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Abstract

Let P be a simple, stationary, clustering point process on Rd in the sense that

its correlation functions factorize up to an additive error decaying exponentially

fast with the separation distance. Let Pn := P ∩Wn be its restriction to win-

dows Wn := [−n1/d

2 , n
1/d

2 ]d ⊂ Rd. We consider the statistic Hξ
n :=

∑
x∈Pn

ξ(x,Pn)

where ξ(x,Pn) denotes a score function representing the interaction of x with

respect to Pn. When ξ depends on local data in the sense that its radius of sta-

bilization has an exponential tail, we establish expectation asymptotics, variance

asymptotics, and central limit theorems for Hξ
n and, more generally, for statistics

of the random measures µξn :=
∑

x∈Pn
ξ(x,Pn)δn−1/dx, asWn ↑ Rd. This gives the

limit theory for non-linear geometric statistics (such as clique counts, the number

of Morse critical points, intrinsic volumes of the Boolean model, and total edge

length of the k-nearest neighbor graph) of determinantal point processes having

fast decreasing kernels, including the β-Ginibre ensembles, extending the Gaus-

sian fluctuation results of Soshnikov [68] to non-linear statistics. It also gives

the limit theory for geometric U-statistics of α-permanental point processes (for

1/α ∈ N), α-determinantal point processes (for −1/α ∈ N), as well as the zero set
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of Gaussian entire functions, extending the central limit theorems of Nazarov and

Sodin [51] and Shirai and Takahashi [67], which are also confined to linear statis-

tics. The proof of the central limit theorem relies on a factorial moment expansion

originating in [11, 12] to show clustering of mixed moments of ξ. Clustering ex-

tends the cumulant method to the setting of purely atomic random measures,

yielding the asymptotic normality of µξn.

Key words and phrases. Clustering point process, determinantal point process,

permanental point process, Gaussian entire functions, Gibbs point process, U-

statistics, stabilization, difference operators, cumulants, central limit theorem.

AMS 2010 Subject Classifications. Primary: 60F05 Central limit and other weak

theorems, 60D05 Geometric probability and stochastic geometry; Secondary:

60G55 Point processes, 52A22 Random convex sets and integral geometry, 05C80

Random graphs.

Contents

1 Introduction and main results 3
1.1 Admissible clustering point processes . . . . . . . . . . . . . . . . . . . 6
1.2 Admissible score functions . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Strong clustering of mixed moments . . . . . . . . . . . . . . . . . . . . 10
1.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Examples and applications 16
2.1 Moments of clustering point processes . . . . . . . . . . . . . . . . . . . 16
2.2 Examples of clustering point processes . . . . . . . . . . . . . . . . . . 17

2.2.1 Class A1 input . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Class A2 input . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Additional input examples . . . . . . . . . . . . . . . . . . . . . 22

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Statistics of simplicial complexes . . . . . . . . . . . . . . . . . 24
2.3.2 Morse critical points . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Statistics of germ-grain models . . . . . . . . . . . . . . . . . . 29
2.3.4 Edge-lengths in k-nearest neighbor graphs . . . . . . . . . . . . 31

3 Proof of strong clustering of mixed moments 33
3.1 Difference operators and factorial moment expansions . . . . . . . . . . 34
3.2 Proof of Theorem 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Proof of main results 43
4.1 Proof of Theorem 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Proof of expectation asymptotics (1.19). . . . . . . . . . . . . . 43
4.1.2 Proof of variance asymptotics (1.20). . . . . . . . . . . . . . . . 44

4.2 Proof of Theorem 1.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 First proof of the central limit theorem . . . . . . . . . . . . . . . . . . 49

4.3.1 The method of cumulants . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Properties of cumulant and semi-cluster measures . . . . . . . . 51
4.3.3 Strong clustering and semi-cluster measures . . . . . . . . . . . 55

2



Geometric statistics of clustering processes

4.3.4 Proof of Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Second proof of the central limit theorem . . . . . . . . . . . . . . . . . 56

4.4.1 Ursell functions of a purely atomic measure . . . . . . . . . . . 57
4.4.2 Clustering and bounds for Ursell functions . . . . . . . . . . . . 58
4.4.3 Proof of Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . 59

5 Appendix 61
5.1 Facts needed in the proof of clustering of mixed moments . . . . . . . . 61
5.2 Determinantal and permanental point process lemmas . . . . . . . . . . 62

References 68

1 Introduction and main results

Functionals of large geometric structures on finite point sets X ⊂ Rd often consist of

sums of spatially dependent terms admitting the representation∑
x∈X

ξ(x,X ), (1.1)

where the R-valued score function ξ, defined on pairs (x,X ), x ∈ X , represents the

interaction of x with respect to X , called the input. The sums (1.1) typically describe

a global geometric feature of a structure on X in terms of local contributions ξ(x,X ).

It is frequently the case in stochastic geometry, statistical physics, and spatial statis-

tics that one seeks the large n limit behavior of
∑

x∈Xn
ξ(x,Xn), where ξ is an appropri-

ately chosen score function and where Xn is a point process on Wn := [−1
2
n1/d, 1

2
n1/d]d.

For example if Xn is either a Poisson or binomial point process and if ξ is either a

local U -statistic or an exponentially stabilizing score function, then the limit theory

for
∑

x∈Xn
ξ(x,Xn) is established in [7, 22, 37, 40, 56, 58, 61, 62]. If Xn is a rarified

Gibbs point process on Wn and ξ is exponentially stabilizing, then [65, 69] treat the

limit theory for
∑

x∈Xn
ξ(x,Xn).

It is natural to ask whether the limit theory of these papers extends to more general

input Xn satisfying a notion of ‘asymptotic independence’ for point processes. Recall

that if ξ ≡ 1 and if Xn is an α-determinantal point process on Wn with α = −1/m or an

α-permanental point process on Wn with α = 2/m for some m in the set of positive inte-

gers N (respectively Xn is the restriction of the zero set of a Gaussian entire function to

Wn), then remarkable results of Soshnikov [68], Shirai and Takahashi [67] (respectively

Nazarov and Sodin [51]), show that the counting statistic Xn(Wn) :=
∑

x∈Xn
ξ(x,Xn) is

asymptotically normal. One may wonder whether asymptotic normality still holds

when ξ is either a local U -statistic or an exponentially stabilizing score function.

We answer these questions affirmatively. Loosely speaking, our approach shows that∑
x∈Xn

ξ(x,Xn) is asymptotically normal whenever Xn is a clustering point process.
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Heuristically, when the score functions depend on ‘local data’ and when the input

is ‘asymptotically independent’, one expects that the statistics
∑

x∈Xn
ξ(x,Xn) obey a

strong law and a central limit theorem. The notion of dependency on ‘local data’ for

score functions is formalized via stabilization in [7, 22, 56, 58, 61] and here, adopting

the notion of ‘clustering’ point processes as it arises in statistical physics [41, 43, 51],

we formalize the notion of asymptotic independence in the setting of
∑

x∈Xn
ξ(x,Xn).

Whereas mixing coefficients also formalize the notion of asymptotic independence [31]-

[33], we find that the notion of clustering point processes aptly facilitates the gen-

eralization of the limit theory of the afore-mentioned papers. A point process P on

Rd is clustering if for all p, q ∈ N and all x1, . . . , xp+q ∈ Rd, its correlation functions

ρ(p+q)(x1, . . . , xp+q) factorize into ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q) up to an additive

error decaying exponentially fast with the separation distance

s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) := inf
i∈{1,...,p},j∈{p+1,...,p+q}

|xi − xj| (1.2)

as at (1.7) below. Roughly speaking, a clustering point process exhibits asymptotic

independence at large distances. Examples of such point processes are given in Section

2.2. The terminology ‘clustering point process’ is perhaps not optimal, since, at least

from the point of view of spatial statistics, it suggests that points of P clump or aggre-

gate together, which is not necessarily the case. We have retained this terminology to

maintain consistency with existing definitions in statistical physics [41, 43, 51].

If Pn := P ∩Wn, where P is a simple, stationary, clustering point process on Rd

and if ξ is either a local U -statistic or an exponentially stabilizing score function, then

our main results establish expectation and variance asymptotics, as well as central limit

theorems for the (signed) random measures

µξ
n :=

∑
x∈Pn

ξ(x,Pn)δn−1/dx, (1.3)

as well as for their total mass given by the non-linear statistics

Hξ
n := Hξ

n(P) :=
∑
x∈Pn

ξ(x,Pn) (1.4)

as n→ ∞. Here δx is the point mass at x. As shown in Theorems 1.11-1.14 this yields

the limit theory for general non-linear statistics of determinantal and permanental point

processes, the point process given by the zero set of a Gaussian entire function, as well

as rarified Gibbsian input.

The benefit of the general approach taken here is three-fold: (i) we establish the

asymptotic normality of the non-linear statistics µξ
n, with P either an α-permanental

point process (with 1/α ∈ N), an α-determinantal point process (with −1/α ∈ N), or

the zero set of a Gaussian entire function, thereby extending the work of Soshnikov [68],

4



Geometric statistics of clustering processes

Shirai and Takahashi [67], and Nazarov and Sodin [51], who restrict to linear statistics,

(ii) we extend the limit theory of [7, 40, 56, 58, 61], which is confined to Poisson and

binomial input, to clustering point processes and (iii) we apply our general results to

deduce asymptotic normality and variance asymptotics for statistics of simplicial com-

plexes and germ-grain models, clique counts, Morse critical points, as well of statistics

of random graphs on clustering input on expanding windows Wn, n→ ∞ (Section 2.3).

Given clustering input P , an interesting feature of the measures µξ
n is that their

variances are at most of order Vol(Wn), the volume of the window Wn (Theorem 1.11).

This holds also for the statistic Ĥξ
n :=

∑
x∈Pn

ξ(x,P), which involves summands having

no boundary effects. An interesting feature of this statistic is that if its variance is

o(Vol(Wn)) then it has to be O(Vold−1(∂Wn)), where ∂Wn denotes the boundary of Wn

and Vold−1(.) stands for the (d− 1)th intrinsic volume (Theorem 1.14). In other words,

if the fluctuations of Ĥξ
n are not of volume order, then they are at most of surface order.

Our interest in these issues was stimulated by similarities in the methods of [41],

[6, 7, 65] and [51]. These papers all use clustering of mixed moments of score func-

tions (see (1.5) and (1.17)) and the classical cumulant method. The articles [7, 65]

prove central limit theorems for stabilizing functionals of Poisson and rarified Gibbsian

point processes, respectively, while [51] proves central limit theorems for linear statistics∑
x∈Pn

ξ(x) of clustering point processes. This paper unifies and extends the results of

[6, 7, 51, 65] to more general input. The earlier work of [43] is not only a precursor to

our paper, but has also stimulated our investigation of variance asymptotics. The idea

of using clustering to show asymptotic normality via cumulants goes back to [41].

Coming back to our set-up, when a functional Hξ
n(P) is expressible as a sum of local

U -statistics or, more generally, as a sum of exponentially stabilizing score functions ξ,

then a key step towards proving the central limit theorem is to show that the mixed

moments, defined via Palm expectations Ex1,...,xk
(cf Section 1.1) and given by

m(k1,...,kp+q)(x1, . . . , xp+q;n) := Ex1,...,xp+q(ξ(x1,Pn)k1 . . . ξ(xp+q,Pn)kp+q)ρ(p+q)(x1, . . . , xp+q)

(1.5)

approximately factorize into m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kp+q)(xp+1, . . . , xp+q;n), up

to an additive error decaying exponentially fast with s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}).

Here x1, ..., xp+q are distinct points in Wn and k1, ..., kp+q ∈ N. This result, spelled out

in Theorem 1.10, is at the heart of our approach. We then give two proofs of the cen-

tral limit theorem (Theorem 1.12) for purely atomic random measures via the cumulant

method and as a corollary derive the asymptotic normality of Hξ
n(P) and

∫
fdµξ

n, f a

test function, as n→ ∞. The proof of expectation and variance asymptotics (Theorem

1.11) mainly relies upon the refined Campbell theorem.

In contrast to the afore-mentioned works, our approach to clustering of mixed mo-

ments depends heavily on a factorial moment expansion for expected values of func-
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tionals of a general point process P . This expansion, which originates in [11, 12], is

expressed in terms of iterated difference operators of the considered functional on the

null configuration of points and integrated against factorial moment measures of the

point process. It is valid for general point processes, in contrast to the Fock space

representation of Poisson functionals, which involves the same difference operators but

is deeply related to chaos expansions [38]. Further connections with the literature are

discussed in the remarks after Theorems 1.13 and 1.14.

Having described the goals and context of this paper, we now describe more precisely

the assumptions on allowable score and input pairs (ξ,P) as well as our main results.

The generality of allowable pairs (ξ,P) considered here necessitates several definitions

which go as follows.

1.1 Admissible clustering point processes

Throughout P ⊂ Rd denotes a simple point process. By a simple point process we

mean a random element taking values in N , the space of locally finite simple point sets

in Rd (or equivalently Radon counting measures µ such that µ({x}) ∈ {0, 1} for all

x ∈ Rd) and equipped with the canonical σ-algebra B. Given a simple point process P
we interchangeably use the following representations of P :

P(·) :=
∑
i

δXi
(·) (random measure); P := {Xi}i≥1 (random set),

where Xi, i ≥ 1, are Rd-valued random variables (given a measurable numbering of

points, which is irrelevant for the results presented in this paper). Points of Rd are

denoted by x or y whereas points of Rd(k−1) are denoted by x or y. We let 0 denote a

point at the origin of Rd.

For a bounded function f on Rd and a measure µ, let µ(f) := ⟨f, µ⟩ denote the

integral of f with respect to µ. For a bounded set B ⊂ Rd we let µ(B) = µ(1B) =

card(µ ∩ B), with µ in the last expression interpreted as the set of its atoms.

For a simple Radon counting measure µ and k ∈ N, the kth factorial power is

µ(k) :=

{∑
distinctx1,...,xk∈µ δ(x1,...,xk) when µ(Rd) ≥ k,

0 otherwise.

Note that µ(k) is a Radon counting measure on (Rd)k. Consistently, for a set X ⊂ Rd,

we denote X (k) := {(x1, . . . , xk) ∈ (Rd)k : xi ∈ X , xi ̸= xj for i ̸= j}. The kth

order factorial moment measure of the (simple) point process P is defined as α(k)(·) :=

E(P(k)(·)) on (Rd)k i.e., α(k)(·) is the intensity measure of the point process P(k)(·).
Its Radon-Nikodyn density ρ(k)(x1, ..., xk) (provided it exists) is the k-point correlation

6
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function and is characterized by the relation

α(k)(B1 × · · · ×Bk) = E
( ∏
1≤i≤k

P(Bi)
)

=

∫
B1×···×Bk

ρ(k)(x1, ..., xk) dx1 . . . dxk,

where B1, ..., Bk are mutually disjoint bounded Borel sets in Rd. Since P is simple, we

may put ρ(k) to be zero on the diagonals of (Rd)k, that is on the subsets of (Rd)k where

two or more coordinates coincide.

Heuristically, the kth Palm measure Px1,...,xk
of P is the probability distribution of

P conditioned on {x1, . . . , xk} ⊂ P . More formally, if α(k) is locally finite, there exists

a family of probability distributions Px1,...,xk
on (N ,B), unique up to an α(k)-null set of

(Rd)k, called the k th Palm measures of P, and satisfying the disintegration formula

E
( ∑
(x1,...,xk)∈P(k)

f(x1, . . . , xk;P)
)

=

∫
Rdk

∫
N
f(x1, . . . , xk;µ)Px1,...,xk

(dµ)α(k)(dx1, . . . dxk)

(1.6)

for any (say non-negative) measurable function f on (Rd)k ×N . Formula (1.6) is also

known as the refined Campbell theorem.

To simplify notation, write
∫
N f(x1, . . . , xk;µ)Px1,...,xk

(dµ) = Ex1,...,xk
(f(x1, . . . , xk;P)),

where Ex1,...,xk
is the expectation corresponding to the Palm probability Px1,...,xk

on a

canonical probability space on which P is defined. To further simplify notation, de-

note by P!
x1,...,xk

the reduced Palm probabilities and their expectation by E!
x1,...,xk

, which

satisfies E!
x1,...,xk

(f(x1, . . . , xk;P)) = Ex1,...,xk
(f(x1, . . . , xk;P \ {x1, . . . , xk})) 1.

All Palm probabilities (expectations) are meaningfully defined only for α(k) almost

all x1, . . . , xk ∈ Rd. Consequently, all expressions involving these measures should

be understood in the α(k) a.e. sense. Similarly the considered suprema should be

understood as essential suprema with respect to α(k).

The following definition is reminiscent of the so-called weak exponential decrease of

correlations introduced in [41] and subsequently used in [43, 51].

Definition 1.1 (Clustering of correlation functions). The correlation functions of the

point process P are said to cluster if there exists a fast decreasing clustering function

ϕ : R+ → R+ (i.e., ϕ ≤ 1, ϕ decreasing, and limx→∞ xmϕ(x) = 0 for all m ≥ 1) such

that for all k ∈ N there are strictly positive clustering constants ck and Ck such that for

all p, q ∈ N and all (x1, . . . , xp+q) ∈ Rd(p+q) we have

|ρ(p+q)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)| ≤ Cp+qϕ(cp+qs), (1.7)

where s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}) is as at (1.2). Without loss of generality,

we assume that ck is non-increasing in k, and that Ck is finite and non-decreasing in k.

1 It can be shown that Px1,...,xk
(x1, . . . , xk ∈ P) = 1 for α(k) a.e. x1, . . . , xk ∈ Rd.
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Definition 1.2 (Admissible clustering point process). By an admissible point process P
on Rd, d ≥ 2, we mean that P is simple, stationary (i.e., P+x

d
= P for all x ∈ Rd, where

P + x denotes the translation of P by the vector x), with non-null and finite intensity

ρ(1)(0) = E(P(W1)), and has k-point correlation functions of all orders k ∈ N. If its

correlation functions cluster as in Definition 1.1, then P is an admissible clustering

point process.

Admissible clustering point processes are ubiquitous and include certain determinan-

tal, permanental, and Gibbs point processes, as explained in Section 2.2. The k-point

correlation functions of an admissible clustering point process are bounded i.e.,

sup
(x1,...,xk)∈Rdk

ρ(k)(x1, . . . , xk) ≤ κk <∞, (1.8)

for some constants κk, which without loss of generality are non-decreasing in k. For

stationary P with intensity ρ(1)(0) ∈ (0,∞) we have that (1.7) implies (1.8) with

κk ≤ ρ(1)(0)
k∑

i=2

Ci ≤ (k − 1)ρ(1)(0)Ck. (1.9)

1.2 Admissible score functions

Throughout we restrict to translation-invariant score functions ξ : Rd × N → R, i.e.,

those which are measurable in each coordinate, ξ(x,X ) = 0 if x /∈ X ∈ N , and for all

y ∈ Rd, satisfy ξ(· + y, · + y) = ξ(·, ·).
We introduce classes (A1) and (A2) of admissible score and input pairs (ξ,P).

Specific examples of admissible input pairs of both the classes are provided in Sections

2.2 and 2.3. The first class allows for admissible input P as in Definition 1.2 whereas

the second considers admissible input P satisfying clustering (1.7), subject to ck ≡ 1

and growth conditions on the clustering constants Ck and the clustering function ϕ.

Definition 1.3 (Class (A1) of admissible score and input pairs (ξ,P)). Admissible input

P consists of admissible clustering point processes as in Definition 1.2. Admissible score

functions are of the form

ξ(x,X ) :=
1

k!

∑
x∈X (k−1)

h(x,x), (1.10)

for some k ∈ N and a symmetric, translation-invariant function h : Rd × (Rd)k−1 → R
such that h(x1, . . . , xk) = 0 whenever either max2≤i≤k |xi−x1| > r for some given r > 0

or when xi = xj for some i ̸= j. When k = 1, we set ξ(x,X ) = h(x). Further, assume

∥h∥∞ := sup
x∈Rd(k−1)

|h(0,x)| <∞.

8
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The interaction range for h is at most r, showing that the functionals Hξ
n defined

at (1.4) generated via scores (1.10) are local U-statistics of order k as in [62]. Before

introducing a more general class of score functions, we recall [7, 40, 56, 58, 61] a few

definitions formalizing the notion of the local dependence of ξ on its input. Let Br(x) :=

{y : |y − x| ≤ r} denote the ball of radius r centered at x, and Bc
r(x) its complement.

Definition 1.4 (Radius of stabilization). Given a score function ξ, input X , and x ∈ X ,

define the radius of stabilization Rξ(x,X ) to be the smallest r ∈ N such that

ξ(x,X ∩Br(x)) = ξ(x, (X ∩ Br(x)) ∪ (A ∩Bc
r(x)))

for all A ⊂ Rd locally finite. If no such finite r exists, we set Rξ(x,X ) = ∞.

If ξ is a translation invariant score function then so is Rξ(x,X ). Score func-

tions (1.10) of class (A1) have radius of stabilization upper-bounded by r.

Definition 1.5 (Stabilizing score function). We say that ξ is stabilizing on P if for all

l ∈ N there are constants al > 0, such that

sup
1≤n≤∞

sup
x1,...,xl∈Wn

Px1,...,xl

(
Rξ(x1,Pn) > t

)
≤ φ(alt) (1.11)

with φ(t) ↓ 0 as t → ∞. Without loss of generality the al are non-increasing in l and

0 ≤ φ ≤ 1. In (1.11) and elsewhere, we adopt the convention that W∞ := Rd and

P∞ := P. The second sup in (1.11) is understood as ess sup with respect to α(l).

Definition 1.6 (Exponentially stabilizing score function). We say that ξ is exponen-

tially stabilizing on P if ξ is stabilizing on P as in Definition 1.5 with φ satisfying

lim inf
t→∞

logφ(t)

tc
< 0 (1.12)

for some c ∈ (0,∞).

We define a general class of score functions exponentially stabilizing on their input.

Definition 1.7 (Class (A2) of admissible score and input pairs (ξ,P)). Admissible input

P consists of admissible clustering point processes as in Definition 1.2 with clustering

constants satisfying ck ≡ 1,

Ck = O(kak), (1.13)

for some a ∈ [0, 1) and the clustering function ϕ satisfying the growth condition

lim inf
t→∞

log ϕ(t)

tb
< 0 (1.14)

for some constant b ∈ (0,∞). Admissible score functions ξ for this class are exponen-

tially stabilizing on the input P and satisfy a power growth condition, namely there

9
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exists ĉ ∈ [1,∞) such that for all r ∈ (0,∞)

|ξ(x,X ∩Br(x))|1[card(X ∩Br(x)) = n] ≤ (ĉmax(r, 1))n. (1.15)

The condition ck ≡ 1 is equivalent to c∗ := inf ck > 0. This follows since we

may replace the fast decreasing function ϕ(.) by ϕ(c∗ × ·), with ck ≡ 1 for this new

fast decreasing function. Score functions of class (A1) also satisfy the power growth

condition (1.15) since in this case the left hand side of (1.15) is at most ∥h∥∞n(k−1)/k.

Thus the generalization from (A1) to (A2) consists in replacing local U-statistics by

exponentially stabilizing score functions satisfying the power growth condition. This

is done at the price of imposing stronger conditions on the input process, requiring in

particular that it has finite exponential moments, as explained in Section 2.1.

1.3 Strong clustering of mixed moments

The following p-moment condition involves the score function ξ and the input P. We

shall describe in Section 2.1 ways to control the p-moments of input pairs of class (A1)

and (A2).

Definition 1.8 (Moment condition). Given p ∈ [1,∞), say that the pair (ξ,P) satisfies

the p-moment condition if

sup
1≤n≤∞

sup
1≤p′≤⌊p⌋

sup
x1,...,xp′∈Wn

Ex1,...,xp′
max{|ξ(x1,Pn)|, 1}p ≤ M̃p <∞ (1.16)

for some constant M̃p := M̃ ξ
p , where sup signifies ess sup with respect to α(p). Without

loss of generality we assume that M̃p is increasing in p for all p such that (1.16) holds.

Recall the generalized mixed moments m(k1,...,kp)(x1, . . . , xp;n) as defined in (1.5).

When ki ≡ 1 for all 1 ≤ i ≤ p, we writem(p)(x1, ..., xp;n) instead ofm(1,...,1)(x1, ..., xp;n).

Abbreviate m(k1,...,kp)(x1, . . . , xp;∞) by m(k1,...,kp)(x1, . . . , xp). These generalized mixed

moments exist whenever (1.16) is satisfied for p set to k1 + . . . + kp and provided the

p-point correlation function ρ(p) exists.

Definition 1.9 (Strong clustering of mixed moments). Say that the mixed moments

for ξ strongly cluster if there exists a fast decreasing function ϕ̃ and clustering constants

C̃k < ∞, c̃k < ∞, k ∈ N such that for all n ∈ N ∪ {∞}, p, q ∈ N and any collection of

positive integers k1, . . . , kp+q, we have∣∣∣m(k1,...,kp+q)(x1, . . . , xp+q;n)−

m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kp+q)(xp+1, . . . , xp+q;n)
∣∣∣ ≤ C̃K ϕ̃(c̃Ks) , (1.17)

where K :=
∑p+q

i=1 ki and s := d
(
{x1, . . . , xp}, {xp+1, . . . , xp+q}

)
.
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Our first theorem shows that strong clustering of generalized mixed moments holds

for a wide class of score functions and input. This key result forms the starting point

of our approach. We shall remark further on this result after Theorem 1.13.

Theorem 1.10. Let (ξ,P) be an admissible score and input pair of class (A1) or (A2)

such that the p-moment condition (1.16) holds for all p ∈ (1,∞). Then the mixed

moment functions for ξ strongly cluster as at (1.17).

We prove this theorem in Section 3, where it is also shown that it subsumes more

specialized clustering results of [7, 65].

1.4 Main results

We give the limit theory for the measures µξ
n, n ≥ 1, and the non-linear statistics

Hξ
n(.), n ≥ 1, defined at (1.3) and (1.4), respectively. Given a score function ξ on

admissible input P we set 2

σ2(ξ) := E0ξ
2(0,P)ρ(1)(0) +

∫
Rd

(m(2)(0, x) −m(1)(0)2) dx. (1.18)

The following result provides expectation and variance asymptotics for µξ
n(f), with f

belonging to the space B(W1) of bounded measurable functions on W1.

Theorem 1.11. Let P be an admissible point process on Rd.

(i) If ξ satisfies exponential stabilization (1.12) and the p-moment condition (1.16) for

some p ∈ (1,∞) then for all f ∈ B(W1)∣∣∣n−1Eµξ
n(f) − E0ξ(0,P)ρ(1)(0)

∫
W1

f(x) dx
∣∣∣ = O(n−1/d). (1.19)

If ξ only satisfies stabilization (1.11) and the p-moment condition (1.16) for some p ∈
(1,∞), then the right hand side of (1.19) is o(1).

(ii) Assume that the second correlation function ρ(2) of P exists and is bounded as

in (1.8), that ξ satisfies (1.11), and that (ξ,P) satisfies the p-moment condition (1.16)

for some p ∈ (2,∞). If the second mixed moment m(1,1) for ξ strongly clusters, i.e.

satisfies (1.17) with p = q = k1 = k2 = 1 and all n ∈ N∪ {∞}, then for all f ∈ B(W1)

lim
n→∞

n−1Varµξ
n(f) = σ2(ξ)

∫
W1

f(x)2 dx ∈ [0,∞), (1.20)

whereas for all f, g ∈ B(W1)

lim
n→∞

n−1Cov(µξ
n(f), µξ

n(g)) = σ2(ξ)

∫
W1

f(x)g(x) dx. (1.21)

2For a stationary point process P, its Palm expectation E0 (and consequently m(1)(0),

m(2)(0, x)dx) is meaningfully defined e.g. via the Palm-Matthes approach.

11
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We remark that (1.19) and (1.20) together show convergence in probability

n−1µξ
n(f)

P−→ E0ξ(0,P)ρ(1)(0)

∫
W1

f(x) dx

as n→ ∞.

The proof of variance asymptotics (1.20) requires strong clustering of the second

mixed moment. Strong clustering of all mixed moments yields Gaussian fluctuations

of the purely atomic random measure µξ
n under moment conditions on the atom sizes

(i.e. under moment conditions on ξ) and a variance lower bound. Let N(0, σ2) de-

note a mean zero normal random variable with variance σ2. Following Knuth’s def-

inition, in what follows we write f(n) = Ω(g(n)) when g(n) = O(f(n)); i.e., when

lim infn→∞ |f(n)/g(n)| > 0.

Theorem 1.12. Let P be an admissible point process on Rd and let the pair (ξ,P)

satisfy the p-moment condition (1.16) for all p ∈ [1,∞). If the mixed moments for ξ

strongly cluster as at (1.17) and if f ∈ B(W1) satisfies

Varµξ
n(f) = Ω(nν) (1.22)

for some ν ∈ [0,∞), then as n→ ∞

µξ
n(f) − Eµξ

n(f)√
Varµξ

n(f)

D−→ N(0, 1). (1.23)

Combining Theorem 1.10 and Theorem 1.12 yields the following theorem, which is

well-suited for off-the-shelf use in applications, as seen in Section 2.3.

Theorem 1.13. Let (ξ,P) be an admissible pair of class (A1) or (A2) such that the

p-moment condition (1.16) holds for all p ∈ (1,∞). If f ∈ B(W1) satisfies condition

(1.22) for some ν ∈ (0,∞), then µξ
n(f) is asymptotically normal as in (1.23), as n→ ∞.

Theorems 1.11 and 1.12 are proved in Section 4. We next compare our results with

those in the literature. Definitions of point processes mentioned below are in Section

2.2.

Remarks:

(i) Theorem 1.11. In the case of Poisson and binomial input P , the limits (1.19) and

(1.20) are shown in [60] and [7, 56], respectively. In the case of Gibbsian input, the

limits (1.19) and (1.20) are established in [65]. Theorem 1.11 shows these limits hold

for general stationary input. For general stationary input, the paper [70] gives a weaker

version of Theorem 1.11 for specific ξ and for f = 1[x ∈ W1]. In full generality, the

convergence rate (1.19) is new for any point process P .

12
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(ii) Theorems 1.12 and 1.13. Under condition (1.22),Theorems 1.12 and 1.13 provide a

central limit theorem for non-linear statistics of either determinantal and permanental

input with a fast-decaying kernel as at (2.7), the zero set PGEF of a Gaussian entire

function, or rarified Gibbsian input. When ξ ≡ 1, then µξ
n(f) reduces to the linear

statistic
∑

x∈Pn
f(x). These theorems extend the central limit theorem for linear statis-

tics of PGEF as established in [51]. In the case that the input is determinantal with

a fast decaying kernel as at (2.7), then Theorems 1.12 and 1.13 also extend the main

result of Soshnikov [68], whose pathbreaking paper gives a central limit theorem for

linear statistics for any determinantal input, provided the variance grows as least as

fast as a power of the expectation. The generality of the score functionals considered

here necessitates assumptions on the determinantal kernel which are more restrictive

than those required by [68]. Proposition 5.7 of [67] shows central limit theorems for

linear statistics of α-determinantal point processes with α = −1/m or α-permanental

point processes with α = 2/m for some m ∈ N. Theorems 1.12 and 1.13 extend these

results in the case |α| = 1/m.

(iii) Variance lower bounds. To prove asymptotic normality it is customary to require

variance lower bounds as at (1.22); [51] and [68] both require assumptions of this kind.

Showing condition (1.22) is a separate problem and it fails in general; recall that the

variance of the point count of some determinantal point processes, including the GUE

point process, grows at most logarithmically. This phenomena is especially pronounced

in dimensions d = 1, 2. On the other hand, if ξ ≡ 1, and if the kernel K for a deter-

minantal point process satisfies
∫
Rd |K(0, x)|2dx < K(0,0) = ρ(1)(0), then recalling the

definition of σ2(ξ) at (1.18), we have σ2(ξ) = σ2(1) = ρ(1)(0)−
∫
Rd |K(0, x)|2dx > 0. In

the case of rarified Gibbsian input, the bound (1.22) holds with ν = 1, as shown in of

[69, Theorem 1.1]. Theorem 1.13 allows for surface-order variance growth, which arises

for linear statistics
∑

x∈Pn
ξ(x) of determinantal point processes; see [24, (4.15)].

(iv) Poisson, binomial, and Gibbs input. When P is Poisson or binomial input and when

ξ is a functional which stabilizes exponentially fast as at (1.12), then µξ
n is asymptotically

normal (1.23) under moment conditions on ξ; see the survey [72]. When P is a rarified

Gibbs point process with ‘ancestor clans’ which decay exponentially fast, and when ξ

is an exponentially stabilizing functional, then µξ
n satisfies normal convergence (1.23)

as established in [65, 69].

(v) Mixing and clustering. Central limit theorems for geometric functionals of mixing

point processes (random fields) are established in [3, 15, 31, 33, 32]. The geometric

functionals considered in these papers are different than the ones considered here; fur-

thermore the relation between the mixing conditions (in these papers) and clustering

(1.7) is unclear. Though correlation functions are simpler than mixing coefficients,

13
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which depend on σ-algebras generated by the point processes, our decay rates appear

more restrictive than those needed in [3, 15, 31, 33, 32].

(vi) Multivariate central limit theorem. We may prove a multivariate central limit the-

orem via Theorems 1.11 and 1.13 and the Cramér-Wold device. This goes as fol-

lows. Let (ξ,P) be a pair satisfying the hypotheses of Theorems 1.11 and 1.13. If

fi ∈ B0(W1), 1 ≤ i ≤ k, satisfy the variance limit (1.20) with σ2(ξ) > 0, then as n→ ∞
the fidis (

µξ
n(f1) − Eµξ

n(f1)√
n

, . . . ,
µξ
n(fk) − Eµξ

n(fk)√
n

)
converge to the fidis of a mean zero Gaussian field having covariance kernel f, g 7→
σ2(ξ)

∫
W1
f(x)g(x)dx.

(vii) Deterministic radius of stabilization. It may be shown that our main results go

through without the condition (1.14) if the radius of stabilizationRξ(x,P) is bounded by

a non-random (deterministic) constant, and if (1.13) and (1.15) are satisfied. However

we are unable to find any interesting examples of point processes satisfying (1.7) but

not (1.14).

(viii) Clustering of mixed moments; Theorem 1.10. Though the cumulant method is

common to [7, 65, 51] and this article, a distinguishing and novel feature of our approach

is the proof of strong clustering of mixed moment functions for a wide class of functionals

and point processes. As mentioned in the introduction, the proof of this result is via

factorial moment expansions, which differs from the approach of [7, 65, 51] (see the

discussion at the beginning of Section 3). Strong clustering (1.17) appears to be of

independent interest. It features in the proofs of moderate deviation principles and laws

of the iterated logarithms for stabilizing functionals of Poisson point process, see [5], [21].

Strong clustering (1.17) yields cumulant bounds, useful in establishing concentration

inequalities as well as moderate deviations, as explained in [27, Lemma 4.2].

(ix) Normal approximation. Difference operators (which appear in our factorial moment

expansions) are also a key tool in the Malliavin-Stein method [52, 53]. This method has

been highly successful in obtaining presumably ‘optimal’ rates of normal convergence

for various statistics (including those considered in Section 2.3) in stochastic geometric

problems [37, 40, 62]. However, these methods currently apply only to functionals de-

fined on Poisson and binomial point processes. It is an open question whether a refined

use of these methods would yield rates of convergence in our central limit theorems.

(x) Cumulant bounds. Our approach shows that the kth order cumulants for ⟨f, µξ
n⟩

grow at most linearly in n for k ≥ 1. Thus, under ssumption (1.22), the cumulant Ck
n

14
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for (Var⟨f, µξ
n⟩)−1/2⟨f, µξ

n⟩ satisfies Ck
n ≤ D(k)n1−(νk/2), with D(k) depending only on k.

For k = 3, 4, ... and ν > 2/3, we have Ck
n ≤ D(k)/(∆(n))k−2, where ∆(n) := n(3ν−2)/2.

When D(k) satisfies D(k) ≤ (k!)1+γ, γ a constant, then we obtain the Berry-Esseen

bound (cf. [27, Lemma 4.2])

sup
t∈R

∣∣∣∣∣∣P
µξ

n(f) − Eµξ
n(f)√

Varµξ
n(f)

≤ t

− P(N(0, 1) ≤ t)

∣∣∣∣∣∣ = O(∆(n)−1/(1+2γ)).

Determining conditions on input pairs (ξ,P) insuring the bounds ν > 2/3 and D(k) ≤
(k!)1+γ, γ a constant, is beyond the scope of this paper. When P is Poisson input, this

issue is addressed by [21].

We next consider the case when the fluctuations of Hξ
n(P) are not of volume order,

that is to say σ2(ξ) = 0. Though this may appear to be a degenerate condition,

interesting examples involving determinantal point processes or zeros of GEF in fact

satisfy σ2(1) = 0. Such point processes are termed ‘super-homogeneous point processes’

[51, Remark 5.1]. Put

Ĥξ
n(P) :=

∑
x∈Pn

ξ(x,P). (1.24)

The summands in Ĥξ
n(P), in contrast to those appearing in Hξ

n(P), are not sensitive

to boundary effects. We shall show that under volume order scaling the asymptotic

variance of Ĥξ
n(P) also equals σ2(ξ). However, when σ2(ξ) = 0 we derive surface order

variance asymptotics for Ĥξ
n(P). Though a similar result should plausibly hold for

Hξ
n(P), a proof seems beyond the scope of the current paper. For y ∈ Rd and W ⊂ Rd,

put

γW (y) := Vol(W ∩ (Rd \W − y)) (1.25)

and

γ(y) := lim
n→∞

γWn(y)

nd−1/d
.

For a proof of existence of the function γ, see [43, Lemma 1(a)].

Theorem 1.14. Under the assumptions of Theorem 1.11(ii) suppose also that the pair

(ξ,P) exponentially stabilizes as in (1.12). Then

lim
n→∞

n−1VarHξ
n(P) = σ2(ξ). (1.26)

If moreover σ2(ξ) = 0 in (1.20) then

lim
n→∞

VarĤξ
n(P)

n(d−1)/d
= σ2(ξ, γ) :=

∫
Rd

(m(1)(0)2 −m(2)(0, x))γ(x) dx ∈ [0,∞). (1.27)
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Remarks:

(i) Checking positivity of σ2(ξ, γ) > 0 is not always straightforward, though we note

if ξ has the form (1.10), then the disintegration formula (1.6) yields

σ2(ξ, γ) =
k∑

j=0

1

j!(k − j − 1)!(k − j − 1)!

∫
Rd

γ(x)(∫
(Br(0)∩Br(x))j×Br(0)k−j−1×Br(x)k−j−1

h(0,y, z)h(x,x, z)[
ρ(k)(0,y, z)ρ(k)(x,x, z) − ρ(2k−j)(0,y, z, x,x)

]
dzdydx

)
dx. (1.28)

(ii) Theorem 1.11 and Theorem 1.14 extend [43, Propositions 1 and 2], which are valid

only for ξ ≡ 1, to general functionals. If an admissible pair (ξ,P) of type (A1) or (A2)

is such that Ĥξ
n(P) does not have volume-order variance growth, then Theorems 1.11

and 1.14 show that Ĥξ
n(P) has at most surface-order variance growth.

2 Examples and applications

Before providing examples and applications of our general results, we briefly discuss

the moment assumptions involved in our main theorems.

2.1 Moments of clustering point processes

We say that P has exponential moments if for all bounded Borel B ⊂ Rd and all t ∈ R+

we have

E[tP(B)] <∞ . (2.1)

Similarly, say that P has all moments if for all bounded Borel B ⊂ Rd and all k ∈ N,

we have

E[P(B)k] <∞ . (2.2)

Remarks:

(i) The point process P has exponential moments whenever
∑∞

k=1 κkt
k/k! <∞ for all

t ∈ R+ with κk as in (1.8) (cf. the expansion of the probability generating function of

a random variable in terms of factorial moments [17, Proposition 5.2.III.]). By (1.9) an

admissible clustering point process has exponential moments provided
∞∑
k=1

Ckt
k

k!
<∞, t ∈ R+. (2.3)
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Note that input of type (A2) has exponential moments since by (1.13), we have Ck =

O(kak), a ∈ [0, 1), making (2.3) summable. For pairs (ξ,P) of type (A2) with radius of

stabilization bounded by r0 ∈ [1,∞), by (1.15) the p-moment in (1.16) is consequently

controlled by a finite exponential moment, i.e.,

sup
1≤n≤∞

sup
1≤p′≤⌊p⌋

sup
x1,...,xp′∈Wn

Ex1,...,xp′
max{|ξ(x1,Pn)|, 1}p

≤ Ex1,...,xp′
(max{ĉr0, 1}pP(Br0 (x1))). (2.4)

Finally, if P has exponential moments under its stationary probability P, the same is

true under Px1,...,xk
for α(k) almost all x1, . . . , xk. 3

(ii) For pairs (ξ,P) of type (A1), the p-moment (1.16) satisfies

sup
1≤n≤∞

sup
1≤p′≤⌊p⌋

sup
x1,...,xp′∈Wn

Ex1,...,xp′ max{|ξ(x1,Pn)|, 1}p

≤
(∥h∥∞

k

)p

Ex1,...,xp′ [(P(Br(x1)))
(k−1)p]. (2.5)

We next show that (2.5) may be controlled by moments of Poisson random variables.

From the definition of factorial moment measures, we have for any Borel subset B

that α(k)(B) ≤ κkVol(B) where Vol(.) denotes the Lebesgue volume of a set. Since

moments may be expressed as a linear combination of factorial moments, for k ∈ N and

a bounded Borel subset B ⊂ Rd we have

E[(P(B))k] =
k∑

j=0

{
k

j

}
α(j)(Bj) ≤ κk

k∑
j=0

{
k

j

}
Vol(B)j = κkE(Po(Vol(B))k), (2.6)

where
{
k
j

}
stand for the Stirling numbers of the second kind, Po(λ) denotes a Poisson

random variable with mean λ and where κj’s are non-decreasing in j. Thus by (1.9), an

admissible clustering point process has all moments, as in (2.2). If P has all moments

under its stationary probability P, the same is true under Px1,...,xk
for α(k) almost all

x1, . . . , xk (by the same arguments as in Footnote 3).

2.2 Examples of clustering point processes

The notion of a stabilizing functional is well established in the stochastic geometry

literature but since the notion of clustering is less well studied, we shall first convince

3 Indeed, if Ex1,...,xk
[ρP(Br(x1))] = ∞ for x1, . . . , xk ∈ B′ for some bounded B′ ∈ Rd such that

α(k)(B′k) > 0 then Ex1,...,xk
[ρP(Br(x1))] ≤ Ex1,...,xk

[ρP(B′
r)] = ∞ with B′

r = B′ ⊕ Br(0) = {y′ + y :

y′ ∈ B′, y ∈ Br(0)} the r-parallel set of B′. Integrating with respect to α(k) in B′k, by the Campbell

formula E[(P(B′
r))

kρP(B′
r)] = ∞, which contradicts the existence of exponential moments under P.
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the reader that there are many interesting examples of admissible clustering point

processes. For more details on the first five examples, we refer to [9].

2.2.1 Class A1 input

Permanental input. The point process P is permanental if its correlation functions

are defined by ρ(k)(x1, ..., xk) := per(K(xi, xj))1≤i,j≤k, where the permanent of an n×n

matrix M is per(M) :=
∑

π∈Sn
Πn

i=1Mi,π(i), with Sn denoting the permutation group of

the first n integers and K(·, ·) is the Hermitian kernel of a locally trace class integral

operator K : L2(Rd) → L2(Rd) [9, Assumption 4.2.3]. A kernel K is fast-decreasing if

|K(x, y)| ≤ ω(|x− y|), x, y ∈ Rd, (2.7)

for some fast decreasing ω : R+ → R+. Lemma 5.5 in Section 5 shows that if a

stationary permanental point process has a fast-decreasing kernel as at (2.7), then

it is an admissible clustering point process with clustering function ϕ = ω and with

clustering constants satisfying

Ck := kk!||K||k−1, ck ≡ 1, (2.8)

where ||K|| := supx,y |K(x, y)| and we can choose κk = k!∥K∥k. However, a trace

class permanental point process in general does not have exponential moments, i.e., the

right-hand side of (2.1) might be infinite for some bounded B and ρ large enough. 4

A useful property of the permanental point process with kernel K is that it can

be represented as a Cox point process (see Section 2.2.3) with intensity field λ(x) :=

Z1(x)2 + Z2(x)2 where Z1, Z2 are i.i.d. Gaussian random fields with zero mean and

covariance function K/2 [67, Thm 6.13]. Thus mean zero Gaussian random fields with

a fast decaying covariance function K/2 yield a fast decaying clustering permanental

(Cox) point process with kernel K.

α-Permanental point processes. See [9, Section 4.10], [44], and [67] for more details

on this class of point processes which generalize permanental point processes. Given

α ≥ 0 and a kernel K which is Hermitian, non-negative definite and locally trace class,

a point process P is said to be α-permanental 5 if its correlation functions satisfy

ρ(k)(x1, . . . , xk) =
∑
π∈Sk

αk−ν(π)

k∏
i=1

K(xi, xπ(i)) (2.9)

4This is because, the number of points of a (trace-class) permanental p.p. in a compact set B is

a sum of independent geometric random variables Geo(1/(1 + λ)) where λ runs over all eigenvalues of

the integral operator defining the process truncated to B.
5In contrast to terminology in [9, 67], here we distinguish the two cases (i) α ≥ 0 (α-permanental)

and (ii) α ≤ 0 (α-determinantal)
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where Sk stands for the usual symmetric group and ν(.) denotes the number of cycles in

a permutation. The right hand side is the α-permanent of the matrix ((K(xi, xj))i,j≤k.

The special cases α = 0 and α = 1 respectively give the Poisson point process with

intensity K(0,0)) and the permanental point process with kernel K. In what follows,

we assume α = 1/m for m ∈ N, i.e. 1/α is a positive integer. Existence of such α-

permanental point processes is guaranteed by [67, Theorem 1.2]. The property of these

point processes most important to us is that an α-permanental point process with kernel

K is a superposition of 1/α i.i.d. copies of a permanental point process with kernel αK

(see [9, Section 4.10]). Also from definition (2.9), we obtain

ρ(k)(x1, . . . , xk) ≤ ∥K∥kαk
∑
π∈Sk

(α−1)ν(π),

and so we can take κk =
∏k−1

i=0 (jα + 1)∥K∥k for an α-permanental point process. The

following result is a consequence of the upcoming Proposition 2.3 and the identity (2.8)

for clustering constants of a permanental point process with kernel αK.

Proposition 2.1. Let α = 1/m for some m ∈ N and let Pα be the stationary α-

permanental point process with a kernel K which is Hermitian, non-negative definite

and locally trace class. Assume also that |K(x, y)| ≤ ω(|x−y|) for some fast decreasing

ω. Then Pα is an admissible clustering point process with clustering function ϕ = ω

and clustering constants Ck = km1−k(m−1)m!(k!)m∥K∥km−1, ck = 1.

Zero set of Gaussian entire function (GEF). A Gaussian entire function f(z) is

the sum
∑

j≥0Xj
zj√
j!

with independent standard complex Gaussian coefficients Xj, that

is the Xj are i.i.d. with the normal density on the complex plane. The zero set f−1({0})

gives rise to the point process PGEF :=
∑

x∈f−1({0}) δx on R2. The point process PGEF

is an admissible clustering point process [51, Theorem 1.4], exhibiting local repulsion

of points. Though PGEF satisfies condition (1.14), it is unclear whether (1.13) holds.

Further, by [36, Theorem 1], PGEF (Br(0)) has exponential moments.

Moment conditions. For p ∈ [1,∞), we show that the p-moment condition (1.16) holds

when ξ is such that the pair (ξ,PGEF ) is of class (A1). By [51, Theorem 1.3], given

P := PGEF , there exists constants D̃k such that

D̃−1
k

∏
i<j

min{|yi − yj|2, 1} ≤ ρ(k)(y1, . . . , yk) ≤ D̃k

∏
i<j

min{|yi − yj|2, 1}. (2.10)

Recall from [67, Lemma 6.4] (see also [30, Theorem 1], [11, Proposition 2.5]), that the

existence of correlation functions of any point process implies existence of reduced Palm

correlation functions ρ
(k)
x1,...,xp(y1, . . . , yk), which satisfy the following useful relation: For
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Lebesgue a.e. (x1, . . . , xp) and (y1, . . . , yk), all distinct,

ρ(p)(x1, . . . , xp)ρ
(k)
x1,...,xp

(y1, . . . , yk) = ρ(p+k)(x1, . . . , xp, y1, . . . , yk). (2.11)

Combining (2.10) and (2.11), we get for Lebesgue a.e. (x1, . . . , xp) and (y1, . . . , yk), that

ρ(k)x1,...,xp
(y1, . . . , yk) ≤ Dp+kρ

(k)(y1, . . . , yk), (2.12)

where Dp+k := D̃p+kD̃pD̃k. Thus we have shown there exists constants Dj’s such that

for any bounded Borel subset B, k ∈ N and Lebesgue a.e. (x1, . . . , xp) ∈ Rdp, we have

E!
x1,...,xp

(P(k)(Bk)) ≤ Dp+kE(P(k)(Bk)). (2.13)

By (2.5), (2.13), and (2.6) in this order, along with stationarity of PGEF , we have for

any p ∈ [1,∞),

sup
1≤n≤∞

sup
1≤p′≤⌊p⌋

sup
x1,...,xp′∈Wn

Ex1,...,xp′ max{|ξ(x1,Pn)|, 1}p

≤
(
∥h∥∞
k

)p

κ(k−1)pDkpE[(Po(Vol(Br(0))) + p)(k−1)p] <∞, (2.14)

where as before Po(λ) denotes a Poisson random variable with mean λ. Thus the

p-moment condition (1.16) holds for pairs (ξ,PGEF ) of class (A1) for all p ∈ [1,∞).

2.2.2 Class A2 input

Determinantal input. The point process P is determinantal if its correlation func-

tions are defined by ρ(k)(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k, where K(·, ·) is again the

Hermitian kernel of a locally trace class integral operator K : L2(Rd) → L2(Rd). De-

terminantal point processes exhibit local repulsivity. Also, determinantal structure is

preserved when restricting determinantal input to subsets of Rd and as well as when con-

sidering their reduced Palm versions. These facts facilitate our analysis of determinantal

input; the Appendix (Section 5) provides lemmas further illustrating the tractability of

determinantal point processes. If a stationary determinantal point process has a fast-

decreasing kernel as at (2.7), then Lemma 5.3 in Section 5 shows that it is an admissible

clustering point process satisfying (1.13) with clustering function ϕ = ω and clustering

constants

Ck := k1+(k/2)||K||k−1, ck ≡ 1. (2.15)

Consequently, it satisfies the inequality (1.14) provided ω itself satisfies (1.14). Also,

by Hadamard’s inequality we can take κk = K(0,0)k.

The Ginibre ensemble of eigenvalues of N ×N matrices with independent standard

complex Gaussian entries is a leading example of a determinantal point process. The

limit of the Ginibre ensemble as N → ∞ is the Ginibre point process (or the infinite
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Ginibre ensemble), here denoted PGIN . It is the prototype of a stationary determinantal

point process and has kernel

K(z1, z2) := exp(z1z̄2) exp(−(|z1|2+|z2|2)/2) = exp(iIm(z1z̄2)−|z1−z2|2/2), z1, z2 ∈ C.

More generally, for 0 < β ≤ 1, the β-Ginibre (determinantal) point process (see [28])

has kernel

Kβ(z1, z2) := exp(
1

β
z1z̄2) exp(−(|z1|2 + |z2|2)/(2β)), z1, z2 ∈ C.

When β = 1, we obtain PGIN and as β → 0 we obtain the Poisson point process. Thus

the β-Ginibre point process interpolates between the Poisson and Ginibre point pro-

cesses. All β-Ginibre point processes are admissible clustering point processes satisfying

(1.13) and (1.14).

Moment Conditions. Let p ∈ [1,∞) and let P be a stationary determinantal point

process with a continuous and fast-decreasing kernel. We now show that the p-moment

condition (1.16) holds for pairs (ξ,P) of class (A1) or (A2), provided ξ has a deter-

ministic radius of stabilization, say r0 ∈ [1,∞). First, for all (x1, . . . , xp) ∈ (Rd)p, all

increasing F : N → R+ and all bounded Borel sets B we have [28, Theorem 2]

E!
x1,...,xp

(F (P(B))) ≤ E(F (P(B))).

Thus using (2.4), the above inequality and stationarity of P , we get that for any bounded

stabilizing score function ξ of class (A2),

sup
1≤n≤∞

sup
1≤p′≤⌊p⌋

sup
x1,...,xp′∈Wn

Ex1,...,xp′
max{|ξ(x1,Pn)|, 1}p ≤ E(max{ĉr0, 1}pP(Br0 (0))+p2) <∞.

(2.16)

The finiteness of the last term follows from the fact that determinantal input considered

here is of class (A2) and, by Remark (i) at the beginning of Section 2.1 such input has

finite exponential moments.

α-Determinantal point processes. Similar to permanental point processes, we gen-

eralize determinantal point processes to include the α-determinantal point processes,

by requiring that the correlation functions satisfy (2.9) for some α ≤ 0. In what fol-

lows, we shall assume that α = −1/m,m ∈ N. Existence of such α-determinantal point

processes again follows from [67, Theorem 1.2]. Likewise, an α-determinantal point

process with kernel K is a superposition of −1/α i.i.d. copies of a determinantal point

process with kernel −αK (see [9, Section 4.10]). By [67, Proposition 4.3], we can take

κk = K(0,0)k for an α-determinantal point process. Analogously to Proposition 2.1,

the next result follows from Proposition 2.3 below and the identity (2.15) for clustering

constants of a determinantal point process with kernel −αK.
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Proposition 2.2. Let α = −1/m for some m ∈ N and Pα be the stationary α-

determinantal point process with a kernel K which is Hermitian, non-negative definite

and locally trace class. Assume also that |K(x, y)| ≤ ω(|x−y|) for some fast decreasing

function ω. Then Pα is an admissible clustering point process with clustering function

ϕ = ω and clustering constants Ck = m1−k(m−1)m!K(0,0)k(m−1)k1+(k/2)∥K∥k−1, ck = 1.

Further if w satisfies (1.14), then Pα is admissible clustering input of type (A2).

Rarified Gibbsian input. Consider the class Ψ of Hamiltonians consisting of pair

potentials without negative part, area interaction Hamiltonians, hard core Hamiltoni-

ans, and potentials generating a truncated Poisson point process (see [65] for further

details of such potentials). For Ψ ∈ Ψ and β ∈ (0,∞), let PβΨ be the Gibbs point

process having Radon-Nikodym derivative exp(−βΨ(·)) with respect to a reference ho-

mogeneous Poisson point process on Rd of intensity τ ∈ (0,∞). There is a range of

inverse temperature and activity parameters (β and τ) such that PβΨ strongly clusters;

see the introduction to Section 3 and [65] for further details. These rarified Gibbsian

point processes are admissible clustering point processes satisfying the input condi-

tions (1.13) and (1.14) of class (A2). Setting ξ(., .) ≡ 1 in Lemma 3.4 of [65] shows that

(1.7) holds with Ck a scalar multiple of k and ck a constant.

2.2.3 Additional input examples

Here we provide a non-exhaustive list of examples of admissible clustering input.

Cox point processes. A point process P is said to be a Cox point process with (ran-

dom) intensity measure Λ(.) if conditioned on Λ(.), P is a Poisson point process with in-

tensity measure Λ(.). We shall assume that the measure Λ(.) has a (random) density λ(.)

with respect to the Lebesgue measure, called the intensity field i.e., Λ(B) =
∫
B
λ(x)dx

for all Borel sets B. In such a case, the correlation functions of the Cox point process

P are given by ρ(k)(x1, . . . , xk) = E(
∏k

i=1 λ(xi)) for x1, . . . , xk distinct. Hence, cluster-

ing properties of the random field {λ(x)}x∈Rd translate in a straightforward manner to

clustering properties of the point process P . Also, if λ(.) is a stationary random field,

then P is a stationary point process. We have already seen one class of clustering Cox

point processes in the permanental point process and we shall see below another class in

thinned Poisson point processes. Another tractable class of Cox point processes, called

the shot-noise Cox point process and studied in [48], includes examples of admissible

clustering point processes.

Finite-range dependent point process. Correlation functions of these processes,

when assumed locally finite, (trivially) cluster with the clustering function ϕ(s) = 0

for all s ∈ (r0,∞), for some r0 ∈ (0,∞), where r0 may be thought of as the range
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of dependence, and with constants ck = 1. Whether clustering constants Ck satisfy

condition (1.13) depends on the local properties of the correlation functions. 6 Examples

of finite range dependent point processes include perturbed lattices [13], Matérn cluster

point processes or Matérn hard-core point processes with finite dependence radius.

Thinned Poisson point processes. Suppose P is a Poisson point process, ξ(.,P) ∈
{0, 1}, and consider the thinned point process P̃ :=

∑
x∈P ξ(x,P)δx. If ξ stabilizes

exponentially fast then Lemma 5.2 of [7] shows that P̃ is an admissible clustering point

process. P̃ is a Cox point process with intensity field λ(x) = ξ(x,P). This set-up

includes finite-range dependent point processes P as well as Matérn cluster and Matérn

hard-core point process with exponentially decaying dependence radii. Tractable pro-

cedures generating thinnings of Poisson point processes are in [2].

Thinned general point processes. Suppose (ξ,P) is an admissible pair of class A2

and suppose further that ξ(.,P) ∈ {0, 1}. Then µξ
n is a thinned point process and the

correlation functions of µξ
n coincide with the mixed moment functionsm

(1,...,1)
(k) (x1, . . . , xk;∞)

in (1.5). In view of Theorem 1.10 these functions (strongly) cluster and hence µξ
n is an

admissible clustering point process. For similar examples and generalizations, termed

generalized shot-noise Cox point process, see [49].

Superpositions of i.i.d. point processes. Apart from thinning another natural

operation on point processes generating new point processes consists of independent

superposition. We show that this operation preserves clustering.

Let P1, . . . ,Pm,m ∈ N, be i.i.d. copies of an admissible clustering point process P
with correlation functions ρ. Let ρ0 denote the correlation functions of the point process

P0 := ∪m
i=1Pi. Notice that for any k ≥ 1 and distinct x1, . . . , xk ∈ Rd the following

relation holds

ρ
(k)
0 (x1, . . . , xk) =

∑
⊔m
i=1Si=[k]

m∏
i=1

ρ(Si), (2.17)

where ⊔ stands for disjoint union and we abbreviate ρ(|Si|)(xj : j ∈ Si) by ρ(Si). Here

Si may be empty, in which case we set ρ(∅) = 1. It follows from (2.17) that P0 is

an admissible point process with intensity mρ(1)(0). Further, we can take κk(P0) =

(κk)mmk. The proof of the proposition below, which shows that P0 clusters, is in the

Appendix.

Proposition 2.3. Let m ∈ N and P1, . . . ,Pm be i.i.d. copies of an admissible clustering

point process P with clustering function ϕ and clustering constants Ck and ck. Then

6A point process consisting of sufficiently heavy-tailed random number of points distributed in-

dependently (and say uniformly) in each hard-ball of a hard-core (say Matérn) model will not sat-

isfy (1.13).
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the point process P0 := ∪m
i=1Pi is an admissible clustering point process with clustering

function ϕ and clustering constants mkm!(κk)m−1Ck and ck. Further, if P is admissible

clustering input of type (A2) with κk ≤ λk for some λ ∈ (0,∞), then P0 is also

admissible clustering input of type (A2).

We have already used this proposition in the context of clustering of α-determinantal

point processes.

2.3 Applications

Having provided examples of admissible point processes, we shall now establish the limit

theory for geometric and topological statistics of these point processes. We rely heavily

on Theorems 1.11 and 1.13. Our examples include statistics arising in (i) combinato-

rial topology, (ii) differential topology, (iii) integral geometry, and (iv) computational

geometry, respectively. When the underlying point process is a Gibbs point process

as described in Section 2.2, then these results can be deduced from [7] or [65] respec-

tively. The examples are not exhaustive and indeed include many other functionals in

stochastic geometry already discussed in e.g. [7, 61]. Indeed there are further applica-

tions to (i) random packing models on clustering input (extending [59]), (ii) statistics

of percolation models (extending e.g. [39, 58]), and (iii) statistics of extreme points

of clustering input (extending [4, 69]). Details are left to the reader. We shall need

to assume moment bounds and variance lower bounds in our applications. In view of

(2.14) and (2.16), the moment conditions are valid for determinantal point processes

and zeros of Gaussian entire functions in the applications considered in Sections 2.3.1-

2.3.3.

2.3.1 Statistics of simplicial complexes

A nonempty family ∆ of finite subsets of a set V is an abstract simplicial complex if

Y ∈ ∆ and Y0 ⊂ Y implies that Y0 ∈ ∆. Elements of ∆ are called faces/simplices and

the dimension of a face is one less than its cardinality. The 0-dimensional faces are

vertices. The collection of all faces of ∆ with dimension less than k is a sub-complex

called the k-skeleton of ∆ and denoted by ∆≤k. The 1-skeleton of a simplicial complex is

a graph whose vertices are 0-dimensional faces and whose edges are 1-dimensional faces.

The simplicial complex, or ‘complex’ for short, represents a combinatorial generalization

of a graph, as seen in some of the examples below and is a fundamental object in

combinatorial as well as computational topology [20, 50].

Given a finite point set X in Rd (or generally, in a metric space) there are various

ways to define a complex that captures some of the geometry/topology of X . One such
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complex is the Čech complex. Recall that if X = {xi}ni=1 ⊂ Rd is a finite set of points

and r ∈ (0,∞), then the Čech complex of radius r is the abstract complex

C(X , r) := {σ ⊂ X :
∩
x∈σ

Br(x) ̸= ∅}.

By the nerve theorem [10, Theorem 10.7], the Čech complex is homotopy equivalent (in

particular, same topological invariants) to the classical germ-grain model

CB(X , r) :=
∪
x∈X

Bx(r), (2.18)

The 1-skeleton of the Čech complex, C(X , r)≤1, X random, is the well-known random

geometric graph [55], denoted by G(X , r). One can study many geometric or topological

statistics similar to those described below for the Čech complex for other geometric

complexes (for example, see [73, Section 3.2]) or geometric graphs. Indeed, motivated

by problems in topological data analysis, random geometric complexes on Poisson or

binomial point processes were studied in [35] and later were extended to stationary

point processes in [70].

We next establish the limit theory for statistics of random Čech complexes. The

central limit theorems are applicable whenever the input P is either α-determinantal

(|α| = 1
m
,m ∈ N) with kernel as at (2.7), PGEF , or rarified Gibbsian input. In all that

follows we fix r ∈ (0,∞).

Simplex counts or clique counts. Let Γ be a complex on k-vertices such that Γ≤1

is a connected graph. For x ∈ Rd and x := (x1, . . . , xk−1) ∈ (Rd)k−1, let

hΓ(x,x) := 1[C({x, x1, . . . , xk−1}, r) ∼= Γ],

where ∼= stands for simplicial isomorphism. For an admissible point process P as in

Definition 1.2, we put

γ(k)(x,P) :=
1

k!

∑
x∈(P∩Br(x))k−1

hΓ(x,x),

that is (γ(k),P) is an admissible pair of type (A1). If Γ denotes the (k − 1)-simplex,

then Hγ(k)

n (P) is the number of (k − 1)-simplices in C(Pn, r) and for k = 2, Hγ(k)

n (P)

is the edge count in the random geometric graph G(Pn, r). Theorem 3.4 of [70] estab-

lishes expectation asymptotics for n−1Hγ(k)

n (P) for stationary input. The next result

establishes variance asymptotics and asymptotic normality of n−1Hγ(k)

n (P). It is an

immediate consequence of Theorem 1.11(ii) and Theorem 1.13. Let σ2(γ(k)) be as at

(1.18), with ξ put to be γ(k).
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Theorem 2.4. Let k ∈ N. If P is an admissible clustering point process as in Defini-

tion 1.2 and the pair (γ(k),P) satisfies the moment condition (1.16) for all p ∈ (1,∞),

then

lim
n→∞

n−1VarHγ(k)

n (P) = σ2(γ(k)).

Additionally, if VarHγ(k)

n (P) = Ω(nν) for some ν ∈ (0,∞), then as n→ ∞

Hγ(k)

n (P) − EHγ(k)

n (P)√
VarHγ(k)

n (P)

D→ N(0, 1). (2.19)

Up to now, the central limit theorem theory for clique counts has been restricted to

binomial or Poisson input, cf. [19, 22, 37, 55, 62]. Theorem 2.4 shows that asymptotic

normality holds for more general input.

Edge lengths. For x, y ∈ Rd, let

h(x, y) := |x− y|1[|x− y| ≤ r].

The U -statistic

ξL(x,X ) :=
1

2

∑
y∈X∩Br(x)

h(x, y),

is of generic type (1.10) and HξL

n (P) is the total edge length of the geometric graph

G(Pn, r). The following is an immediate consequence of Theorems 1.11 and 1.13.

Theorem 2.5. For any admissible clustering point process P as in Definition 1.2 with

the pair (ξL,P) satisfying the moment condition (1.16) for all p ∈ (1,∞), we have

|n−1EHξL

n (P) − E0ξ
L(0,P)ρ(1)(0)| = O(n−1/d),

and

lim
n→∞

n−1VarHξL

n (P) = σ2(ξL).

Moreover, if VarHξL

n (P) = Ω(nν) for some ν ∈ (0,∞) then as n→ ∞

HξL

n (P) − EHξL

n (P))√
VarHξL

n (P)

D−→ N(0, 1). (2.20)

The central limit theory for HξL

n (·) for Poisson or binomial input is a consequence of

[19, 22, 37, 55, 62]. Theorem 2.5 shows that HξL

n (·) still satisfies a central limit theorem

when Poisson and binomial input is replaced by more general clustering input.

Degree counts. Define the (down) degree of a k-simplex to be the number of k-

simplices with which the given simplex has a common (k − 1)-simplex. For x ∈ Rd
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and x := (x1, . . . , xk+1) ∈ (Rd)k+1, define the indicator that (x1, . . . , xk) is the common

(k − 1) simplex between two k-simplices:

h(x,x) := 1[C(x, . . . , xk) is a k − simplex] 1[C(x1, . . . , xk+1) is a k − simplex].

The total (down) degree of order k of a complex is the sum of the degrees of the

constituent k-simplices. Consider the U -statistic

ξ(k)(x,X ) :=
1

(k + 2)!

∑
x∈(X∩Br(x))k+1

h(x,x)

which is of generic type (1.10). Then Hξ(k)

n (P) is the total down degree (of order k)

of the geometric complex C(Pn, r). Note that (ξ(k),P) is of type (A1) whenever P is

admissible in the sense of Definition 1.2. Theorems 1.11 and 1.13 yield the following

limit theory for Hξ(k)

n (P).

Theorem 2.6. Let k ∈ N. For any admissible clustering point process P as in Defini-

tion 1.2 with the pair (ξ(k),P) satisfying the moment condition (1.16) for all p ∈ (1,∞),

we have

|n−1EHξ(k)

n (P) − E0ξ
(k)(0,P)ρ(1)(0)| = O(n−1/d),

and

lim
n→∞

n−1VarHξ(k)

n (P) = σ2(ξ(k)).

Moreover if VarHξ(k)

n (P) = Ω(nν) for some ν ∈ (0,∞) then as n→ ∞

Hξ(k)

n (P) − EHξ(k)

n (P)√
VarHξ(k)

n (P)

D−→ N(0, 1). (2.21)

2.3.2 Morse critical points

Understanding the topology of a manifold via smooth functions on the manifold is a

classical topic in differential topology known as Morse theory [45]. Among the various

extensions of Morse theory to non-smooth functions, the one of interest to us is the

‘min-type’ Morse theory developed in [26]. This theory was exploited to study the

topology of random Čech complexes on Poisson and binomial point processes by [14]

and later on stationary point processes by [70].

As above X ⊂ Rd denotes a locally finite point set and k ∈ N. Given z ∈ Rd(k+1), let

C(z) denote the center of the unique k − 1 dimensional sphere (if it exists) containing

the points of z and let R(z) be the radius of this unique ball. The set of points z of

cardinality k + 1 in general position generates an index k critical point iff

C(z) ∈ c̊o(z) and X (BR(z)(C(z))) = z,
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where co(z) is the convex hull of the points comprising z and Å stands for the interior

of a Euclidean set A. We are interested in critical points C(z) distant at most r from

X i.e, R(z) ∈ (0, r]. To this end, for (x,x) ∈ Rd(k+1) define

gr(x,x) := 1[C(x,x) ∈ c̊o(x,x)]1[R(x,x) ≤ r] ; Q(x,x) := BR(x)(C(x))1[R(x,x) ≤ r].

Thus Q(x,x) ⊂ B2r(x). Now, for x ∈ Rdk, we set h(x,x) := (k + 1)−1gr(x,x), and, in

keeping with (1.10), define the Morse score function

ξM(x,X ) :=
1

k!

∑
x∈(X∩B2r(x))k

h(x,x)1[X (Q(x,x) \ {x,x}) = 0]. (2.22)

Then ξM satisfies the power growth condition (1.15) and is of type (A2) (and nearly

of type (A1)), with the understanding that h(x, x1, . . . , xk) = 0 whenever

max1≤i≤k |xi − x| > 2r. The statistic HξM (P) is simply the number Nk(Pn, r) of index

k Morse critical points generated by Pn which are within a distance r of Pn, whereas

µξM

n is the random measure generated by index k critical points. Index 0 Morse critical

points are trivially the points of X and so in this case N0(X ) = card(X ). Thus we shall

be interested in asymptotics for only Morse critical points of higher indices.

The next result establishes variance asymptotics and asymptotic normality of n−1Nk(Pn, r)

valid for class (A2) input P . It is an immediate consequence of Theorem 1.11(ii), The-

orem 1.13, and the fact that for input P of class (A2), (ξM ,P) is an input pair of class

(A2). Let σ2(ξM) be as at (1.18), with ξ put to be ξM .

Theorem 2.7. For all k ∈ {1, . . . , d} and class (A2) input P with the pair (ξM ,P)

satisfying the moment condition (1.16) for all p ∈ (1,∞), we have

lim
n→∞

n−1VarNk(Pn, r) = σ2(ξM).

Moreover if VarNk(Pn, r) = Ω(nν) for some ν ∈ (0,∞), then as n→ ∞
Nk(Pn, r) − ENk(Pn, r)√

VarNk(Pn, r)

D−→ N(0, 1). (2.23)

Remarks:

(i) Theorem 5.2 of [70] establishes expectation asymptotics for n−1Nk(Pn, r) for sta-

tionary input, though without a rate of convergence and [14] estabilishes a central limit

theorem but only for the case of Poisson or binomial point processes.

(ii) The Morse inequalities relate the Morse critical points (local functionals) to the

Betti numbers (global functionals) of the Boolean model and in particular, imply that

the changes in the homology of the Boolean model CB(P , r) occurs at radii r = R(x)

whenever C(x) is a Morse critical point. A trivial consequence is that the kth Betti

number of C(Pn, r) is upper bounded by Nk(Pn, r).
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(iii) Other examples of similar score functions satisfying a modified version of (A1)

(similar to (2.22)) include component counts of random geometric graphs [55, Chapter

3], number of simplices of degree k in the Čech complex, simplicial counts in an alpha

complex [73, Sec 3.2] or an appropriate discrete Morse complex on Pn (see [23]).

2.3.3 Statistics of germ-grain models

We furnish two more applications of Theorem 1.13 when ξ has a deterministic radius

of stabilization. The two applications concern the germ-grain model, a classic model in

stochastic geometry [64].

k-covered region of the germ-grain model. The following is a statistic of interest

in coverage processes [29]. For locally-finite X ⊂ Rd and x ∈ X , define the score

function

β(k)(x,X ) :=

∫
y∈Br(x)

1[X (Br(y)) ≥ k]

X (Br(y))
dy.

Clearly, β(k) is an exponentially stabilizing score function as in Definition 1.1 with

stabilization radius 2r. Define the k-covered region of the germ-grain model CB(Pn, r) at

(2.18) by Ck
B(Pn, r) = {y : Pn(Br(y)) ≥ k}. Thus Hβ(k)

n (P) is the volume of Ck
B(Pn, r).

When k = 1, Hβ(k)

n (P) is the volume of the germ-grain model having germs in Pn.

Clearly β(k) is bounded by the volume of a radius r ball and so ξ satisfies the power

growth condition (1.15). The following is an immediate consequence of Theorems 1.11

and 1.13 and the fact that if P is of class (A2) then the input pair (β(k),P) is also of

class (A2).

Theorem 2.8. For all k ∈ N and any point process P of class (A2) with the pair

(β(k),P) satisfying the moment condition (1.16) for all p ∈ (1,∞), we have

|n−1EVol(Ck
B(Pn, r)) − E0β

(k)(0,P)ρ(1)(0)| = O(n−1/d),

and

lim
n→∞

n−1VarVol(Ck
B(Pn, r)) = σ2(β(k)).

Moreover, if VarVol(Ck
B(Pn, r)) = Ω(nν) for some ν ∈ (0,∞), then as n→ ∞

Vol(Ck
B(Pn, r)) − EVol(Ck

B(Pn, r))√
VarVol(Ck

B(Pn, r))

D−→ N(0, 1). (2.24)

The central limit theorem (2.24) is valid for input which is either a α-determinantal

point process (α = −1
m
,m ∈ N) with a fast decreasing kernel or a rarified Gibbsian point

process. In the case of Poisson input and k = 1, [29] establishes a central limit theorem

for C1
B(Pn, r). For general k, the central limit theorem can be deduced from the general

results in [58, 7] with presumably optimal bounds following from [40, Proposition 1.4].
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Intrinsic volumes of the germ-grain model. Let K denote the set of convex bodies

i.e., compact, convex subsets of Rd. The intrinsic volumes V0, . . . , Vd are non-negative

functionals on K which satisfy Steiner’s formula

Vd(K ⊕Br(0)) =
d∑

j=0

rd−jθd−jVj(K), K ∈ K

where r > 0, ⊕ is the Minkowski sum, Vd denotes the d-dimensional Lebesgue measure,

and θj := πj/2/Γ(j/2 + 1) is the volume of the unit ball in Rj. Intrinsic volumes satisfy

translation invariance and additivity i.e., for K1, . . . , Km ∈ K,

Vj(∪m
i=1Ki) =

m∑
k=1

(−1)k+1
∑

1≤i1<...<ik≤m

Vj(∩k
l=1Kil), j ∈ {0, . . . , d}.

This identity allows an extension of intrinsic volumes to real-valued functionals

on the family of finite unions of convex bodies (see [64, Ch. 14]). Intrinsic volumes

coincide with quer-mass integrals or Minkowski functional up to a normalization. The

Vj’s define certain j-dimensional volumes of K, independently of the ambient space. Vd
is the d-dimensional volume, 2Vd−1 is the surface measure, and V0 is the Euler-Poincaré

characteristic which may also be expressed as an alternating sum of simplex counts,

Morse critical points, or Betti numbers [20, Sections IV.2, VI.2]. Save for Vd and Vd−1,

the remaining Vj’s may assume negative values on unions of convex bodies.

For finite X , m = card(X ), and r > 0, we express Vj(CB(X , r)), j ∈ {0, . . . , d} as a

sum of bounded stabilizing scores, which goes as follows. For x1 ∈ X , define the score

ξj(x1,X ) :=
m∑
k=1

(−1)k+1
∑

{x2,...,xk}⊂X∩B2r(x1)

Vj(Br(x1) ∩ . . . ∩Br(xk))

k!
.

The score ξj is translation invariant with radius of stabilization Rξj(x1,P) ≤ ⌈3r⌉.
By additivity, we have Vj(CB(Pn, r)) = H

ξj
n (P) for j ∈ {0, . . . , d}. The homogeneity

relation Vj(Br(0)) = rjVj(B1(0)) = rj
(
d
j

)
θd

θd−j
and the monotonicity of Vj on K yield

|ξj(x1,X )|1[X (B2r(x1)) = l] ≤ rj
(
d

j

)
θd
θd−j

l∑
k=1

(
l

k

)
≤ 2lrj

(
d

j

)
θd
θd−j

.

In other words, ξj, 0 ≤ j ≤ d, satisfy the power growth condition (1.15) and are

exponentially stabilizing. Theorems 1.11 and 1.13 yield the following limit theorems,

where we note that (ξj,P) is of class (A2) whenever P is of class (A2).

Theorem 2.9. Fix r ∈ (0,∞) as above. For all j ∈ {0, . . . , d} and any point process

P of class (A2) with the pair (ξj,P) satisfying the p-moment condition (1.16) for all
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p ∈ (1,∞), we have

|n−1EVj(CB(Pn, r)) − E0ξj(0,P)ρ(1)(0)| = O(n−1/d),

and

lim
n→∞

n−1VarVj(CB(Pn, r)) = σ2(ξj).

Moreover, if VarVj(CB(Pn, r)) = Ω(nν) for some ν ∈ (0,∞) then as n→ ∞
Vj(CB(Pn, r)) − EVj(CB(Pn, r))√

VarVj(CB(Pn, r))

D−→ N(0, 1). (2.25)

Remarks:

(i) Theorem 2.9 extends the analogous central limit theorems of [34], which are con-

fined to Poisson input, to any point process of class (A2).

(ii) We may likewise prove central limit theorems for other functionals of germ-grain

models, including mixed volumes, integrals of surface area measures [63, Chapters 4

and 5], and total measures of translative integral geometry [64, Section 6.4]. These

functionals, like intrinsic volumes, are expressed as sums of bounded stabilizing scores

and thus, under suitable assumptions, the limit theory for these functionals follows from

Theorems 1.11 and 1.13.

2.3.4 Edge-lengths in k-nearest neighbor graphs

We now use the full force of Theorems 1.11 and 1.13, applying them to sums of score

functions whose radius of stabilization has an exponentially decaying tail.

Statistics of the Voronoi tessellation as well as of graphs in computational geometry

such as the k-nearest neighbor graph and sphere of influence graph may be expressed

as sums of exponentially stabilizing score functionals [58] and hence via Theorems 1.11

and 1.13, we may deduce the limit theory for these statistics. To illustrate, we establish

a weak law of large numbers, variance asymptotics, and a central limit theorem for the

total edge-length of the k-nearest neighbor graph on a determinantal point process P
with a fast-decreasing kernel as in (2.7). As noted in Section 2.2, such a determinantal

point process is of class (A2) as in Definition 1.7.

As shown in Lemma 5.6, we may explicitly upper bound void probabilities for P ,

allowing us to deduce exponential stabilization for score functions on P. This is a re-

curring phenomena, and it is often the case that to show exponential stabilization of

statistics, it suffices to control the Palm probability content of large Euclidean balls.

This opens the way towards showing that other relevant statistics of random graphs ex-

hibit exponential stabilization on P . This includes intrinsic volumes of faces of Voronoi

tessellations [64, Section 10.2], edge-lengths in a radial spanning tree [66, Lemma 3.2],
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proximity graphs including the Gabriel graph, and global Morse critical points i.e.,

critical points as defined in Section 2.3.2 but without the restriction 1[R(x,x) ≤ r].

Given locally finite X ⊂ Rd and k ∈ N, the (undirected) k-nearest neighbor graph

NG(X ) is the graph with vertex set X obtained by including an edge {x, y} if y is one

of the k nearest neighbors of x and/or x is one of the k nearest neighbors of y. In the

case of a tie we may break the tie via some pre-defined total order (say lexicographic

order) on Rd. For any finite X ⊂ Rd and x ∈ X , we let E(x) be the edges e in NG(X )

which are incident to x. Defining

ξL(x,X ) :=
1

2

∑
e∈E(x)

|e|,

we write the total edge length of NG(X ) as L(NG(X )) =
∑

x∈X ξL(x,X ). Let σ2(ξL)

be as at (1.18), with ξ put to be ξL.

Theorem 2.10. Let P be a stationary determinantal point process on Rd with intensity

λ = K(0,0) and a kernel satisfying K(x, y) ≤ ω(|x − y|), with ω fast-decreasing as at

(2.7). We have

|n−1EL(NG(Pn)) − E0ξL(0,P)ρ(1)(0)| = O(n−1/d),

whereas

lim
n→∞

n−1VarL(NG(Pn)) = σ2(ξL).

If VarL(NG(Pn)) = Ω(nν) for some ν ∈ (0,∞) then as n→ ∞
L(NG(Pn)) − EL(NG(Pn))√

VarL(NG(Pn))

D−→ N(0, 1). (2.26)

Remark. Theorem 2.10 extends Theorem 6.4 of [56] which is confined to Poisson input.

In this context, the work [40] provides a rate of normal approximation.

Proof. We want to show that (ξL,P) is an admissible score and input pair of type (A2)

and then apply Theorem 1.13. Note that P is an admissible clustering point process

satisfying (1.13) and (1.14). Thus we only need to show that ξL is exponentially stabi-

lizing, that ξL satisfies the power growth condition (1.15), and the p-moment condition

(1.16). When d = 2, we show exponential stabilization of ξL by closely following the

proof of Lemma 6.1 of [60]. This goes as follows. For each t > 0, construct six disjoint

equal triangles Tj(t), 1 ≤ j ≤ 6, such that x is a vertex of each triangle and each edge

has length t. Let the random variable R be the minimum t such that Pn(Tj) ≥ k + 1

for all 1 ≤ j ≤ 6. Notice that R ∈ [r,∞) implies that there is a ball inscribed in some

Tj(t) with center cj of radius γr which does not contain k + 1 points. By Lemma 5.6
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in the appendix, the probability of this event satisfies

Px1,...,xp [R > r] ≤ 6Px1,...,xp [P(Bγr(c1)) ≤ k − 1] ≤ 6P!
x1,...,xp

[P(Bγr(c1)) ≤ k − 1]

≤ 6e(2k+p−2)/8e−λπγ2r2/8,

that is to say that R has exponentially decaying tails. As in Lemma 6.1 of [60], we find

that Rξ(x,Pn) := 4R is a radius of stabilization for ξL, showing that (1.12) holds with

c = 2. For d > 2, we may extend these geometric arguments (cf. the proof of Theorem

6.4 of [56]) to define a random variable R serving as a radius of of stabilization. Mim-

icking the above arguments we may likewise show that R has exponentially decaying

tails.

For all r ∈ (0,∞) and l ∈ N we notice that

|ξL(x,X ∩Br(x))|1[X (Br(x)) = l] ≤ r · min(l, 6) ≤ (cr)l,

and so (1.15) holds. Since vertices in the k-nearest neighbor graph have degree bounded

by kC(d) as in Lemma 8.4 of [71], and since each edge incident to x has length at most

4R, it follows that |ξL(x,Pn)| ≤ k ·C(d) ·4R. Since R has moments of all orders, (ξL,P)

satisfies the p-moment condition (1.16) for all p ≥ 1. Thus ξL satisfies all conditions of

Theorem 1.13 and we deduce Theorem 2.10 as desired. �

3 Proof of strong clustering of mixed moments

We show strong clustering (1.17) via a factorial moment expansion for the expectation of

functionals of point processes. Notice that (1.17) holds for any exponentially stabilizing

score function ξ satisfying the p-moment condition (1.16) for all p ∈ [1,∞) on a Poisson

point process P . Indeed if x, y ∈ Rd and r1, r2 > 0 satisfy r1 + r2 < |x − y| then the

random variables ξ(x,P)1[Rξ(x,P) ≤ r1] and ξ(y,P)1[Rξ(y,P) ≤ r2] are independent.

This yields clustering (1.17) with k1 = . . . , kp+q = 1 and C̃n ≤ cn1 with c1 a constant,

as in [7, Lemma 5.2]. On the other hand, if P is rarified Gibbsian input and ξ is

exponentially stabilizing, then [65, Lemma 4.1] shows mixed moment clustering (1.17)

with k1 = . . . , kp+q = 1. These methods depend on quantifying the region of spatial

dependencies of Gibbsian points via exponentially decaying diameters of their ancestor

clans. Such methods apparently neither extend to determinantal input nor to the zero

set PGEF of a Gaussian entire function. On the other hand, for PGEF and for ξ ≡ 1, the

paper [51] uses the Kac-Rice-Hammersley formula and complex analysis tools to show

clustering (1.17) with k1 = . . . , kp+q = 1. All three proofs are specific to the underlying

point process or the specific score function ξ. Our more general and considerably

different approach, includes these results as special cases.
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3.1 Difference operators and factorial moment expansions

We shall now introduce some notations and collect some auxilliary results required

for an application of the much-needed factorial moment expansions for general point

processes from [11, 12]. Equip Rd with a total order ≺ defined using the lexicographical

ordering of the polar co-ordinates. For µ ∈ N and x ∈ Rd, define the measure µ|x(.) :=

µ(. ∩ {y : y ≺ x}). Note that since µ is a locally finite measure and the ordering is

defined via polar co-ordinates µ|x is a finite measure for all x ∈ Rd. Let o denote the

null-measure i.e., o(B) = 0 for all Borel subsets B of Rd. For a measurable function

ψ : N → R, l ∈ N ∪ {0}, and x1, ..., xl ∈ Rd, we define the factorial moment expansion

(FME) kernels [11, 12] as follows. For l = 0, define D0ψ(µ) := ψ(o). For l ≥ 1,

Dl
x1,...,xl

ψ(µ) =
l∑

i=0

(−1)l−i
∑

J⊂([l]
i )

ψ(µ|x∗+
∑
j∈J

δxj
) =

∑
J⊂[l]

(−1)l−|J |ψ(µ|x∗+
∑
j∈J

δxj
), (3.1)

where
(
[l]
j

)
denotes the collection of all subsets of [l] = {1, . . . , l} with cardinality j and

x∗ := min{x1, . . . , xl}, with the minimum taken with respect to the order ≺. Note that

D
(l)
x1,...,xlψ(µ) is a symmetric function of x1, . . . , xl.

7

We say that ψ is ≺-continuous at ∞ if for all µ ∈ N we have

lim
x↑∞

ψ(µ|x) = ψ(µ).

We first recall the FME expansion proved in [11, cf. Theorem 3.2] for dimension one

and then extended to higher-dimensions in [12, cf. Theorem 3.1]. Recall that E!
y1,...,yl

denote expectations with respect to reduced Palm probabilities.

Theorem 3.1. Let P be a simple point process and ψ : N → R be ≺-continuous at ∞
and assume that for all l ≥ 1∫

Rdl

E!
y1,...,yl

[|Dl
y1,...,yl

ψ(P)|]ρ(l)(y1, . . . , yl) dy1 . . . dyl <∞ (3.2)

and
1

l!

∫
Rdl

E!
y1,...,yl

[Dl
y1,...,yl

ψ(P)]ρ(l)(y1, . . . , yl) dy1 . . . dyl → 0 as l → ∞. (3.3)

Then E[ψ(P)] has the following factorial moment expansion

E[ψ(P)] = ψ(o) +
∞∑
l=1

1

l!

∫
Rdl

Dl
y1,...,yl

ψ(o)ρ(l)(y1, . . . , yl) dy1 . . . dyl. (3.4)

Consider now admissible pairs (ξ,P) of type (A1) or (A2) and x1, . . . , xp ∈ Rd.

7For xl ≺ xl−1 ≺ . . . ≺ x1 the functional Dl
x1,...,xl

ψ(µ) is equal to the iterated difference operator:

D1
x1
ψ(µ) = ψ(µ|x1

+ δx1)− ψ(µ|x1
), Dl

x1,...,xl
ψ(µ) = D1

xl
(Dl−1

x1,...,xl−1
ψ(µ)).
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The proof of (1.17) given in the next sub-section is based on the FME expansion for

E x1,...,xp [ψ(Pn)], where ψ(µ) is the following product of the score functions

ψ(µ) = ψk1,...,kp(x1, . . . , xp;µ) :=

p∏
i=1

ξ(xi, µ)ki (3.5)

with k1, . . . , kp ≥ 1. However, under Px1,...,xp the point process Pn has fixed atoms at

x1, . . . , xp, which complicates the form of its factorial moment measures. It is more

handy to consider these points as parameters of the following modified functional

ψ!(µ) = ψ!
k1,...,kp

(x1, . . . , xp;µ) :=

p∏
i=1

ξ
(
xi, µ+

∑p
j=1δxj

)ki
(3.6)

and to not count points x1, . . . , xp in P , i.e., consider P under the reduced Palm prob-

abilities P!
x1,...,xp

. Obviously Ex1,...,xp [ψ(Pn)] = E!
x1,...,xp

[ψ!(Pn)] and the latter expec-

tation is more suitable for FME expansion with respect to the correlation functions

ρ
(l)
x1,...,xp(y1, . . . , yl) of P with respect to the Palm probabilities P!

x1,...,xp
.

The following crucial consequence of Theorem 3.1 will allow us to use the FME

expansion to prove (1.17).

Lemma 3.2. Assume that either (i) (ξ,P) is an admissible score and input pair of

type (A1) or (ii) (ξ,P) satisfies the power growth condition (1.15), with ξ having a

radius of stabilization satisfying supx∈P R
ξ(x,P) ≤ r a.s. for some r ∈ (1,∞) and

P has exponential moments. Then for distinct x1, . . . , xp ∈ Rd, non-negative integers

k1, . . . , kp and n ≤ ∞ the functional ψ′ at (3.6) admits the FME

E x1,...,xp [ψk1,...,kp(x1, . . . , xp;Pn)] = E !
x1,...,xp

[ψ!
k1,...,kp

(x1, . . . , xp;Pn)]

= ψ!
k1,...,kp

(x1, . . . , xp; o)

+
∞∑
l=1

1

l!

∫
Rdl

Dl
y1,...,yl

ψ!
k1,...,kp

(x1, . . . , xp; o)ρ
(l)
x1,...,xp

(y1, . . . , yl) dy1 . . . dyl, (3.7)

When (ξ,P) is of type (A1), the series (3.7) has at most (k−1)
∑p

i=1 ki non-zero terms.

Proof. Throughout the proof we fix non-negative integers k1, . . . , kp and suppress them

when writing ψ!; i.e., ψ!(x1, . . . , xp;Pn) := ψ!
k1,...,kp

(x1, . . . , xp;Pn). We put Kp :=∑p
i=1 ki. The bounded radius of stabilization for ξ implies ψ! is ≺-continuous at ∞.

Consider first ψ! at (3.6) with ξ as in case (ii); later we consider the simpler case

(i). We show the validity of the expansion (3.7) as follows. For y1, . . . , yl ∈ Rd and

yk /∈ ∪p
i=1Br(xp) for some k ∈ {1, . . . , l}, we have

Dl
y1,...,yl

ψ!(x1, . . . , xp;µ) = 0. (3.8)
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To prove this, set µJ = µ|y∗ +
∑

j∈J δyj for J ⊂ [l] and y∗ := min{y1, . . . , yl}, with the

minimum taken with respect to ≺ order. From (3.1) we obtain

Dl
y1,...,yl

ψ!(x1, . . . , xp;µ)

=
∑

J⊂[l],k /∈J

(−1)l−|J |ψ!(x1, . . . , xp;µJ) +
∑

J⊂[l],k /∈J

(−1)l−|J |−1ψ!(x1, . . . , xp;µJ∪{k}) = 0,

where the last equality follows by noting that for J ⊂ [l] with k /∈ J , ψ!(x1, . . . , xp;µJ) =

ψ!(x1, . . . , xp;µJ∪{k}) because Rξ(x,P) ∈ [1, r] by assumption.

Consider now y1, . . . , yl ∈ ∪p
i=1Br(xp). For J ⊂ [l], the inequality 1 ≤ Rξ(x,P) ≤ r

and (1.15) yield

ψ!(x1, . . . , xp;µJ) ≤ (ĉr)Kp|J |+pKp+
∑p

i=1 kiµ(Br(xi)). (3.9)

The term pKp in the exponent of (3.9) is due to
∑p

j=1 δxj
in the argument of ξ in (3.6).

Substituting this bound in (3.1) yields

|Dl
y1,...,yl

ψ!(x1, . . . , xp;µ)| ≤ (ĉr)pKp+
∑p

i=1 kiµ(Br(xi))
∑
J⊂[l]

(ĉr)Kp|J | (3.10)

= (ĉr)pKp+
∑p

i=1 kiµ(Br(xi))(1 + (ĉr)Kp)l. (3.11)

We now consider ψ!(x1, . . . , xp;Pn), with Pn := P ∩Wn and ψ! defined as above.

By the bound (3.10) we have

1

l!

∫
Rdl

(E!
x1,...,xp

)!y1,...,yl [|D
l
y1,...,yl

ψ!(x1, . . . , xp;Pn)|]ρ(l)x1,...,xp
(y1, . . . , yl) dy1 . . . dyl

=
1

l!

∫
Rdl

E!
x1,...,xp,y1,...,yl

[|Dl
y1,...,yl

ψ!(x1, . . . , xp;Pn)|]ρ(l)x1,...,xp
(y1, . . . , yl) dy1 . . . dyl

≤(1 + (ĉr)Kp)l(ĉr)pKp

l!
E!

x1,...,xp

[
(Pn(∪i=1Br(xi))

l(ĉr)
∑p

i=1 kiPn(Br(xi))
]

≤(1 + (ĉr)Kp)l(ĉr)pKp

l!
E!

x1,...,xp

[
(Pn(∪p

i=1Br(xi))
l(ĉr)KpPn(∪p

i=1Br(xi))
]

≤(1 + (ĉr)Kp)l

l!
Ex1,...,xp

[
(Pn(∪p

i=1Br(xi))
l(ĉr)KpPn(∪p

i=1Br(xi))
]
, (3.12)

where the last equality follows since the distribution of P under Px1,...,xp is equal to that

of P +
∑p

i=1 δxi
under P!

x1,...,xp
. Defining N := Pn(∪p

i=1Br(xi)), we bound (3.12) by

Ex1,...,xp

[
(ĉr)KpN

∞∑
m=l

(1 + (ĉr)Kp)l

l!
N l

]
≤ Ex1,...,xp

[
(ĉr)(1+(ĉr)Kp+Kp)N

]
<∞ ,

where the last inequality follows since P has exponential moments under the Palm

measure as well (see Remark (i) at the beginning of Section 2.1). Consequently, by
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the Lebesgue dominated convergence theorem, the expression (3.12) converges to 0 as

l → ∞. Thus conditions (3.2) and (3.3) hold and (3.7) follows by Theorem 3.1.

Now we consider case (i), that is to say ψ! is as at (3.6) with ξ a U-statistic of type

(A1). By Lemma 5.1, ψ! is a sum of U -statistics of orders not larger than Kp(k − 1).

Consequently, for l > Kp(k − 1) we have

Dl
y1,...,yl

ψ!(x1, . . . , xp;µ) = 0 ∀y1, . . . , yl ∈ Rd, (3.13)

as shown in [62, Lemma 3.3] for Poisson point processes (the proof for general simple

counting measures µ is identical). This implies that conditions (3.2) for l > Kp(k− 1)

and (3.3) are trivially satisfied for ψ! as at (3.6). Now, we need to verify the condi-

tion (3.2) for l ≤ Kp(k − 1). For y1, . . . , yl ∈ Rd, set as before µJ = µ|y∗ +
∑

j∈J δyj for

J ⊂ [l] and y∗ := min{y1, . . . , yl}, with the minimum taken with respect to the order

≺. Since ξ has a bounded stabilization radius, by (3.8) and (2.5), we have

ψ!(x1, . . . , xp;µJ) ≤
p∏

i=1

∥h∥ki∞(µ(∪p
i=1Br(xi)) + |J | + p)ki(k−1)

≤ ∥h∥Kp
∞ (µ(∪p

i=1Br(xi)) + |J | + p)Kp(k−1), (3.14)

and so by (3.1), we derive that

|Dl
y1,...,yl

ψ!(x1, . . . , xp;µ)| ≤ ∥h∥Kp
∞

∑
J⊂[l]

(µ(∪p
i=1Br(xi)) + |J | + p)Kp(k−1)

≤ ∥h∥Kp
∞ 2l(µ(∪p

i=1Br(xi)) + l + p)Kp(k−1). (3.15)

Consider ψ!(x1, . . . , xp;Pn) with ψ! defined as above. Using the refined Campbell the-

orem (1.6), the bound (3.15) and following the calculations as in (3.12), we obtain

1

l!

∫
Rdl

(E!
x1,...,xp

)!y1,...,yl [|D
l
y1,...,yl

ψ!(x1, . . . , xp;Pn)|]ρ(l)x1,...,xp
(y1, . . . , yl) dy1 . . . dyl

≤ ∥h∥Kp
∞ 2lEx1,...,xp [P(∪p

i=1Br(xi))
l(P(∪p

i=1Br(xi)) + l + p)Kp(k−1)].

Since P has all moments under the Palm measure (see Remark (ii) at the beginning of

Section 2.1), the finiteness of the last term and hence the validity of the condition (3.2)

for l ≤ Kp(k − 1) follows. This justifies the FME expansion (3.7), with finitely many

non-zero terms, when ψ! is the product of score functions of type (A1). �

3.2 Proof of Theorem 1.10

First assume that (ξ,P) is of type (A2). Later we consider pairs of type (A1). For

fixed positive integers p, q, k1, . . . , kp+q consider mixed moments m(k1,...,kp)(x1, . . . , xp;n),
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m(kp+1,...,kp+q)(xp+1, . . . , xp+q;n) and m(k1,...,kp+q)(x1, . . . , xp+q;n). Denote Kp :=
∑p

i=1 ki,

Kq :=
∑q

i=p+1 ki and K :=
∑p+q

i=1 ki. We abbreviate ψk1,...,kp(x1, . . . , xp;µ) by ψ(x1,

. . . , xp;µ) as at (3.5), and similarly for ψ(xp+1, . . . , xp+q;µ) and ψ(x1, . . . , xp+q;µ).

Given x1, . . . , xp+q ∈ Wn we recall s := d({x1, . . . , xp}, {xp+1, . . . , xp+q}). Without

loss of generality we assume s ∈ (4,∞). Recalling the definition of b at (1.14) we may

assume without loss of generality that b ∈ (0, d). Put

t := t(s) := (
s

4
)b(1−a)/(2(K+d)), (3.16)

where a is defined at (1.13). Since s ∈ (4,∞) and K ≥ 2, we easily have t ∈ (1, s/4).

Given stabilization radii Rξ(xi,Pn), 1 ≤ i ≤ p+ q, we put

ξ̃(xi,Pn) := ξ(xi,Pn ∩BRξ(xi,Pn)(x))1[Rξ(xi,Pn) ≤ t]

considered under E x1,...,xp . We denote by m̃(k1,...,kp) the p-mixed moments induced by ξ̃

and Pn, that is

m̃(k1,...,kp)(x1, . . . , xp;n) := Ex1,...,xp [ξ̃(x1,Pn)k1 . . . ξ̃(xp,Pn)kp ]ρ(p)(x1, . . . , xp).

Similarly we consider m̃(kp+1,...,kp+q) and m̃(k1,...,kp+q). Put

ψ̃(x1, . . . , xp;Pn) =

p∏
i=1

ξ̃(xi,Pn)ki (3.17)

and write ψ̃(x1, . . . , xp;Pn) = ψ(x1, . . . , xp;Pn)1[maxi≤pR
ξ(xi,Pn) ≤ t].

Next, write Ex1,...,xpψ(x1, . . . , xp;Pn) as a sum of

Ex1,...,xp [ψ(x1, . . . , xp;Pn)1[max
i≤p

Rξ(xi,Pn) ≤ t]]

and

Ex1,...,xp [ψ(x1, . . . , xp;Pn)1[max
i≤p

Rξ(xi,Pn) > t]].

The bounds (1.8), (1.11), the moment condition (1.16), Hölder’s inequality, and p ≤∑p
i=1 ki = Kp give for Lebesgue almost all x1, . . . , xp∣∣∣Ex1,...,xpψ(x1, . . . , xp;Pn) − Ex1,...,xpψ̃(x1, . . . , xp;Pn)

∣∣∣ρ(p)(x1, . . . , xp)
≤ κp(M̃Kp+1)

Kp/(Kp+1)φ(apt)
1/(Kp+1)

≤ κKp(M̃Kp+1)
Kp/(Kp+1)φ(aKpt)

1/(Kp+1)

≤ c1(Kp)φ(aKpt)
1/(Kp+1). (3.18)

Here c1(m) := κmM̃m+1 ≥ κm(M̃m+1)
m/(m+1), as M̃m ≥ 1 by assumption. Simi-

larly, condition (1.16) yields |Ex1,...,xpψ(x1, . . . , xp;Pn)|ρ(p)(x1, . . . , xp) ≤ c1(Kp) . Us-

ing (3.18) with p replaced by p + q, we find m(k1,...,kp+q)(x1, . . . , xp+q;n) differs from

m̃(k1,...,kp+q)(x1, . . . , xp+q;n) by c1(K)φ(aKt)
1/(K+1), which is fast decreasing by (1.12).
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For any reals A,B, Ã, B̃, with |B̃| ≤ |B| we have |AB − ÃB̃| ≤ |A(B − B̃)| + |(A−
Ã)B̃| ≤ (|A| + |B|)(|B − B̃| + |A− Ã|). Hence, it follows that

|m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kq)(xp+1, . . . , xp+q;n)

− m̃(k1,...,kp)(x1, . . . , xp;n)m̃(kp+1,...,kq)(xp+1, . . . , xp+q;n)|

≤ (c1(Kp) + c1(Kq))
(
c1(Kp)φ(aKpt)

1/(Kp+1) + c1(Kq)φ(aKqt)
1/(Kq+1)

)
≤ c2(K)φ(aKt)

1/(K+1),

with c2(m) := 4(c1(m))2 and where we note that φ(amt)
1/(m+1) is also fast decreasing

by (1.12). The difference of mixed moments is thus bounded by∣∣∣m(k1,...,kp+q)(x1, . . . , xp+q;n) −m(k1,...,kp)(x1, . . . , xp;n)m(kp+1,...,kp+q)(xp+1, . . . , xp+q;n)
∣∣∣

≤ (c1(K) + c2(K))φ(akt)
1/(K+1)

+|m̃(k1,...,kp+q)(x1, . . . , xp+q;n) − m̃(k1,...,kp)(x1, . . . , xp;n)m̃(kp+1,...,kp+q)(xp+1, . . . , xp+q;n)|
(3.19)

The rest of the proof consists of bounding |m̃(k1,...,kp+q) − m̃(k1,...,kp)m̃(kp+1,...,kp+q)| by a

fast decreasing function of s. In this regard we will consider the expansion (3.7) with

ψ(x1, . . . , xp;Pn) replaced by ψ̃(x1, . . . , xp;Pn) as at (3.17) and similarly for ψ̃(xp+1, . . . , xq;Pn)

and ψ̃(x1, . . . , xp+q;Pn). By Lemma 5.2 in the Appendix, ξ̃(xi,Pn), 1 ≤ i ≤ p, have radii

of stabilization bounded above by t and also satisfy the power-growth condition (1.15)

since ξ̃(., .) ≤ ξ(., .). Thus the pair (ξ̃,P) satisfies the assumptions of Lemma 3.2. The

corresponding version of ψ̃, which accounts for the fixed atoms of Pn is now

ψ̃!(x1, . . . , xp;µ) :=

p∏
i=1

ξ̃(xi, µ+
∑p

i=1 δxi
)ki

and similarly for ψ̃!(xp+1, . . . , xq;Pn) and ψ̃!(x1, . . . , xp+q;Pn).

Applying (3.7), (2.11) and (3.8), we obtain

m̃(k1,...,kp+q)(x1, . . . , xp+q)

= E!
x1,...,xp+q

[ψ̃!(x1, . . . , xp+q;Pn)]ρ(p+q)(x1, . . . , xp+q)

=
∞∑
l=0

1

l!

∫
(Wn)l

Dl
y1,...,yl

ψ̃!(o)ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl) dy1 . . . dyl

=
∞∑
l=0

1

l!

∫
(∪p+q

i=1Wn∩Bt(xi))l
Dl

y1,...,yl
ψ̃!(o)ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl) dy1 . . . dyl .

Put Bt,n(xi) := Bt(xi) ∩Wn. Applying (3.1) when µ is the null measure, this gives for
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α(p+q) almost all x1, . . . , xp+q

m̃(k1,...,kp+q)(x1, . . . , xp+q) (3.20)

=
∞∑
l=0

1

l!

l∑
j=0

l!

j!(l − j)!

∫
(∪p

i=1Bt,n(xi))j×(∪q
i=1Bt,n(xp+i))l−j

Dl
y1,...,yl

ψ̃!(x1, . . . , xp+q; o)

× ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl)dy1 . . . dyl

=
∞∑
l=0

l∑
j=0

1

j!(l − j)!

∫
(∪p

i=1Bt,n(xi))j×(∪q
i=1Bt,n(xp+i))l−j

×
∑
J⊂[l]

(−1)l−|J |ψ̃!(x1, . . . , xp+q;
∑

j∈J δyj) × ρ(l+p+q)(x1, . . . , xp+q, y1, . . . , yl)dy1 . . . dyl.

(3.21)

To compare the (p + q)th mixed moments with the product of p, q-mixed moments,

we shall use the fact that Rξ̃(xi,Pn) ∈ (0, t] (cf. Lemma 5.2) implies the following

factorization, which holds for y1, . . . , yj ∈ ∪p
i=1Bt(xi) and yj+1, . . . , yl ∈ ∪q

i=1Bt(xp+i),

with t ∈ (1, s/4) (making ∪p
i=1Bt(xi) and ∪q

i=1Bt(xp+i) disjoint):

ψ̃!(x1, . . . , xp+q;
∑l

i=1 δyi) = ψ̃!(x1, . . . , xp;
∑j

i=1 δyi)ψ̃
!(xp+1, . . . , xp+q;

∑l
i=j+1 δyi) .

(3.22)

Using the expansion (3.7) as above along with (3.22), we next derive an expansion for

the product of pth and qth mixed moments. Recalling (2.11) and that by (3.6) we have

Ex1,...,xp [ψ(Pn)] = E!
x1,...,xp

[ψ!(Pn)], we obtain

m̃(k1,...,kp)(x1, . . . , xp)m̃
(kp+1,...,kq)(xp+1, . . . , xp+q)

= E!
x1,...,xp

[ψ̃!(x1, . . . , xp;Pn)]E!
xp+1,...,xp+q

[ψ̃!(xp+1, . . . , xp+q;Pn)]

× ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)

=
∞∑

l1,l2=0

1

l1!l2!

∫
(∪p

i=1Bt,n(xi))l1×(∪q
i=1Bt,n(xp+i))l2

Dl1
y1,...,yl1

ψ̃!(x1, . . . , xp; o) D
l2
z1,...,zl2

ψ̃!(xp+1, . . . , xp+q; o)

× ρ(l1+p)(x1, . . . , xp, y1, . . . , yl1)ρ
(l2+q)(xp+1, . . . , xp+q, z1, . . . , zl2) dy1 . . . dyl1dz1 . . . dzl2 .

(3.23)

40



Geometric statistics of clustering processes

Applying (3.1) once more for µ the null measure, this gives

m̃(k1,...,kp)(x1, . . . , xp)m̃
(kp+1,...,kq)(xp+1, . . . , xp+q)

=
∞∑

l1,l2=0

1

l1!l2!

∫
(∪p

i=1Bt,n(xi))l1×(∪q
i=1Bt,n(xp+i))l2

∑
J1⊂[l1],J2⊂[l2]

(−1)l1+l2−|J1|−|J2|

× ψ̃!(x1, . . . , xp;
∑

i∈J1 δyi)ψ̃
!(xp+1, . . . , xp+q;

∑
i∈J2 δzi)

× ρ(l1+p)(x1, . . . , xp, y1, . . . , yl1)ρ
(l2+q)(xp+1, . . . , xp+q, z1, . . . , zl2) dy1 . . . dyl1dz1 . . . dzl2

=
∞∑
l=0

l∑
j=0

1

j!(l − j)!

∫
(∪p

i=1Bt,n(xi))j×(∪q
i=1Bt,n(xp+i))l−j

∑
J1⊂[j],J2⊂[l]\[j]

(−1)l−|J1|−|J2|

× ψ̃!(x1, . . . , xp;
∑

i∈J1 δyi)ψ̃
!(xp+1, . . . , xp+q;

∑
i∈J2 δyi)

× ρ(j+p)(x1, . . . , xp, y1, . . . , yj)ρ
(l−j+q)(xp+1, . . . , xp+q, yj+1, . . . , yl) dy1 . . . dyl

=
∞∑
l=0

l∑
j=0

1

j!(l − j)!

∫
(∪p

i=1Bt,n(xi))j×(∪q
i=1Bt,n(xp+i))l−j

∑
J⊂[l]

(−1)l−|J |ψ̃!(x1, . . . , xp+q;
∑

i∈J δyi)

× ρ(j+p)(x1, . . . , xp, y1, . . . , yj)ρ
(l−j+q)(xp+1, . . . , xp+q, yj+1, . . . , yl) dy1 . . . dyl, (3.24)

where we have used (3.22) in the last equality.

Now we estimate the difference of (3.21) and (3.24). Applying the clustering bounds

(1.7) and replacing Bt,n(xi) with Bt(xi), we obtain

|m̃(k1,...,kp+q)(x1, . . . , xp+q) − m̃(k1,...,kp)(x1, . . . , xp)m̃
(kp+1,...,kq)(xp+1, . . . , xp+q)|

≤ ϕ(
s

2
)

∞∑
l=0

l∑
j=0

Cl+p+q

j!(l − j)!

×
∫
(∪p

i=1Bt(xi))j×(∪q
i=1Bt(xp+i))l−j

∑
J⊂[l]

|ψ̃!(x1, . . . , xp+q;
∑

i∈J δyi)| dy1 . . . dyl. (3.25)

Recalling (3.22) and (3.9), we bound
∑

J⊂[l] |ψ̃!(x1, . . . , xp+q;
∑

i∈J δyi)| by 2l(ĉt)jKp+(l−j)Kq+K ,

where ĉt ≥ 1 holds since ĉ ≥ 1 in (1.15). This gives

|m̃(k1,...,kp+q)(x1, . . . , xp+q) − m̃(k1,...,kp)(x1, . . . , xp)m̃
(kp+1,...,kq)(xp+1, . . . , xp+q)|

≤ ϕ(
s

2
)

∞∑
l=0

l∑
j=0

Cl+p+q

j!(l − j)!

∫
(∪p

i=1Bt(xi))j×(∪q
i=1Bt(xp+i))l−j

2l(ĉt)jKp+(l−j)Kq+K dy1 . . . dyl

(3.26)
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Consequently,

|m̃(k1,...,kp+q)(x1, . . . , xp+q) − m̃(k1,...,kp)(x1, . . . , xp)m̃
(kp+1,...,kq)(xp+1, . . . , xp+q)|

≤ ϕ(
s

2
)

∞∑
l=0

Cl+p+q2
l(ĉt)(l+1)K((p+ q)θdt

d)l
l∑

j=0

1

j!(l − j)!

≤ ϕ(
s

2
)

∞∑
l=0

Cl+p+q

l!
4l(ĉt)(l+1)K((p+ q)θdt

d)l

≤ ϕ(
s

2
)

∞∑
l=0

Cl+K

l!
4l(ĉt)(l+1)K(Kθdt

d)l, (3.27)

where θd := πd/2/Γ(d/2 + 1) is the volume of the unit ball in Rd and where the second

inequality follows from jKp + (l − j)Kq < jK + (l − j)K = lK and where the last

inequality uses p+q ≤ K. We observe, using the bound (1.13), that there are constants

c1, c2 and c3 depending only on a, d and K =
∑p+q

i=1 ki such that

∞∑
l=0

Cl+K

l!
4l(ĉt)(l+1)K(Kθdt

d)l ≤ tK
∞∑
l=0

c1c
l
2l

c3(tK+d)l · lal

l!

Using Stirling’s formula we find that there are constants c4, c5 and c6 depending only

on a, d and K, such that

tK
∞∑
l=0

Cl+K

l!
4l(ĉt)lK(Kθdt

d)l ≤ tK
∞∑
l=0

c4c
l
5l

c6(tK+d)l

(⌊l(1 − a)⌋)!
,

where ⌊r⌋ is the greatest integer less than the real r. We compute

tK
∞∑
l=0

Cl+K

l!
4l(ĉt)lK(Kθdt

d)l ≤ tK
∞∑
n=0

∑
{l: ⌊l(1−a)⌋=n}

c4c
l
5l

c6(tK+d)l

n!

≤ tK
∞∑
n=0

c4c
n
5n

c6(tK+d)(n+1)/(1−a)

(1 − a)n!

≤ c7 exp(c8t
(K+d)/(1−a)) (3.28)

where c7 and c8 depend only on a, d and K.

Recalling from (3.16) that t := (s/4)b(1−a)/(2(K+d)) we obtain

∞∑
l=0

Cl+K

l!
4l(ĉt)(l+1)K(Kθdt

d)l ≤ c7 exp
(
c8(

s

4
)
b
2

)
.

By (1.14), there is a constant c9 depending only on a such that for all s we have
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ϕ(s) ≤ c9 exp(−sb/c9). Combining this with (3.27) and (3.28) gives

|m̃(k1,...,kp+q) − m̃(k1,...,kp)m̃(kp+1,...,kp+q)| ≤ c7c9 exp

(
−(s/2)b

c9
+ c8(

s

4
)
b
2

)
.

This along with (3.19) establishes (1.17) when (ξ,P) is an admissible pair of class (A2).

Now we turn to the case where (ξ,P) is of class (A1). Follow the arguments for case

(A2) word for word using that supx∈P R
ξ(x,P) ≤ r. Notice that when l > (k − 1)K,

l1 > (k − 1)Kp, and l2 > (k − 1)Kq the respective summands in (3.20), (3.23), and

(3.27) all vanish. Hence, the finiteness of C̃K trivially follows (without the need for

exponential decay of ϕ or a growth-rate bound on Ck), establishing (1.17) when (ξ,P)

is of class (A1). �

4 Proof of main results

We provide the proofs of Theorems 1.11, 1.14, and 1.12 in this order.

4.1 Proof of Theorem 1.11

4.1.1 Proof of expectation asymptotics (1.19).

We have by the definition of the Palm probabilities.

n−1Eµξ
n(f) = n−1

∫
Wn

f(n−1/du)Euξ(u,Pn)ρ(1)(u) du.

By the stationarity of P and translation invariance of ξ we have E0ξ(0,P) du =

Euξ(u,P) du. Using this we have∣∣∣n−1Eµξ
n(f) − E0ξ(0,P)ρ(1)(0)

∫
W1

f(x) dx
∣∣∣

=
∣∣∣n−1

∫
Wn

f(n−1/du){Euξ(u,Pn)ρ(1)(u) − E0ξ(0,P)ρ(1)(0)} du
∣∣∣

=
∣∣∣n−1

∫
Wn

f(n−1/du)Eu[(ξ(u,Pn) − ξ(u,P))ρ(1)(u)]du
∣∣∣

≤ ∥f∥∞n−1

∫
Wn

Eu[|ξ(u,Pn) − ξ(u,P)|1[Rξ(u,P) ≥ d(u, ∂Wn)]]ρ(1)(u)du

≤ 2κ1∥f∥∞n−1M̃p

∫
Wn

(Pu(Rξ(u,P) ≥ d(u, ∂Wn))1/qdu,

where the last inequality follows from the Hölder inequality, the bound (1.8), the p-

moment condition (1.16) (recall p ∈ (1,∞) and M̃p ∈ [1,∞)), and where 1/p+1/q = 1.
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By (1.12) we have∫
Wn

(Pu(Rξ(u,P) ≥ d(u, ∂Wn))1/q du = O(n(d−1)/d),

which gives (1.19) as desired. If ξ satisfies (1.11), but not (1.12), then we note that

lim sup
n→∞

n−1

∫
Wn

(Pu(Rξ(u,P) ≥ d(u, ∂Wn))1/qdu

≤ lim sup
n→∞

n−1

∫
Wn

(φ(a1d(u, ∂Wn)))1/qdu

= lim sup
n→∞

∫
W1

(φ(a1n
1/dd(z, ∂W1)))

1/qdz = 0

where the last equality follows from (1.11) and the bounded convergence theorem. Thus∣∣∣n−1Eµξ
n(f) − E0ξ(0,P)ρ(1)(0)

∫
W1

f(x) dx
∣∣∣ = o(1)

which gives expectation asymptotics under (1.11).

4.1.2 Proof of variance asymptotics (1.20).

Recall the definiton of mixed moments from (1.5).

Varµξ
n(f) = E

∑
x∈Pn

f(n−1/dx)2ξ2(x,Pn)

+ E
∑

x,y∈Pn,x ̸=y

f(n−1/dx)f(n−1/dy)ξ(x,Pn)ξ(y,Pn) −
(
E
∑
x∈Pn

f(n−1/dx)ξ(x,Pn)
)2

=

∫
Wn

f(n−1/du)2Eu(ξ2(u,Pn))ρ(1)(u) du (4.1)

+

∫
Wn×Wn

f(n−1/du)f(n−1/dv)
(
m(2)(u, v;n) −m(1)(u;n)m(1)(v;n)

)
dudv. (4.2)

Since ξ satisfies the p-moment condition (1.16) for p > 2, we have that ξ2 satisfies the

p-moment condition for p > 1. Also, ξ and ξ2 have the same radius of stabilization.

Thus, the proof of expectation asymptotics, with ξ replaced by ξ2, shows that the first

term in (4.1), multiplied by n−1, converges to

E0ξ
2(0,P)ρ(1)(0)

∫
W1

f(x)2 dx ;
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cf. expectation asymptotics (1.19). The second term in (4.2) multiplied by n−1 can be

rewritten as follows by setting x = n−1/du and z = v − u = v − n1/dx∫
W1

∫
Wn−n1/dx

f(x+ n−1/dz)f(x) (4.3)

× [m(2)(n
1/dx, n1/dx+ z;n) −m(1)(n

1/dx;n)m(1)(n
1/dx+ z;n)] dzdx.

Setting Px
n := P ∩ (Wn−n1/dx), translation invariance of ξ and stationarity of P yields

m(2)(n
1/dx, n1/dx+ z;n) = m(2)(0, z;Px

n)

m(1)(n
1/dx;n) = m(1)(0;Px

n)

m(1)(n
1/dx+ z;n) = m(1)(z;Px

n) .

Putting aside for the moment technical details one expects that the above moments

converge to m(2)(0, z), m(1)(0) and m(1)(z) = m(1)(0), respectively, when n → ∞.

Moreover, splitting the inner integral in (4.3) into two terms∫
Wn−n1/dx

(. . . )dz =

∫
Wn−n1/dx

1[|z| ≤M ](. . . )dz +

∫
Wn−n1/dx

1[|z| > M ](. . . )dz (4.4)

for any M > 0, we see (at least when f is continuous) that the first term in the

right-hand side of (4.4) converges to the desired value∫
Rd

f(x)2[m(2)(0, z) −m(1)(0)2] dz

when first n→ ∞ and then M → ∞. The absolute value of the second term in (4.4), by

the strong clustering of the second mixed moment, cf (1.17), can be bounded uniformly

in n by

∥f∥2∞C̃2

∫
|z|>M

ϕ̃(c̃2z) dz ,

which goes to 0 when M → ∞ since ϕ̃(·) is fast decreasing (and thus integrable).

To formally justify the above statements we need the following lemma. Denote

hξn(x, z) := m(2)(0, z;Px
n) −m(1)(0;Px

n)m(1)(z;Px
n) .

Lemma 4.1. Assume that translation invariant score function ξ on the input process

P satisfies (1.11) and the p-moment condition (1.16) for p ∈ (2,∞). Then hξn(x, z) is

uniformly bounded

sup
n≤∞

sup
x∈W1

sup
z∈Wn−n1/dx

|hξn(x, z)| ≤ Ch <∞

for some constant Ch and

lim
n→∞

hξn(x, z) = hξ∞(x, z) = m(2)(0, z) − (m(1)(0))2 .
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Proof. Denote Xn := ξ(0,Px
n), Yn := ξ(z,Px

n), X := ξ(0,P), and Y := ξ(z,P). We

shall prove first that all expectations E0,z(X
2
n), E0,z(Y

2
n ), E0,z(X

2) E0,z(Y
2), E0|Xn|,

Ez|Yn|, E0|X| and Ez|Y | are uniformly bounded. Indeed, by the Hölder inequality

E0,z(X
2
n) ≤ (E0,z|Xn|p)2/p = (En1/dx,z|ξ(n1/dx,Pn)|p)2/p ≤ M̃2/p

p (4.5)

where in the last inequality we have used p-moment condition (1.16) for p > 2. Sim-

ilarly E0,z(Y
2
n ) and E0,z(X

2), E0,z(Y
2) are bounded by M̃

2/p
p . Again using p-moment

condition (1.16), we obtain

E0|Xn| ≤ (E0(Xn)2)1/2 ≤ (En1/dx|ξ2(n1/dx,Pn)|)1/2 ≤ M̃1/2
p

and similarly for Ez|Yn|, E0|X| and Ez|Y |. This proves the uniform bound of |hξn(x, z)|.
To prove the convergence notice that

|m(2)(0, z;Px
n)−m(2)(0, z)| = |E0,z(XnYn) − E0,z(XY )|ρ(2)(0, z) (4.6)

≤ κ2
(
E0,z|XnYn −XnY | + E0,z|XnY −XY |

)
≤ κ2(E0,z(X

2
n)E0,z(Yn − Y )2)1/2 + κ2(E0,z(Y

2)E0,z(Xn −X)2)1/2 ,

(4.7)

where κ2 bounds the second correlation function as at (1.8). We have already proved

that E0,z(X
2
n), E0,z(Y

2) are bounded. Moreover

E0,z(Xn −X)2 = E0,z((Xn −X)21[Xn ̸= X])

≤ E0,z(X
2
n1[Xn ̸= X]) + 2E0,z(|XnX|1[Xn ̸= X]) + E0,z(X

21[Xn ̸= X]) .

The Hölder inequality gives for p > 2 and 2/p+ 1/q = 1,

E0,z(X
2
n1[Xn ̸= X]) ≤ (E0,z(X

p
n))2/p(P0,z(Xn ̸= X))1/q

E0,z(|XnX|1[Xn ̸= X]) ≤ (E0,z(X
p
n)E0,z(X

p))1/p(P0,z(Xn ̸= X))1/q

E0,z(X
21[Xn ̸= X]) ≤ (E0,z(X

p)2/p(P0,z(Xn ̸= X))1/q .

The p th moment of Xn and X under E0,z can be bounded by M̃p using the p-moment

condition (1.16) with p > 2 as in (4.5). By stabilization (1.11) with l = 2

P0,z(Xn ̸= X) ≤ P0,z(R
ξ(0,P) > n1/dd(x, ∂W1)) ≤ φ(a2n

1/dd(x, ∂W1)) (4.8)

with the right-hand side converging to 0 for all x ̸∈ ∂W1. This proves that E0,z(Xn−X)2

and (by the very same arguments) E0,z(Yn−Y )2 converge to 0 as n→ ∞ for all x ̸∈ ∂W1.

Concluding this part of the proof, we have shown that the expression in (4.7) converges

to 0 and thus m(2)(0, z;Px
n) converges to m(2)(0, z).
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Using similar arguments with

|m(1)(0,Px
n) −m(1)(0)| = |E0(Xn) − E0(X)|ρ(1)(0)

≤ κ1((E0(Xn)2)1/2 + (E0(X2))1/2)(P0(Xn ̸= X)))1/2,

by the p-moment condition (1.16) and the stabilization property (1.11) for p = 1 one

can show that m(1)(0,Px
n) converges to m(1)(0) uniformly in x for all x ∈ W1 \ ∂W1.

Exactly the same arguments assure convergence of m(1)(z,Px
n) to m(1)(z) = m(1)(0).

This concludes the proof of Lemma 4.1. �

In order to complete the proof of variance asymptotics for general f ∈ B(W1) (not

necessarily continuous) we use arguments borrowed from the proof of [56, Theorem 2.1].

Recall that x ∈ W1 is a Lebesgue point for f if (VolBϵ(x))−1
∫
Bϵ(x)

|f(z) − f(x)|dz → 0

as ϵ → 0. Denote by Cf all Lebesgue points of f in W1. By the Lebesgue density

theorem almost every x ∈ W1 is a Lebesgue point of f and thus for any M > 0 and n

large enough the double integral in (4.3) is equal to∫
W1

1[x ∈ Cf ]f(x)

∫
Wn−n1/dx

f(x+ n−1/dz)hξn(x, z) dzdx

=

∫
W1

1[x ∈ Cf ]f(x)

∫
|z|≤M

f(x+ n−1/dz)hξn(x, z) dzdx

+

∫
W1

1[x ∈ Cf ]f(x)

∫
Wn−n1/dx

1(|z| > M)f(x+ n−1/dz)hξn(x, z) dzdx .

As already explained, by the strong clustering property of the second mixed moment,

the second term converges to 0 as first n → ∞ and then M → ∞. Considering the

first term, by the uniform boundedness of hξn(x, z), using the dominated convergence

theorem, it is enough to prove for any Lebesgue point x of f and fixed M that

lim
n→∞

∫
|z|<M

hξn(x, z)f(x+ n−1/dz) dz = f(x)

∫
|z|<M

hξ∞(x, z) dz .

It this regard notice that∫
|z|<M

|hξn(x, z)f(x+ n−1/dz) − hξ∞(x, z)f(x)| dz

≤
∫
|z|<M

Ch × |f(x+ n−1/dz) − f(x)| + |hξn(x, z) − hξ∞(x, z)| × ∥f∥∞ dz

≤ Chn

∫
|z|<n−1/dM

|f(x+ z) − f(x)| dz + ∥f∥∞ ×
∫
|z|<M

|hξn(x, z) − hξ∞(x, z)| dz .

Both terms converge to 0 as n → ∞: the first since x is a Lebesgue point of x,

the second by the dominated convergence of hξn(x, z); cf. Lemma 4.1. Note that
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∫
W1

∫
R2 |hξ∞(x, z)| dzdx < ∞, which follows again from the clustering of the second

mixed moment (1.17). Thus letting M go to infinity in
∫
W1
f 2(x)

∫
|z|<M

hξ∞(x, z) dzdx

one completes the proof of variance asymptotics. �

4.2 Proof of Theorem 1.14.

The proof is inspired by the proofs of [43, Propositions 1 and 2]. By the refined Campbell

theorem and stationarity of P , we have

n−1VarĤξ
n(P) =

∫
Wn

Exξ
2(x;P)ρ(1)(x)dx+

∫
Wn

∫
Wn

[m(2)(x, y) −m(1)(x)m(1)(y)]dydx

= E0ξ
2(0,P)ρ(1)(0) + n−1

∫
Wn

∫
Wn

(m(2)(x, y) −m(1)(x)m(1)(y))dydx.

(4.9)

Now we write c(x, y) := m(2)(x, y) −m(1)(x)m(1)(y). The double integral in (4.9) be-

comes (z = y − x)

n−1

∫
Wn

∫
Wn

(m(2)(x, y) −m(1)(x)m(1)(y))dydx = n−1

∫
Wn

∫
Rd

c(0, z)1[x+ z ∈ Wn]dzdx

= n−1

∫
Wn

∫
Rd

c(0, z)1[x ∈ Wn − z]dzdx.

Write 1[x ∈ Wn − z] as 1 − 1[x ∈ (Wn − z)c] to obtain

n−1

∫
Wn

∫
Wn

(m(2)(x, y) −m(1)(x)m(1)(y))dydx

=

∫
Rd

c(0, z)dz − n−1

∫
Rd

∫
Wn

c(0, z)1[x ∈ Rd \ (Wn − z)]dxdz.

From (1.25), we have that γWn(z) := Vold(Wn ∩ (Rd \ (Wn − z))) and thus rewrite (4.9)

as

n−1VarĤξ
n(P) = E0ξ

2(0,P)ρ(1)(0) +

∫
Rd

c(0, z)dz − n−1

∫
Rd

c(0, z)γWn(z)dz. (4.10)

Now we claim that

lim
n→∞

n−1

∫
Rd

c(0, z)γWn(z)dz = 0.

Indeed, as noted in Lemma 1 of [43], for all z ∈ Rd we have limn→∞ n−1γWn(z) = 0. Since

n−1c(0, z)γWn(z) is dominated by the fast decreasing function c(0, z), the dominated

convergence theorem gives the claimed limit. Letting n→ ∞ in (4.10) gives

lim
n→∞

n−1VarĤξ
n(P) = E0ξ

2(0,P)ρ(1)(0) +

∫
Rd

c(0, z)dz = σ2(ξ), (4.11)
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where the last equality follows by the definition of σ2(ξ) in (1.18) and the finiteness

follows by the fast decreasing property of c(0, z,P) (which follows from the assumption

of strong clustering of mixed moments).

Now if σ2(ξ) = 0 then the right hand side of (4.11) vanishes, i.e.,

E0ξ
2(0,P)ρ(1)(0) +

∫
Rd

c(0, z)dz = 0.

Applying this identity to the right hand side of (4.10), then multiplying (4.10) by n1/d

and taking limits we obtain

lim
n→∞

n−(d−1)/dVarĤξ
n(P) = − lim

n→∞
n−(d−1)/d

∫
Rd

c(0, z)γWn(z)dz. (4.12)

As in [43], we have n−(d−1)/dγWn(z) ≤ C|z|, and therefore again, by the fast de-

creasing property of c(0, z) we conclude that n−(d−1)/dc(0, z)γWn(z) is dominated by

an integrable function of z. Also, as in [43, Lemma 1], for all z ∈ Rd we have

limn→∞ n−(d−1)/dγWn(z) = γ(z). The dominated convergence theorem yields (1.27) as

desired,

lim
n→∞

n−(d−1)/dVarĤξ
n(P) = −

∫
Rd

c(0, z)γ(z)dz. �

4.3 First proof of the central limit theorem

4.3.1 The method of cumulants

We use the method of cumulants to prove Theorem 1.12. Recall that we write ⟨f, µ⟩
for

∫
fdµ. The guiding principle is that as soon as the kth order cumulants Ck

n for

(Var⟨f, µξ
n⟩)−1/2⟨f, µn⟩ vanish as n→ ∞ for k large, then

(Var⟨f, µξ
n⟩)−1/2⟨f, µn⟩

D−→ N(0, 1). (4.13)

We establish the vanishing of Ck
n for k large by showing that the kth order cumulant

for ⟨f, µn⟩ is of order O(n), k ≥ 2, and then use the assumption Var⟨f, µξ
n⟩ = Ω(nν).

Our approach. The O(n) growth of the kth order cumulant for ⟨f, µn⟩ is established

by controlling the growth of cumulant measures for µn, which are defined analogously

to moment measures. We first prove a general result (see (4.18) and (4.19) below)

showing that integrals of cumulant measures for µξ
n can be controlled by a finite sum

of integrals of so-called (S, T ) semi-cluster measures, where (S, T ) is a generic partition

of {1, ..., k}. This result holds for any µξ
n of the form (1.3) and depends neither on

choice of input P nor on the localization properties of ξ. Semi-cluster measures for µξ
n

have the appealing property that they involve differences of measures on product spaces
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with product measures, and thus their Radon-Nikodym derivatives involve differences

of mixed moment functions.

In general, bounds on cumulant measures in terms of semi-cluster measures are not

terribly informative. However, when ξ satisfies moment bounds and strong clustering

(1.17), then the situation changes. First, integrals of (S, T ) semi-cluster measures on

properly chosen subsets W (S, T ) of W k
n , with (S, T ) ranging over partitions of {1, ..., k},

exhibit O(n) growth. This is because the subsets W (S, T ) are chosen so that the

Radon-Nikodym derivative of the (S, T ) semi-cluster measure, being a difference of

mixed moment functions, may be controlled by the strong clustering bound (1.17) for

points (v1, ..., vk) ∈ W (S, T ). Second, it conveniently happens that W k
n is precisely the

union of W (S, T ), as (S, T ) ranges over partitions of {1, ..., k}. Therefore, combining

these observations, we see that every cumulant measure on W k
n is a sum ranging over

partitions (S, T ) of {1, ..., k} of linear combinations of (S, T ) semi-cluster measures on

W (S, T ), each of which exhibits O(n) growth.

Thus cumulant measures exhibit growth proportional to the volume of the window

Wn carrying Pn, namely

⟨fk, ckn⟩ = O(n), f ∈ B(W1), (4.14)

The remainder of Section 4.3 provides the details justifying (4.14).

Remarks on related work. (a) The estimate (4.14) first appeared in [7, Lemma 5.3],

but the work of [21] (and to some extent [72]) was the first to rigorously control the

growth of ckn on the diagonal subspaces, where two or more coordinates coincide. In fact

Section 3 of [21] shows the estimate ⟨fk, ckn⟩ ≤ Lk(k!)βn, where L and β are constants

independent of n and k. We assert that the clustering and cumulant arguments behind

(4.14) are not restricted to Poisson input, but depend only on clustering (1.17) and

moment bounds (1.16). Since these arguments are not well known we present them

in a way which is hopefully accessible, reasonably self-contained, and rigorous. Since

we do not care about the constants in (4.14), we shall suitably adopt the arguments

of [7, Lemma 5.3] and [72], taking the the opportunity to make those arguments more

rigorous. Indeed those arguments did not adequately explain clustering on diagonal

subspaces.

(b) The breakthrough paper [51] shows that the kth order cumulant for the linear

statistic (Var⟨f,
∑

x δn−1/dx⟩)−1/2⟨f,
∑

x δn−1/dx⟩ vanishes as n → ∞ and k large. This

approach is extended to linear statistics of random measures µξ
n in Section 4.4 thereby

giving a second proof of the central limit theorem.
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4.3.2 Properties of cumulant and semi-cluster measures

Moments and cumulants. For a random variable Y with all finite moments, ex-

panding the logarithm of the Laplace transform (in the negative domain) in a formal

power series gives

logE(etY ) = log
(
1 +

∞∑
k=1

Mkt
k

k!

)
=

∞∑
k=1

Skt
k

k!
, (4.15)

where Mk = E(Y k) is the k th moment of Y and Sk = Sk(Y ) denotes the k th cumulant

of Y . Both series in (4.15) can be considered as formal ones and no additional condition

(on exponential moments of Y ) are required for the cumulants to exist. Explicit relations

between cumulants and moments can established by formal manipulations of these

series, see e.g. [17, Lemma 5.2.VI]. In particular

Sk =
∑

γ∈Π[k]

(−1)|γ|−1(|γ| − 1)!

|γ|∏
i=1

M |γ(i)| , (4.16)

where Π[k] is the set of all unordered partitions of the set {1, ..., k}, and for a partition

γ = {γ(1), . . . , γ(l)} ∈ Π[k], |γ| = l denotes the number of its elements, while |γ(i)|
the number of elements of subset γ(i). (Although elements of Π[k] are unordered

partitions, we need to adopt some convention for the labeling of their elements: let

γ(1), . . . , γ(l) correspond to the ordering of the smallest elements in the partition sets.)

In view of (4.16) the existence of the kth cumulant Sk follows from the finiteness of the

moment Mk.

Moment measures. Given a random measure µ on Rd, the k-th moment measure

Mk = Mk(µ) is the one (Sect 5.4 and Sect 9.5 of [17]) satisfying

⟨f1⊗...⊗fk,Mk(µ)⟩ = E[⟨f1, µ⟩...⟨fk, µ⟩] = E[
∑
x∈Pn

f1(
x

n1/d
)ξ(x,Pn)···

∑
x∈Pn

fk(
x

n1/d
)ξ(x,Pn)]

for all f1, ..., fk ∈ B(Rd), where f1 ⊗ ... ⊗ fk : (Rd)k → R is given by f1 ⊗ ... ⊗
fk(x1, ..., xk) = f1(x1)...fk(xk).

As on p. 143 of [17], when µ is a counting measure, Mk may be expressed as a sum

of factorial moment measures M[j], 1 ≤ j ≤ k, (as defined on p. 133 of [17]):

Mk(d(x1 × · · · × xk)) =
k∑

j=1

∑
V

M[j](Π
j
i=1dyi(V))δ(V),

where, to quote from [17], the inner sum is taken over all partitions V of the k coor-

dinates into j non empty disjoint subsets, the yi(V), 1 ≤ i ≤ j, constitute an arbitrary
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selection of one coordinate from each subset, and δ(V) is a δ function which equals zero

unless equality holds among the coordinates in each non-empty subset of V .

When µ is the atomic measure µξ
n, we write Mk

n for Mk(µξ
n). By the Campbell

formula, considering repetitions in the k-fold product of Rd, and putting ỹi := yi(V)

and V := (V1, ...,Vj) we have that

⟨f ⊗ ...⊗ f,Mk
n⟩ = E[⟨f, µξ

n⟩...⟨f, µξ
n⟩]

=
k∑

j=1

∑
V

∫
(Wn)j

Πk
i=1f(

yi
n1/d

)Eỹ1....ỹj [Π
j
i=1ξ

|Vi|(ỹi,Pn)]ρ(j)(ỹ1, ..., ỹj)Π
j
i=1dyi(V)δ(V).

In other words, recalling Lemma 9.5.IV of [17] we get

dMk
n(y1, ..., yk) =

k∑
j=1

∑
V

m(|V1|,...,|Vj |)(ỹ1, ..., ỹj;n)Πj
i=1dyi(V)δ(V). (4.17)

Cumulant measures. The kth cumulant measure ckn := ck(µn) is defined analogously

to the kth moment measure via

⟨f1 ⊗ ...⊗ fk, c
k(µn)⟩ = c(⟨f1, µn⟩...⟨fk, µn⟩)

where c(X1, ..., Xk) denotes the mixed cumulant of the random variables X1, ..., Xk.

The existence of the cumulant measures cln, l = 1, 2, ... follows from the existence

of moment measures in view of the representation (4.16). Thus, we have the following

representation for cumulant measures :

cln =
∑

T1,...,Tp

(−1)p−1(p− 1)!MT1
n · · ·MTp

n ,

where T1, ..., Tp ranges over all unordered partitions of the set 1, ..., l (see p. 30 of [42]).

Henceforth for Ti ⊂ {1, ..., l}, let MTi
n denote a copy of the moment measure M |Ti| on

the product space W Ti . Multiplication denotes the usual product of measures: For

T1, T2 disjoint sets of integers and for measurable B1 ⊂ (Rd)T1 , B2 ⊂ (Rd)T2 we have

MT1
n MT2

n (B1×B2) = MT1
n (B1)M

T2
n (B2). The first cumulant measure coincides with the

expectation measure and the second cumulant measure coincides with the covariance

measure.

Cluster and semi-cluster measures. We show that every cumulant measure ckn is

a linear combination of products of moment and cluster measures. We first recall the

definition of cluster and semi-cluster measures. A cluster measure US,T
n on W S

n ×W T
n
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for non-empty S, T ⊂ {1, 2, ...} is defined by

US,T
n (B ×D) = MS∪T

n (B ×D) −MS
n (B)MT

n (D)

for Borel sets B and D in W S
n and W T

n , respectively, and where multiplication means

product measure.

Let S1, S2 be a partition of S and let T1, T2 be a partition of T . A product of a

cluster measure US1,T1
n on W S1

n ×W T1
n with products of moment measures M

|S2|
n and

M
|T2|
n on W S2

n ×W T2
n is an (S, T ) semi-cluster measure.

For each non-trivial partition (S, T ) of {1, ..., k} the k-th cumulant ckn measure is

represented as

ckn =
∑

(S1,T1),(S2,T2)

α((S1, T1), (S2, T2))U
S1,T1
n M |S2|

n M |T2|
n , (4.18)

where the sum ranges over partitions of {1, ..., k} consisting of pairings (S1, T1), (S2, T2),

where S1, S2 ⊂ S and T1, T2 ⊂ T , where S1 and T1 are non-empty, and where

α((S1, T1), (S2, T2)) are integer valued pre-factors. In other words, for any non-trivial

partition (S, T ) of {1, ..., k}, ckn is a linear combination of (S, T ) semi-cluster measures.

We prove this exactly as in the proof of Lemma 5.1 of [7], as that proof involves only

combinatorics and does not depend on the nature of the input. For an alternate proof,

with good growth bounds on the integer pre-factors α((S1, T1), (S2, T2)), we refer to

Lemma 3.2 of [21].

Let Ξ(k) be the collection of partitions of {1, ..., k} into two subsets S and T . If W k
n

may be expressed as the union of sets W (S, T ), (S, T ) ∈ Ξ(k), then

|⟨fk, ckn⟩| ≤
∑

(S,T )∈Ξ(k)

∫
W (S,T )

|f(v1)...f(vk)||dckn(v1, ..., vk)| (4.19)

≤ ||f ||k∞
∑

(S,T )∈Ξ(k)

∑
(S1,T1),(S2,T2)

α((S1, T1), (S2, T2))

∫
W (S,T )

d(US1,T1
n M |S2|

n M |T2|
n )(v1, ..., vk),

where the last inequality follows by (4.18). As noted at the outset, this bound is valid

for any f ∈ B(Rd) and any measure µξ
n of the form (1.3).

We now specify the collection of sets W (S, T ), (S, T ) ∈ Ξ(k), to be used in all that

follows. Given v := (v1, ..., vk) ∈ W k
n , let

Dk(v) := Dk(v1, ..., vk) := max
i≤k

(||v1 − vi|| + ...+ ||vk − vi||)

be the l1 diameter for v. For all such partitions consider the subset W (S, T ) of W S
n ×W T

n

having the property that v ∈ W (S, T ) implies d(vS, vT ) ≥ Dk(v)/k2, where vS and vT

are the projections of v onto W S
n and W T

n , respectively, and where d(vS, vT ) is the
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minimal Euclidean distance between pairs of points from vS and vT .

It is easy to see that for every v := (v1, ..., vk) ∈ W k
n , there is a partition (S, T )

of {1, ..., k} such that d(vS, vT ) ≥ Dk(v)/k2. If this were not the case then given v :=

(v1, ..., vk), the distance between any two components of v must be strictly less than

Dk(v)/k2 and we would get maxi≤k

∑k
j=1 ||vi − vj|| ≤ (k − 1)kDk/k

2.

This would contradict the definition of Dk(v). Thus W k
n is the union of sets

W (S, T ), (S, T ) ∈ Ξ(k), as desired. We next describe the behavior of the differen-

tial d(US1,T1
n M

|S2|
n M

|T2|
n ) on W (S, T ).

Semi-cluster measures on W (S, T ). Next, given S1 ⊂ S and T1 ⊂ T , notice that

d(vS1 , vT1) ≥ d(vS, vT ) where vS1 denotes the projection of vS onto W S1
n and vT1 denotes

the projection of vT onto W T1
n . Let Π(S1, T1) be the partitions of S1 into j1 sets

V1, ...,Vj1 , with 1 ≤ j1 ≤ |S1|, and the partitions of T1 into j2 sets Vj1+1, ...,Vj1+j2 , with

1 ≤ j2 ≤ |T1|. Thus an element of Π(S1, T1) is a partition of S1 ∪ T1.
If a partition V of S1 ∪ T1 does not belong to Π(S1, T1), then there is a partition

element of V containing points in S1 and T1 and so δ(V) = 0 on the set W (S, T ).

Thus we make the crucial observation that, on the subset W (S, T ) of W k
n the differ-

ential d(MS1∪T1
n ) collapses into a sum over partitions in Π(S1, T1). Thus d(MS1∪T1

n )

and d(MS1
n MT1

n ) both involve sums of measures on common diagonal subspaces, made

precise as follows.

Lemma 4.2. On the set W (S, T ) we have

d(US1,T1
n ) =

|S1|∑
j1=1

|T1|∑
j2=1

∑
V∈Π(S1,T1)

[....]Πj1+j2
i=1 dyi(V)δ(V) (4.20)

where

[....] := m(|V1|,...,|Vj1
|,|Vj1+1|,...,|Vj1+j2

|)(ỹ1, ...., ỹj1 ỹj1+1, ...ỹj1+j2 ;n)

−m(|V1|,...,|Vj1
|)(ỹ1, ...., ỹj1 ;n)m(|Vj1+1|,...,|Vj1+j2

|)(ỹj1+1, ...ỹj1+j2 ;n).

The representation of M
|S2|
n and M

|T2|
n follows from (4.17), that is to say

dM |S2|
n =

|S2|∑
j3=1

∑
V∈Π(S2)

m(|V1|,...,|Vj3
|)(ỹ1, ..., ỹj3 ;n)Πj3

i=1dyi(V)δ(V), (4.21)

where Π(S2) runs over partitions of S2 into j3 sets, 1 ≤ j3 ≤ |S2|. Similarly

dM |T2|
n =

|T2|∑
j4=1

∑
V∈Π(T2)

m(|V1|,...,|Vj4
|)(ỹ1, ..., ỹj4 ;n)Πj4

i=1dyi(V)δ(V), (4.22)

where Π(T2) runs over partitions of T2 into j4 sets, 1 ≤ j4 ≤ |T2|.
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4.3.3 Strong clustering and semi-cluster measures

The previous section established properties of semi-cluster and cumulant measures valid

for any µξ
n of the form (1.3). When ξ satisfies strong clustering (1.17) and moment

bounds, we now assert that each integral in (4.19) is O(n).

Lemma 4.3. Assume ξ satisfies strong clustering (1.17) and moment bounds for all

p ≥ 1. For each partition element (S, T ) of Ξ(k) we have∫
W (S,T )⊂WS

n ×WT
n

|d(US1,T1
n M |S2|

n M |T2|
n )| = O(n). (4.23)

Proof. The differential d(US1,T1
n M

|S2|
n M

|T2|
n ) is a sum

|S1|∑
j1=1

|T1|∑
j2=1

|S2|∑
j3=1

|T2|∑
j4=1

[...][...][...]

of products of three factors, one factor coming from each of the summands in (4.20)-

(4.22). By Theorem 1.10, on the set W (S, T ) the factor arising from (4.20) is bounded

in absolute value by

C̃kϕ̃(c̃kDk(y)/k2).

By the moment bound (1.16) the two remaining factors arising from summands in

(4.21)- (4.22) are bounded by a constant depending only on k, say M ′(k).

Thus we have∫
W (S,T )

|d(US1,T1
n M |S2|

n M |T2|
n )| ≤ C̃k(M ′(k))2

k∑
j=1

∑
V

∫
W (S,T )

ϕ̃(c̃kDk(y)/k2)Πj
i=1dyi(V)δ(V)||

≤ C̃k(M ′(k))2
k∑

j=1

∑
V

∫
(Wn)j

ϕ̃(c̃kDk(y)/k2)Πj
i=1dyi(V)δ(V).

Here V runs over all partitions of the k coordinates into j non-empty disjoint subsets.

We assert that all summands are O(n). We show this when j = k, as the proof for the

summands j ∈ {1, ..., k − 1} is the same. We bound∫
y1∈Wn

...

∫
yk∈Wn

ϕ̃(c̃kDk(y)/k2)dy1...dyk

=

∫
y1∈Wn

∫
w2∈Wn−y1

...

∫
wk∈Wn−y1

ϕ̃(c̃kDk(0, w2, ..., wk)/k2)dy1dw2...dwk.
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Now Dk(0, w2, ..., wk) ≥
∑k

i=2 ||wi|| and so letting c̃′k := c̃k/k
2 gives∫

y1∈Wn

...

∫
yk∈Wn

ϕ̃(c̃kDk(y)/k2)dy1...dyk

≤ n

∫
w2∈Rd

...

∫
wk∈Rd

ϕ̃(c̃′k

k∑
i=2

||wi||)dw2...dwk

≤ n

(∫
Rd

(ϕ̃(c̃′k||w||))1/kdw

)k−1

= O(n),

where the last inequality follows since ϕ̃ decreasing implies

ϕ̃(c̃′k

k∑
i=2

||wi||) ≤ (Πk
i=2ϕ̃(c̃′k||wi||))1/k.

We bound the other summands for j ∈ {1, ..., k − 1} in a similar manner, completing

the proof of Lemma 4.3. �

4.3.4 Proof of Theorem 1.12

By the bound (4.19) and Lemma 4.3 we obtain (4.14). Letting Ck
n be the kth cumulant

for (Var⟨f, µξ
n⟩)−1/2⟨f, µξ

n⟩, we obtain C1
n = 0, C2

n = 1, and for all k = 3, 4, ....

Ck
n = O(n(Var⟨f, µξ

n⟩)−k/2).

Since Var⟨f, µξ
n⟩ = Ω(nν) by assumption, it follows that if k ∈ (2/ν,∞), then the

kth cumulant tends to zero as n → ∞. By a classical result of Marcinkiewicz (see e.g.

[68, Lemma 3]), we get that all cumulants Ck
n, k ≥ 3, converge to zero as n→ ∞. This

gives (4.13) as desired and completes the proof of Theorem 1.12. �

4.4 Second proof of the central limit theorem

We shall now give a second proof of the central limit theorem which we believe is of

independent interest. Even though this proof is also based on the cumulant method as

outlined in Section 4.3.1, we shall bound the cumulants using different ideas as indicated

in Remark (b) in Section 4.3.1. Though much of this proof can be read independently

of the proof in Section 4.3, we repeatedly use the definition of moments and cumulants

from Section 4.3.2.

Our approach. We shall adapt the approach in [51, Sec. 4] replacing PGEF by

µξ
n, which is a purely atomic measure, and considering its linear statistic µξ

n(f). Our

mixed moment functions play the same role as the k-point correlation functions of the
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point process, in the sense that they are densities of the moment measures of µξ
n when

arguments are all distinct. Some care is required to take properly into account repeated

arguments, when these functions no longer simply ‘collapse’ to appropriate lower di-

mensional ones, but change their structure due to corresponding Palm conditioning of

the mass attached to the repeated points. This is captured by our generalized mixed

moments at (1.5).

4.4.1 Ursell functions of a purely atomic measure

Recall the definition of the generalized mixed moment functions at (1.5):

m(k1,...,kp)(x1, . . . , xp;n) := Ex1,...,xp

(
(ξ(x1,Pn))k1 . . . (ξ(xp,Pn))kp

)
ρ(p)(x1, . . . , xp).

We will drop dependence on n, i.e., m(k1,...,kp)(x1, . . . , xp;n) = m(k1,...,kp)(x1, . . . , xp)

unless asymptotics in n is considered.

Inspired by the approach in [8, Section 2] we now introduce truncated mixed mo-

ment functions. Define truncated mixed moment (Ursell) functions m
(k1,...,kp)
⊤ by taking

m
(k)
⊤ (x) := m(k)(x) for all k ∈ N and inductively

m
(k1,...,kp)
⊤ (x1, . . . , xp) := m(k1,...,kp)(x1, . . . , xp) −

∑
γ∈Π[p]
|γ|>1

|γ|∏
i=1

m
(kj :j∈γ(i))
⊤ (xj : j ∈ γ(i)) .

(4.24)

for distinct x1, . . . , xp ∈ Wn and all integers k1, . . . , kp, p ≥ 1, and (implicitly) n ≤
∞. It is straightforward to prove that these functions satisfy the following relations.

They extend the known relations for point processes, where m(k1,...,kp)(x1, . . . , xp) =

ρ(p)(x1, . . . , xp) depend only on p, but we were unable to find them in the literature

for purely atomic random measure. Assuming 1 ∈ γ(1) in (4.24) and summing over

partitions of {1, . . . , p} \ γ(1), we get the following relation :

m(k1,...,kp)(x1, . . . , xp) = m
(k1,...,kp)
⊤ (x1, . . . , xp)+∑

I${1,...,p}
1∈I

m
(kj :j∈I)
⊤ (xj : j ∈ I)m(kj :j∈Ic)(xj : j ∈ Ic) , (4.25)

where Ic := {1, . . . , p} \ I. Using (4.25), by induction with respect to p, one obtains

the direct relation to the mixed moment functions

m
(k1,...,kp)
⊤ (x1, . . . , xp) =

∑
γ∈Π[p]

(−1)|γ|−1(|γ| − 1)!

|γ|∏
i=1

m(kj :j∈γ(i))(xj : j ∈ γ(i)) . (4.26)

This extends the relation [51, (27)], valid for point processes. We say that a partition

γ = {γ(1), . . . , γ(l)} ∈ Π(p) refines partition σ = {σ(1), . . . , σ(l1)} ∈ Π(p) if for all
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i ∈ {1, . . . , l}, γ(i) ⊂ σ(j) for some j ∈ {1, . . . , l1}. Otherwise, the partition γ is said

to mix partition σ. Now using (4.24), we get for any I $ {1, . . . , p}

m(kj :j∈I)(xj : j ∈ I)m(kj :j∈Ic)(xj : j ∈ Ic) =
∑
γ∈Π[p]

γ refines {I,Ic}

|γ|∏
i=1

m
(kj :j∈γ(i))
⊤ (xj : j ∈ γ(i)) ,

(4.27)

and therefore, again in view of (4.24)

m
(k1,...,kp)
⊤ (x1, . . . , xp) = m(k1,...,kp)(x1, . . . , xp) −m(kj :j∈I)(xj : j ∈ I)m(kj :j∈Ic)(xj : j ∈ Ic)

+
∑

γ∈Π[p],|γ|>1
γ mixes {I,Ic}

|γ|∏
i=1

m
(kj :j∈γ(i))
⊤ (xj : j ∈ γ(i)) . (4.28)

This extends the relation [51, last displayed formula in the proof of Claim 4.1] valid for

point processes.

4.4.2 Clustering and bounds for Ursell functions

We show now that clustering of the generalized mixed moments (1.17) implies some

bounds on the Ursell functions. Since m(k1,...,kp)(x1, . . . , xp;n) is invariant with respect

to any joint permutation of its arguments (k1, . . . , kp) and (x1, . . . , xp), clustering (1.17)

may be rephrased as follows : There exist a fast decreasing function ϕ̃ and constants

C̃k, c̃k, such that for any collection of positive integers k1, . . . , kp, p ≥ 2, satisfying

k1 + . . . + kp = k, for any nonempty, proper subset I $ {1, . . . , p}, for all n ≤ ∞ and

all configurations x1, . . . , xp ∈ Wn of distinct points we have∣∣∣m(k1,...,kp)(x1, . . . , xp;n) −m(kj :j∈I)(xj : j ∈ I;n)m(kj :j∈Ic)(xj : j ∈ Ic;n)
∣∣∣ ≤ C̃kϕ̃(c̃ks) ,

(4.29)

where s := d
(
{xj : j ∈ I}, {xj : j ∈ Ic}

)
.

Now we consider the bounds of Ursell functions of clustering measures. Following

the idea of [51, Claim 4.1] one proves that clustering (1.17) and the p-moment condition

(1.16) imply that there exists a fast decreasing function ϕ̃⊤ and constants C̃⊤
k , c̃⊤k , such

that for any collection of positive integers k1, . . . , kp, p ≥ 2, satisfying k1 + . . .+ kp = k,

for all n ≤ ∞ and all configurations x1, . . . , xp ∈ Wn of distinct points we have

|m(k1,...,kp)
⊤ (x1, . . . , xp;n)| ≤ C̃⊤

k ϕ̃⊤
(
c⊤k diam(x1, . . . , xp)

)
, (4.30)

where diam(x1, . . . , xp) := maxi,j=1...p(|xi − xj|). The proof uses the semi-cluster rep-

resentation (4.28), clustering (1.17), together with the fact that there exist constants

c⊤p (depending on the dimension d) such that for each configuration x1, . . . , xp ∈ Wn ,

there exists a partition {I, Ic} of {1, . . . , p} such that d({xj : j ∈ I}, {xj : j ∈ Ic}) ≥

58



Geometric statistics of clustering processes

c̃⊤p diam(x1, . . . , xp).

Next, inequality (4.30) allows one to bound integrals

sup
n≤∞

sup
x1∈Wn

sup
k1+...+kp=k

ki>0

∫
(Wn)p−1

|m(k1,...,kp)
⊤ (x1, . . . , xp;n)| dx2 · · · dxp <∞. (4.31)

Indeed, for a fix point x1 ∈ Wn, we split (Wn)p−1 into disjoint sets:

G0 := {(x2, . . . , xp) ∈ (Wn)p−1 : diam(x1, . . . , xp) ≤ 1}
Gl := {(x2, . . . , xp) ∈ (Wn)p−1 : 2l−1 < diam(x1, . . . , xp) ≤ 2l}, l ≥ 1

and use estimate (4.30) to bound the integral on the left-hand side of ( 4.31) by

C̃⊤
k + C̃⊤

k

∞∑
l=1

2dl(k−1)ϕ̃⊤(c̃⊤k 2l−1) <∞

since ϕ̃⊤ is fast decreasing; cf. [51, Claim 4.2].

4.4.3 Proof of Theorem 1.12

The cumulant of order one is equal to the expectation and hence disappears for the

considered (centered) random variable µξ
n(f). The cumulant of order 2 is equal to the

variance and hence equal to 1 in our case. For k ≥ 2, note the following relation between

the normalized and the unnormalized cumulants :

Sk((Var µξ
n(f))−1/2µξ

n(f)) = (Var µξ
n(f))−k/2 × Sk(µξ

n(f)). (4.32)

We establish the vanishing of (4.32) for k large by showing that the kth order cumulant

Sk(µξ
n(f) is of order O(n), k ≥ 2, and then use assumption (1.22), i.e., Var⟨f, µξ

n⟩ =

Ω(nν). We have

Mk
n := E(⟨f, µξ

n⟩)k = E
( ∑
xi∈Pn

fn(xi)ξ(xi,Pn)
)k

,

where fn(·) = f(·/n1/d). Considering appropriately the repetitions of points xi in the

k th product of the sum and using the Campbell’s formula one obtains

Mk
n =

∑
σ∈Π[k]

⟨
|σ|⊗
i=1

f |σ(i)|
n m(σ), λ|σ|n ⟩ , (4.33)

where
⊗

denotes the tensor product of functions

(

p⊗
i=1

fkj
n )(x1, . . . , xp) =

p∏
i=1

(fn)kj(xj) ,

59



B laszczyszyn, Yogeshwaran and Yukich

m(σ)(x1, . . . , x|σ|;n) := m(|σ(1)|,...,|σ(|σ|)|)(x1, . . . , x|σ|;n)

and λln denotes the Lebesgue measure on (Wn)l. Using the above representation

and (4.16) the kth cumulant Sk(µξ
n(f)) can be expressed as follows

Sk(µξ
n(f)) =

∑
γ∈Π[k]

(−1)|γ|−1(|γ| − 1)!
∑
σ∈Π[k]

σ refines γ

|γ|∏
i=1

⟨
|γ(i)/σ|⊗
j=1

f (γ(i)/σ)(j)
n m(γ(i)/σ), λ|γ(i)/σ|n ⟩

=
∑

σ∈Π[k]

∑
γ∈Π[k]

σ refines γ

(−1)|γ|−1(|γ| − 1)!

|γ|∏
i=1

⟨
|γ(i)/σ|⊗
j=1

f (γ(i)/σ)(j)
n m(γ(i)/σ), λ|γ(i)/σ|n ⟩ ,

(4.34)

where γ(i)/σ is the partition of γ(i) induced by σ. Note that for any partition σ ∈ Π[k],

with |σ(j)| = kj, j = 1, . . . , |σ| = p, the inner sum in (4.34) can be rewritten as follows:

∑
γ∈Π[p]

(−1)|γ|−1(|γ| − 1)!

|γ|∏
i=1

⟨
⊗
j∈γ(i)

fkj
n m

(kj :j∈γ(i)), λ|γ(i)|n ⟩ = ⟨
p⊗

j=1

fkj
n m

(k1,...,kp)
⊤ , λpn⟩ , (4.35)

where the equality is due to (4.26). Consequently

Sk(µξ
n(f)) =

∑
σ∈Π[k]

⟨
|σ|⊗
j=1

f |σ(j)|
n m

(|σ(1)|,...,|σ(|σ|)|)
⊤ , λ|σ|n ⟩ , (4.36)

which extends the relation [51, Claim 4.3] valid for point processes. This formula,

which expresses the kth cumulant in terms of truncated mixed moment functions, is

the counterpart to the standard formula (4.33) expressing kth moments in terms of

correlation functions. Now, using (4.31) and denoting the supremum therein by Ĉk, we

have that

|⟨
p⊗

j=1

fkj
n m

(k1,...,kp)
⊤ , λpn⟩ | ≤

∫
W p

n

|
p⊗

j=1

fkj
n ||m(k1,...,kp)

⊤ (x1, . . . , xp)|dx1 . . . dxp

≤ ∥f∥k∞
∫
Wn

dx1

∫
W p−1

n

|m(k1,...,kp)
⊤ (x1, . . . , xp)|dx2 . . . dxp

≤ ∥f∥k∞ĈkVol(Wn).

So, the above bound along with (4.34) and(4.35) gives us that Sk(µξ
n(f)) = O(n) for all

k ≥ 2. Thus, using the variance lower bound condition (1.22) and the relation (4.32),

we get for large enough k, that Sk((Varµξ
n(f))−1/2µξ

n(f)) → 0 as n → ∞. Now, as

discussed in (4.13), this suffices to guarantee normal convergence. �

60



Geometric statistics of clustering processes

5 Appendix

5.1 Facts needed in the proof of clustering of mixed moments

The following facts regarding U-statistics are used in the proof of Lemma 3.2.

Lemma 5.1. Let f, g be two real valued, symmetric functions defined on (Rd)k and (Rd)l

respectively. Let F := 1
k!

∑
x∈X (k) f(x) and G := 1

l!

∑
x′∈X (l) g(x′) be the corresponding

U-statistics of order k and l respectively, on the input X ⊂ Rd. Then we have:

(i) The product F G is a sum of U-statistics of order not greater than k + l.

(ii) Let A be a fixed, finite subset of Rd. The statistic FA := 1/k!
∑

x∈(X∪A)(k) f(x) is a

sum of U-statistics of X of order not greater than k.

Proof. The first statement follows from the representation

F G =
k+l∑

m=max(k,l)

1

m!

∑
z∈X (m)

hm(z) ,

where

hm(z1, . . . , zm) :=
1

k!l!

∑
π∈Sm

f(zπ(1), zπ(2), . . . , zπ(k))g(zπ(m−l+1), zπ(m−l+2) . . . , zπ(m)) ,

with Sm denoting the permutation group of the first m integers. For the second state-

ment observe that

FA =

min(|A|,k)∑
m=0

∑
a∈A(m)

1

m!

∑
z∈X (k−m)

hk−m,a(z) ,

where

hk−m,a(z1, . . . , zk−m) :=
1

m!(m− k)!

∑
π∈Sk−m

f(a1, . . . , am, zπ(1), . . . , zπ(k−m)) . �

The following fact regarding the radius of stabilization is used in the proof of (1.17)

in Section 3.2.

Lemma 5.2. Let ξ be a score function on a locally finite input X and Rξ its radius of

stabilization. For a given t > 0 consider score function ξ̃(x,X ) := ξ(x,X )1[Rξ(x,X ) ≤
t]. Then the radius of stabilization Rξ̃ of ξ̃ is bounded by t: Rξ̃(x,X ) ≤ t for any locally

finite input X and x ∈ X .
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Proof. Let X ,A be locally finite subsets of Rd with x ∈ X . We have

ξ̃(x, (X ∩Bt(x)) ∪ (A ∩Bc
t (x)))

= ξ(x, (X ∩Bt(x)) ∪ (A ∩Bc
t (x)))1

[
Rξ(x, (X ∩Bt(x)) ∪ (A ∩ Bc

t (x))) ≤ t
]

= ξ(x,X ∩Bt(x))1
[
Rξ(x, (X ∩Bt(x)) ∪ (A ∩Bc

t (x))) ≤ t
]
,

where the last equality follows from the definition of Rξ. Notice

1
[
Rξ(x, (X ∩Bt(x)) ∪ (A ∩Bc

t (x))) ≤ t
]

= 1
[
Rξ(x,X ∩Bt(x)) ≤ t

]
and so ξ̃(x, (X ∩Bt(x)) ∪ (A ∩Bc

t (x))) = ξ̃(x,X ∩Bt(x)), which was to be shown. �

5.2 Determinantal and permanental point process lemmas

We collect various facts about determinantal and permanental point processes needed

in our approach. These facts, of independent interest, illustrate the tractability of these

point processes. First,we show that if determinantal and permanental point processes

have a kernel K decreasing fast enough, then they generate admissible clustering point

processes satisfying clustering conditions (1.13) and (1.7) respectively. We are indebted

to Manjunath Krishnapur, who sketched to us the proof of the next result.

Lemma 5.3. Let P be a stationary determinantal point process on Rd with a kernel

satisfying K(x, y) ≤ ω(|x− y|), where ω is at (2.7). Then

|ρ(n)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)| ≤ n1+n

2ω(s)∥K∥n−1, (5.1)

where ∥K∥ := supx,y∈Rd |K(x, y)|, s is at (1.2), and n = p+ q.

Proof. Define the matrices K0 := ((K(xi, xj))1≤i,j≤n, K1 := ((K(xi, xj))1≤i,j≤p, and

K2 := ((K(xi, xj))p+1≤i,j≤n. Let L be the block diagonal matrix with blocks K1, K2.

We define ∥K0∥ := sup1≤i,j≤n |K0(xi, xj)| and similarly for the other matrices. Then

|ρ(n)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)| = | det(K0) − det(K1) det(K2)|

= | det(K0) − det(L)|
≤ n1+n

2 ∥K0 − L∥∥K0∥n−1 (5.2)

≤ n1+n
2ω(s)∥K∥n−1,

where the inequality follows by [1, (3.4.5)]. This gives (5.1). �
As a first step to prove the analogue of Lemma 5.3 for permanental point processes,

we prove an analogue of (5.2). We follow verbatim the proof of (5.2) as given in [1,

(3.4.5)]. Instead of using Hadamard’s inequality for determinants as in [1], we use the

following version of Hadamard’s inequality for permanents ([16, Theorem 1.1]): For any
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column vectors v1, . . . , vn of length n with complex entries, it holds that

|per([v1, . . . , vn])| ≤ n!

n
n
2

n∏
i=1

√
v̄iTvi ≤ n!

n∏
i=1

∥vi∥,

where ∥vi∥ is the l∞-norm of vi viewed as an n-dimensional complex vector.

Lemma 5.4. Let n ∈ N. For any two kernels K and L, we have

|per(K) − per(L)| ≤ nn!∥K − L∥max{∥K∥, ∥L∥}n−1.

Now, in the proof of Lemma 5.3, using the above estimate instead of (5.2), we

establish weak clustering (1.7) of permanental point processes with fast decreasing

kernels K.

Lemma 5.5. Let P be a stationary permanental point process on Rd with a fast-

decreasing kernel satisfying K(x, y) ≤ ω(|x− y|) where ω is at (2.7). Then

|ρ(n)(x1, . . . , xp+q) − ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q)| ≤ nn!ω(s)∥K∥n−1,

where s is at (1.2) and n = p+ q.

Recall that clustering of α-determinantal point processes, |α| = 1/m,m ∈ N, relies

heavily on Proposition 2.3, whose proof we now give.

Proof of Proposition 2.3. We shall prove the proposition in the case m = 2; the general

case follows in the same fashion albeit with considerably more notation. Let x1, . . . , xp+q

be distinct points in Rd with s at (1.2) as usual. For a subset S ⊂ [p+q], we abbreviate

ρ|S|(xj : j ∈ S) by ρ(S). Using (2.17) we have that

ρ
(p+q)
0 ([p+ q]) =

∑
S1⊔S2=[p+q]

ρ(S1)ρ(S2) = 2ρ([p+ q]) + 2ρ([p])ρ([q])

+
∑

S1⊔S2=[p+q],S2∩[p]=∅,Si ̸=∅

ρ(S1)ρ(S2) +
∑

S1⊔S2=[p+q],S1∩[p]=∅,Si ̸=∅

ρ(S1)ρ(S2)

+
∑

S1⊔S2=[p+q],S2∩[q]=∅,Si ̸=∅

ρ(S1)ρ(S2) +
∑

S1⊔S2=[p+q],S1∩[q]=∅,Si ̸=∅

ρ(S1)ρ(S2)

+
∑

S1⊔S2=[p+q],Si∩[p]̸=∅,Si∩[q]̸=∅

ρ(S1)ρ(S2)
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= 2ρ([p+ q]) + 2ρ([p])ρ([q]) +
∑

S21⊔S22=[q],Sij ̸=∅

(ρ(S21 ∪ [p])ρ(S22) + ρ(S22 ∪ [p])ρ(S21))

+
∑

S11⊔S12=[p],Sij ̸=∅

(ρ(S11 ∪ [q])ρ(S12) + ρ(S12 ∪ [q])ρ(S11))

+
∑

S21⊔S22=[q],S11⊔S12=[p],Sij ̸=∅

ρ(S11 ∪ S21)ρ(S12 ∪ S22).

On the other hand the product of correlation functions is

ρ0([p])ρ0([q]) = (
∑

S11⊔S12=[p]

ρ(S11)ρ(S12))(
∑

S21⊔S22=[q]

ρ(S21)ρ(S22))

= (2ρ([p]) +
∑

S11⊔S12=[p],Sij ̸=∅

ρ(S11)ρ(S12))

×(2ρ([q]) +
∑

S21⊔S22=[q],Sij ̸=∅

ρ(S21)ρ(S22))

= 4ρ([p])ρ([q])

+2
∑

S21⊔S22=[q],Sij ̸=∅

ρ(S21)ρ([p])ρ(S22) + 2
∑

S11⊔S12=[p],Sij ̸=∅

ρ(S11)ρ([q])ρ(S12)

+
∑

S21⊔S22=[q],S11⊔S12=[p],Sij ̸=∅

ρ(S11)ρ(S21)ρ(S12)ρ(S22).

Now, we shall match the two summations term-wise and bound the differences using

correlation bound (1.8) and clustering condition (1.7):

|ρ0([p+ q]) − ρ0([p])ρ0([q])| ≤ 2|ρ([p+ q]) − ρ([p])ρ([q])|
+

∑
S21⊔S22=[q],Sij ̸=∅

|ρ(S21 ∪ [p])ρ(S22) − ρ(S21)ρ([p])ρ(S22)|

+
∑

S21⊔S22=[q],Sij ̸=∅

|ρ(S22 ∪ [p])ρ(S21) − ρ(S21)ρ([p])ρ(S22)|

+
∑

S11⊔S12=[p],Sij ̸=∅

|ρ(S11 ∪ [q])ρ(S12) − ρ(S11)ρ([q])ρ(S12)|

+
∑

S11⊔S12=[p],Sij ̸=∅

|ρ(S12 ∪ [q])ρ(S11) − ρ(S11)ρ([q])ρ(S12)|

+
∑

S21⊔S22=[q],S11⊔S12=[p],Sij ̸=∅

|ρ(S11 ∪ S21)ρ(S12 ∪ S22) − ρ(S11)ρ(S21)ρ(S12)ρ(S22)|

≤ 2Cp+qϕ(cp+qs)κp+q[1 +
∑

S21⊔S22=[q],Sij ̸=∅

1 +
∑

S11⊔S12=[p],Sij ̸=∅

1 +
∑

S21⊔S22=[q],S11⊔S12=[p],Sij ̸=∅

1]

≤ 2κp+qCp+qϕ(cp+qs)
∑

S1⊔S2=[p+q]

1 = 2κp+qCp+qϕ(cp+qs)2
p+q. �
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To bound the radius of stabilization of geometric functionals on a determinantal point

process, we shall need the following estimate of exponential decay of Palm void prob-

ability. Though the proof is inspired by the proof of a similar estimate in [47, Lemma

2], we derive a more general and explicit estimate.

Lemma 5.6. Let P be a stationary determinantal point process on Rd. Then for p, k ∈
N, r > 0, x ∈ Rdp, and y ∈ Rd, we have

P!
x(P(Br(y)) ≤ k) ≤ e(2k+p)/8e−K(0,0)Vol(Br)/8. (5.3)

Proof. Note that we may assume y = 0 without loss of generality. Let x = {x1, . . . , xp}.

For any determinantal point process P (even non-stationary), let Px be the reduced

Palm point process with respect to x ∈ Rd. From (2.11) (see also [67, Theorem 6.5]),

we can explicitly describe the correlation functions of Px. Thus, we have that Px is also

a determinantal point process and its kernel L is given by

L(y1, y2) = K(y1, y2) −
K(y1, x)K(x, y2)

K(x, x)
. (5.4)

The simple inequality
∫
Rd |K(x, y)|2dy ≤ K(x, x) shows that for any bounded Borel

subset B

E!
x(P(B)) =

∫
B

L(y, y)dy

=

∫
B

K(y, y)dy − 1

K(x, x)

∫
B

|K(x, y)|2dy

≥ E(P(B)) − 1.

Now re-iterating the above inequality, we get that for all x ∈ (Rd)(p) and any bounded

Borel subset B

E!
x(P(B)) ≥ E(P(B)) − p. (5.5)

Since determinantal point processes are a sum of independent Bernoulli random vari-

ables [9, Theorem 4.5.3], the Chernoff-Hoeffding bound [46, Theorem 4.5] yields

P!
x(P(B) ≤ E!

x(P(B))/2) ≤ e−E!
x(P(B))/8. (5.6)

Now we return to our stationary determinantal point process P and note that E(P(B)) =

K(0,0)Vol(B). Choose r0 (depending only on p, k) large enough such thatK(0,0)Vol(Br0) =

2k + p. Thus combining (5.5) and (5.6), we have that for r ∈ (r0,∞)

P!
x(P(Br) ≤ k) ≤ P!

x(P(Br) ≤ E!
x(P(B))/2) ≤ e−(K(0,0)Vol(Br)−p)/8.

For r ∈ (0, r0], the definition of r0 shows that the right-hand side of (5.3) is larger than

1 and hence it is a trivial bound. �
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Inequality (5.5) can also be deduced from the stronger coupling result of [54, Prop.

5.10(iv)] for determinantal point processes with a continuous kernel but we have given

an elementary proof. Given Ginibre input, we can improve the exponent in the void

probability bound (5.3). We believe this result to be of independent interest.

This we achieve by generalizing [70, Lemma 6.1] (which treats the case k = 0).

The proof uses again Cauchy’s interlacing theorem to bound the Palm probability of

{P(Br) ≤ k} by a scalar multiple of its stationary probability and then we use repre-

sentation results for the Ginibre process to bound the probability more explicitly.

Lemma 5.7. Let Br := Br(0) ⊂ R2 and let P be the Ginibre point process. Then for

p, k ∈ N and x ∈ R2p,

P!
x(P(Br) ≤ k) ≤ exp{p(k+1)r2}P(P(Br) ≤ k) ≤ kr2k exp{(p(k+1)+k)r2−1

4
r4(1+o(1))}.

(5.7)

We remark that stationarity shows the above bound holds for any radius r ball.

Proof. Again, we shall prove the result for p = 1 and use induction to deduce the

general case. So, let x = x ∈ R2.

Let KBr be the restriction to Br of the integral operator K (generated by kernel K)

corresponding to Ginibre point process and LBr be the restriction to Br of the integral

operator L (generated by kernel L) corresponding to the reduced Palm point process

(also a determinantal point process). Let λi, i = 1, 2, . . . and µi, i = 1, 2, . . . be the

eigenvalues of KBr and LBr in decreasing order respectively.

Then from (5.4) we have that the rank of the integral operator KBr − LBr is one.

Secondly, note that∑
i

µi = Ex(P(Br)) =

∫
Br

L(y, y)dy ≤
∫
Br

K(y, y)dy = E(P(Br)) =
∑
i

λi.

Hence, by a generalisation of Cauchy’s interlacement theorem [18, Theorem 4] combined

with the above inequality, we get that the respective eigenvalues satisfy the interlacing

inequality λi ≥ µi ≥ λi+1 for i = 1, 2, . . ..

Again by [9, Theorem 4.5.3], we have that P (Br)
d
=

∑
i Bernoulli(λi) and under

Palm measure, P (Br)
d
=

∑
i Bernoulli(µi) where both the sums involve independent

Bernoulli random variables. Independence of the Bernoulli random variables gives

Px(P(Br) ≤ k) =
∑

J⊂N,|J |≤k

∏
j∈J

µj

∏
j /∈J

(1 − µj)

≤
∑

J⊂N,|J |≤k

∏
j∈J

λj
∏
j /∈J

(1 − λj+1)
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≤
∑

J⊂N,|J |≤k

∏
j∈J

λj
∏
j /∈J

(1 − λj)
∏

j−1∈J∪{0},j /∈J

(1 − λj)
−1

≤ (1 − λ1)
−k−1

∑
J⊂N,|J |≤k

∏
j∈J

λj
∏
j /∈J

(1 − λj) = (1 − λ1)
−k−1P[P(Br) ≤ k].

The proof of the first inequality in (5.7) for the case p = 1 is complete by noting that

λ1 = P(EXP (1) ≤ r2) (see [9, Theorems 4.7.1 and 4.7.3]), where EXP (1) stands for an

exponential random variable with mean 1. As said before, iteratively the first inequality

in (5.7) can be proven for an arbitrary p. To complete the proof of the second inequality,

we bound P(P(Br) ≤ k) in a manner similar to the proof of [9, Proposition 7.2.1].

Let P∗ := {R2
1, R

2
2, . . . , } = {|X|2 : X ∈ P} be the point process of squared mod-

ulii of the Ginibre point process. Then, from [9, Theorem 4.7.3], it is known that

R2
i

d
= Γ(i, 1) (Γ(i, 1) denotes a gamma random variable with parameters i, 1) and are

independently distributed. We shall need the bound that for all i ≥ 1,

P(R2
i ≥ r2) ≤ e−βr2E(eβR

2
i ) ≤ e−βr2(1 − β)−i,

for some constant β ∈ (0, 1). For i < r2, the bound is optimal for β = 1 − i
r2

. For r,

set r∗ := pr2q, the ceiling of r2. Then,

P(P(Br) ≤ k) = P(♯{i : R2
i ≤ r2} ≤ k) ≤ P(♯{i ≤ r∗ : R2

i ≤ r2} ≤ k)

≤
∑

J⊂[r∗],|J |≤k

∏
i∈J

P(R2
j ≤ r2)

∏
i/∈J

P(R2
j > r2)

≤
∑

J⊂[r∗],|J |≤k

∏
i∈J

er
2

e−βr2(1 − β)−i
∏
i/∈J

e−βr2(1 − β)−i

≤ kr2kekr
2

r∗∏
i=1

e−ar2(1 − β)−i

= kr2kekr
2

e−
1
4
r4(1+o(1)),

where equality follows by substituting the optimal β for each i, as in [9, Section 7.2]. �
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