x]

∂�(u)du

)
.

Consequently,

σ 2(
ξ (∞)
s

)= lim
T→∞

1

T d−1 Var
(∫

[0,T ]d−1
∂�(u)du

)

= lim
T→∞

1

T d−1

∫
([0,T ]d−1)2

Cov(∂�(u), ∂�(u′)) du′ du,

where the existence of the integrals follows from the exponential localization of
ξ

(∞)
s , as stated in Lemma 6.1, implying the exponential decay of correlations.

Further, by stationarity of the process ∂�(·), we obtain

σ 2(ξ (∞)
s )= lim

T→∞
1

T d−1

∫
[0,T ]d−1

∫
[0,T ]d−1

Cov
(
∂�(0), ∂�(u′ − u)

)
du′ du

= lim
T→∞

∫
[−T ,T ]d−1

Vol([0, T ]d−1 ∩ ([0, T ]d−1 +w))

T d−1

×Cov(∂�(0), ∂�(w)) dw

=
∫

Rd−1
Cov(∂�(0), ∂�(w)) dw

as required, with the penultimate equality following again by exponential localiza-
tion of ξ

(∞)
s , implying the exponential decay of correlations and thus allowing us

to apply dominated convergence theorem to determine the limit of integrals. This
completes the proof of Lemma 7.6. �
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Observe that for each v, ∂�(v), ∂�(v) as well as
∫ �(v)

0 ϑ∞k ((v, h)) dh are all
nonincreasing functionals of P and therefore

Cov(∂�(0), ∂�(v))≥ 0, Cov(∂�(0), ∂�(v))≥ 0

and

Cov
(∫ �(0)

0
ϑ∞k ((0, h)) dh,

∫ �(v)

0
ϑ∞k ((v, h)) dh

)
≥ 0

for all v ∈ R
d−1 in view of the positive correlations property of Poisson point

processes; see Proposition 5.31 in [24]. It is also readily seen that these covariances
are not identically zero, because for v = 0 they are just variances of nonconstant
random variables and, depending continuously on v, they are strictly positive on
a nonzero measure set of v′s. Thus, the integrals in the variance expressions given
in Lemma 7.6 are all strictly positive. Consequently, we have

COROLLARY 7.1. For all δ > 0, the variance densities σ 2(ξ
(∞)
r ), σ 2(ξ

(∞)
s )

and σ 2(ξ
(∞)
ϑk

), k ∈ {1, . . . , d − 1} are all strictly positive.

REMARK. When δ = 0 the variance positivity for σ 2(ξ
(∞)
ϑk

) has been estab-
lished in a slightly different, but presumably equivalent, context (binomial input)
in [2], Theorem 1.

We also believe that for all δ > 0, the variance density σ 2(ξ
(∞)
fk

) is strictly posi-
tive as well—this is because of the asymptotic nondegeneracy of the corresponding
so-called add-one cost functional [4, 15, 17, 19]. However, making this intuition
precise requires additional technical considerations, as does extending the impor-
tant work of Reitzner [21] to the case δ > 0, which shows strict variance positivity
for δ = 0.

Variance asymptotics and central limit theorems for mean widths, volumes, in-
trinsic volumes and k-face functionals. We now deduce from Theorem 7.1 and
Corollary 7.1 the limit theory for the convex hull functionals described at the out-
set of this paper. We require some preliminary observations which will also be
needed in Section 8. Define for v ∈Rd−1 the defect width functional

H
ξs

λ (v) := ∑
x∈Pλ,x/|x|∈exp([0,v])

ξs(x;Pλ)(7.33)

and the defect volume functional

H
ξr

λ (v) := ∑
x∈Pλ,x/|x|∈exp([0,v])

ξr (x, Pλ).(7.34)

The next lemma shows that the centered defect width functional approximates
its asymptotic counterpart Wλ and likewise for the centered defect volume func-
tional.
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LEMMA 7.7. We have, uniformly in v ∈R
d−1,

lim
λ→∞λζ/2∣∣(Hξs

λ (v)−EH
ξs

λ (v)
)− (

Wλ(v)−EWλ(v)
)∣∣ P= 0(7.35)

and

lim
λ→∞λζ/2∣∣(Hξr

λ (v)−EH
ξr

λ (v)
)− (

Vλ(v)−EVλ(v)
)∣∣ P= 0.(7.36)

PROOF. We first prove (7.35). It is enough to show the two following limits:

lim
λ→∞λζ/2∣∣(Hξs

λ (v)−EH
ξs

λ (v)
)− (

Vol(C(v))−E Vol(C(v))
)∣∣ P= 0(7.37)

and

lim
λ→∞λζ/2∣∣(Vol(C(v))−E Vol(C(v))

)− (
Wλ(v)−EWλ(v)

)∣∣ P= 0,(7.38)

where C(v) := [Bd \ F(Pλ)] ∩ cone(exp([0, v])).
We start by proving (7.37). For all v ∈ R

d−1, |Hξs

λ (v)−Vol(C(v))| is bounded
by the volume of the set

�λ(v) := [Bd \ F(Pλ)]
∩

(
cone(exp([0, v]))� ⋃

x∈Pλ∩cone(exp([0,v]))
cone(F (x, Pλ))

)
.

Let

Fλ(v) :=⋃{f ∈ Fd−1(Kλ) :f ∩ ∂ cone(exp([0, v])) �=∅}.
By the usual scaling via the transformation T λ, we get that T λ(�λ(v)) is a solid
Dλ(v), with Dλ(v)⊂ T λ(Fλ(v)). Consider the (d − 2)-dimensional surface given
by

Sλ(v) := ∂
(
T λ[cone(exp([0, v]))∩ S

d−1]).
Then the maximal height coordinate of Dλ(v), with respect to the surface Sλ(v),
satisfies the exponential decay (4.5). Also, the maximal spatial distance between
T λ(Fλ(v)) and Sλ(v) has exponentially decaying tails, as in Lemma 6.1. By mim-
icking the proof of Theorem 7.1, but with now τ taken to be β(d − 2) instead
of β(d − 1) , it follows that λ−β(d−2)/2+η(�λ(v)− E�λ(v)) converges to a nor-
mal random variable. Since λζ/2 := λβ(d−1)/2+γ = o(λ−β(d−2)/2+η), this gives the
convergence (7.37).

We prove now (7.38). We deduce from (2.25) that

Wλ(v)−Vol(C(v))=
∫

exp([0,v])

(
sλ(u)− 1− (1− sλ(u))d

d

)
dσd−1(u)

=O

(∫
exp([0,v])

s2
λ(u) dσd−1(u)

)
.



102 P. CALKA, T. SCHREIBER AND J. E. YUKICH

For every x ∈ Pλ, let

ξ̃s(x, Pλ) :=
∫

cone(F (x,Pλ)∩exp([0,v]))
s2
λ(u, Pλ) dσd−1(u).

In particular, we have∫
exp([0,v])

s2
λ(u) dσd−1(u)= ∑

x∈Pλ

ξ̃s(x, Pλ).

Exactly as for ξ ∈ �, where � is the class of functionals defined in Sec-
tion 6, ξ̃s has an associated scaling prefactor λη[̃ξs ] with η[̃ξs] = β(d − 1) + 2γ

(recall that sλ is of order λγ ). Moreover ξ̃s is seen to satisfy the exponen-
tial decay (6.6). Following verbatim the proof of Theorem 7.1, we obtain that
λ−τ/2+η[̃ξs ] ∫

exp([0,v])(s2(u, Pλ) − Es2(u, Pλ)) dσd−1(u) converges to a normal
random variable. Since τ/2− η[̃ξs]<−ζ/2, the asserted limits (7.38) and (7.35)
follow.

To prove (7.36), it suffices to recall from (2.23) that

Vλ(v) :=
∫

exp([0,v])
rλ(u) dσd−1(u)

and to follow arguments similar to those given above for H
ξs

λ . This completes the
proof of Lemma 7.7. �

Letting dκd be the total surface measure of S
d−1 and recalling

ζ := (d+3)/(d+1+2δ) from (2.26), the following theorem gives scalar variance
asymptotics and scalar central limit theorems for the basic functionals discussed
in the Introduction.

THEOREM 7.2. (i) The volume functional V (Kλ) satisfies

lim
λ→∞λζ Var[V (Kλ)] = σ 2

V := σ 2(
ξ (∞)
r

)
dκd(7.39)

and

λζ/2(
V (Kλ)−EV (Kλ)

) D−→N(0, σ 2
V ),(7.40)

where σ 2
V is strictly positive.

(ii) The volume functional Vλ(∞) satisfies the identical asymptotics whereas the
mean width functional Wλ(∞) and the intrinsic volume functionals Vk(Kλ), k ∈
{1, . . . , d − 1} satisfy (7.39) and (7.40) with strictly positive variances σ 2

W :=
σ 2(ξ

(∞)
s ) dκd and σ 2

Vk
:= σ 2(ξ

(∞)
ϑk

) dκd , respectively.

REMARK. Recalling (2.27) and setting δ = 0, Theorem 7.2 yields the asserted
variance limits (1.1), (1.2) and (1.4). In Section 8 we shall show convergence of
the R

d−1-indexed processes Wλ(·) and Vλ(·).
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PROOF OF THEOREM 7.2. To prove the assertion for V (Kλ), it suffices to put
g ≡ 1 and ξ ≡ ξr in Theorem 7.1, to recall that Vol(Bd \Kλ)=∑

x∈Pλ
ξr (x, Pλ),

and to use λ−τ λ2η[ξr ] = λ(d+3)/(d+1+2δ). Corollary 7.1 yields positivity of the lim-
iting variance σ 2

V . The limit theory for Vλ(∞) holds since we may follow verbatim
the proof of Lemma 7.7 to show that

∑
x∈Pλ

ξr (x, Pλ) approximates Vλ(∞).
Similarly, to prove the asserted limit theory for Wλ(∞), we put g ≡ 1 and ξ ≡ ξs

in Theorem 7.1, we use λ−τ λ2η[ξs ] = λ(d+3)/(d+1+2δ), and we follow verbatim the
proof of Lemma 7.7 to show that

∑
x∈Pλ

ξs(x, Pλ) approximates Wλ(∞). Corol-
lary 7.1 yields positivity of the limiting variance σ 2

W . Finally, the asserted limit
theory for Vk(Kλ) follows by putting g ≡ 1 and ξ ≡ ξϑk

in Theorem 7.1 and using
Corollary 7.1 to deduce the positivity of the limiting variance. �

Next, using (6.3) and Theorem 7.1 we obtain the limit theory for the k-face
empirical measures μ

fk

λ defined at (2.5).

THEOREM 7.3. For each k ∈ {0, . . . , d − 1}, the k-face empirical mea-
sures μ

fk

λ satisfy the measure-level variance asymptotics and central limit the-

orem with scaling exponent τ/2 and with variance density σ 2(ξ
(∞)
fk

) where
τ := (d − 1)/(d + 1+ 2δ). In particular, the total number fk(Kλ) of k-faces for
Kλ satisfies the scalar variance asymptotics and central limit theorem with scaling
exponent τ/2 and variance σ 2

fk
:= σ 2(ξ

(∞)
fk

) dκd.

REMARKS. (i) Setting δ = 0 in Theorem 7.3 gives the asserted variance limit
(1.3).

(ii) We expect that the variance asymptotics of Theorems 7.2 and 7.3 can be
de-Poissonized, that is to say, that there are analogous variance limits when the
polytope Kλ is replaced by the polytope Kn generated by n i.i.d. uniformly dis-
tributed points in B

d . We leave these issues for further study.

8. Global regime and Brownian limits. In this section we establish a func-
tional central limit theorem for the integrated convex hull processes Ŵλ and V̂λ,
defined at (2.27). The methods extend to yield functional central limit theorems
for stabilizing functionals in general, thus extending [31].

For any σ 2 > 0 let Bσ 2
be the Brownian sheet of variance coefficient σ 2 on the

injectivity region Bd−1(π) of exp := expSd−1; that is to say, Bσ 2
is the mean zero

continuous path Gaussian process indexed by R
d−1 with

Cov(Bσ 2
(v),Bσ 2

(w))= σ 2 · σd−1
(
exp([0, v] ∩ [0,w])),

where, recall, σd−1 is the (d−1)-dimensional surface measure on S
d−1. Recalling

from Lemma 7.6 the shorthand notation σ 2
s := σ 2(ξ

(∞)
s ) and σ 2

r := σ 2(ξ
(∞)
r ), we

have the following limit result, the main result of this section. Via Lemma 7.7
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and Theorem 7.2, this theorem also yields Brownian sheet limits for the defect
width and volume functionals given at (7.33) and (7.34), respectively. We remark
that the same holds for the two processes Vol([Bd \Kλ] ∩ cone(exp([0, v]))) and
Vol([Bd \ F(Pλ)] ∩ cone(exp([0, v]))), v ∈R

d−1.

THEOREM 8.1. As λ→∞, the random functions Ŵλ : Rd−1 →R converge in
law to Bσ 2

s in the space C(Rd−1). Likewise, the random functions V̂λ : Rd−1 → R

converge in law to Bσ 2
r in C(Rd−1).

PROOF OF THEOREM 8.1. Our argument relies heavily on the theory devel-
oped in [30] and is further extended in Section 6. For v ∈R

d−1 and x ∈ B
d , define

1[0,v]
Bd (x) :=

{
1, if x/|x| ∈ exp([0, v]),
0, otherwise.

(8.1)

We thus have the identities

λζ/2(
H

ξs

λ (v)−EH
ξs

λ (v)
)= λζ/2〈

1[0,v]
Bd , μ̄

ξs

λ

〉
and

λζ/2(
H

ξr

λ (v)−EH
ξr

λ (v)
)= λζ/2〈

1[0,v]
Bd , μ̄

ξr

λ

〉
.

Recalling from (2.27) that Ŵλ(v) := λζ/2(Wλ(v) − EWλ(v)) and V̂λ(v) :=
λζ/2(Vλ(v)− EVλ(v)), and using (7.35) and (7.36) from Lemma 7.7, we obtain,
uniformly in v,

lim
λ→∞

∣∣Ŵλ(v)− λζ/2〈
1[0,v]

Bd , μ̄
ξs

λ

〉∣∣ P= 0,

(8.2)
lim

λ→∞
∣∣V̂λ(v)− λζ/2〈

1[0,v]
Bd , μ̄

ξr

λ

〉∣∣ P= 0.

Even though 1[0,v]
Bd is not a continuous function, it is easily seen that the proofs

in [30] hold for functions which are almost everywhere continuous with respect to
the uniform measure on B

d , and, in fact, the central limit theorems and variance
asymptotics of [30] hold for all bounded functions on B

d . Thus Theorem 7.1 for
ξs and ξr remain valid upon setting the test function g to 1[0,v]

Bd . This application of

Theorem 7.1, combined with (8.2), yields that the fidis of (Ŵλ(v))v∈Rd−1 converge

to those of (Bσ 2(ξ
(∞)
s )(v))v∈Rd−1 and, likewise, the fidis of (V̂λ(v))v∈Rd−1 converge

to those of (Bσ 2(ξ
(∞)
r )(v))v∈Rd−1 . Additionally, for all v ∈R

d−1, we have

lim
λ→∞Var[Ŵλ(v)] = σ 2(

ξ (∞)
s

)
(v),

with similar variance asymptotics for V̂λ(v); see also Theorems 1.2 and 1.3 in [30].
We claim that the fidis convergence of Ŵλ and V̂λ can be strengthened to con-

vergence in law in C(Rd−1). It suffices to establish the tightness of the processes
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(Ŵλ(v))v∈Rd−1 and (V̂λ(v))v∈Rd−1 . We shall focus on Ŵλ, the argument for V̂λ

being analogous, and we shall proceed to some extent along the lines of the proof
of Theorem 8.2 in [9], which is based on [5]. We extend the definition of Wλ to
subsets of R

d−1 putting for measurable B ⊆R
d−1

Wλ(B) :=
∫

expd−1(B)
sλ(u) dσd−1(u)

and letting

Ŵλ(B) := λζ/2(
Wλ(B)−EWλ(B)

)
.(8.3)

It is enough to show

E(Ŵλ([v, v′]))4 =O(Vol([v, v′])2), v, v′ ∈R
d−1,(8.4)

for then Ŵλ satisfies condition (2) on page 1658 of [5], thus belongs to the class
C(2,4) of [5] and is tight in view of Theorem 3 on page 1665 of [5].

To this end, we put

W #
λ (B) := λη[ξs ]Wλ(B)= λβ(d−1)+γ Wλ(B),(8.5)

where we recall from the definition of �(λ) in Section 6 that η[ξs] = β(d − 1)+ γ

is the proper scaling exponent for ξs. The crucial point now is that in analogy to
the proof of Lemma 5.3 in [4], and similar to (3.24) in the proof of Theorem 1.3
in [30], by a stabilization-based argument all cumulants of W #

λ ([v,w]) over rect-
angles [v,w] are at most linear in λτ Vol([v,w]) with τ := β(d − 1) as in (7.5). In
other words, for all k ≥ 1, we have

|ck(W #
λ ([v,w]))| ≤ Ckλ

τ Vol([v,w]), v,w ∈R
d−1,(8.6)

where ck(Y ) stands for the kth order cumulant of the random variable Y and where
Ck is a constant. Thus, putting (8.3) and (8.5) together, we get from (8.6)

|ck(Ŵλ([v,w]))| ≤ Ckλ
k[ζ/2−η[ξs ]]λτ Vol([v,w])

(8.7)
= Ckλ

k[ζ/2−β(d−1)−γ ]λβ(d−1) Vol([v,w]).
To proceed, we use the identity E(Y − EY)4 = c4(Y ) + 3(c2(Y ))2 valid for any
random variable Y. Recalling that γ = 2β and ζ = β(d− 1)+ 2γ , as in (2.11) and
(2.26), respectively, we obtain from (8.4)–(8.7) that for v,w ∈R

d−1,

E(Ŵλ([v,w]))4 =O
(
λ4[ζ/2−β(d−1)−γ ]λβ(d−1) Vol([v,w]))

+O
([

λ2[ζ/2−β(d−1)−γ ]λβ(d−1) Vol([v,w])]2)
(8.8)

=O
(
λ−β(d−1) Vol([v,w]))+O(Vol([v,w])2),

which is of the required order O(Vol([v,w])2) as soon as Vol([v,w]) =
�(λ−β(d−1)). Thus we have shown (8.4) for Vol([v,w])=�(λ−β(d−1)), and we
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have to show it holds for Vol([v,w]) = O(λ−β(d−1)) as well. To this end, we
use that Wλ([v,w]) = λ−γ OP (Vol([v,w])) with γ being the height coordinate
re-scaling exponent, and E[Wλ([v,w])−EWλ([v,w])]4 = λ−4γ O(Vol([v,w])4).
Thus by (8.3)

E(Ŵλ([v,w]))4 = λ2ζ λ−4γ O(Vol([v,w])4).

Recalling ζ = β(d − 1) + 2γ and using that Vol([v,w]) = O(λ−β(d−1)), we
conclude that

E(Ŵλ([v,w]))4 =O
(
λ2β(d−1) Vol([v,w])4)=O(Vol([v,w]2))

as required, which completes the proof of the required relation (8.4). Having ob-
tained the required tightness, we get the convergence in law of (Ŵλ(v))v∈Rd−1

to (Bσ 2
s (v))v∈Rd−1 and, likewise, of (V̂λ(v))v∈Rd−1 to (Bσ 2

r (v))v∈Rd−1 in C(Rd−1).
This completes the proof of Theorem 8.1. �
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