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This work treats degenerate four-wave mixifigFWM) in noncentrosymmetric materials, taking into full
account the fact that the DFWM signal arises from third-order nonlinear optical effects as well as from two
distinct combinations of second-order effects: second-harmonic generation plus difference frequency genera-
tion and optical rectification plus Pockels effect. Because of these second order “cascaded” contributions, the
DFWM signal becomes dependent on details of the experimental setup that do not normally matter for
centrosymmetric materials, such as the wave vectors of the interacting beams and the pulse duration. The
origin, consequences, and possible applications of these effects are discussed for both the “forward” and the
“phase-conjugation” DFWM configurations. All second-order contributions are described quantitatively by
introducing effective third-order susceptibilities, and their value is discussed using the example of two mate-
rials: ferroelectric KNbQ@ and the organic salt & N-dimethylamino-4-N’-methyl-stilbazolium tosylate.
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In noncentrosymmetric materials, the optical electric fieldliterature is connected to the question of how the induced
can induce a second-order nonlinear polarization that agaisecond-order polarization interacts with an electric field to
interacts with the optical field to create a new nonlinear po-generate an effective third-order polarization. It is possible to
larization that is then proportional to the third power of theidentify two mechanisms for this to happen: directly through
electric field[1-8]. Such a “cascading” of second-order pro- the material polarization, and indirectly through a macro-
cesses can contribute to typical third-order nonlinear opticascopic field that is sometime®ut not alway$ associated
phenomena such as the optical Kerr effect, self-phase moduwvith the material polarization. Referenckl] did not include
lation, soliton formation, and the interaction of different op- the direct mechanism, which lead to a SHG/DFG contribu-
tical waves[9]. Cascaded contributions are important be-tion too large by a factor of the order of the refractive index
cause they entail a new possibility to optimize nonlinearsquared, and to an incorrect description of the OR/EO con-
optical materials for typical third-order applications, and be-tribution. Referencé12] considered both direct and indirect
cause they lead to a sensitivity to experimental parametemmechanisms, but slightly overestimated the magnitude of the
(such as the wave vectors of the interacting optical wavesfirst one, while the contribution from SHG/DFG was ne-
that are not relevant for pure third-order interactions, thuglected. In addition, both Ref11] and Ref.[12] considered
affecting experiments in unusual ways. only the “phase-conjugation” DFWM configuration where

Degenerate four-wave mixinPFWM) is a commonly two of the interacting beams are counterpropagafitgj.
used experimental technique for the determination of thdReference13] expanded on the treatment of Rgt2] by
third-order nonlinear response. It allows the measurement ahcluding piezoelectric effects, took both direct and indirect
most elements of the third-order nonlinear optical susceptimechanisms properly into account, and considered also the
bility tensor that describe the interaction of optical fields at a“forward” DFWM configuration, but still limited itself to the
single frequency. Second-order contributions to DFWM areOR/EO contributions.
possible via two mechanisms: second-harmonic generation This work presents a general, detailed treatment of
plus difference frequency generati®HG/DFQG and optical DFWM where all second-order contributions are taken into
rectification plus linear electro-optiPockel$ effect (OR/  account for the two experimental configurations that come
EO). In order to enable a reliable and reproducible determiinto considerations for bulk materials. The present complete
nation of third-order nonlinear optical susceptibilities by treatment is a prerequisite for a proper analysis of any
DFWM, it is necessary to quantitatively predict the relative DFWM experiment performed in noncentrosymmetric mate-
contributions of each cascaded effect and of the genuingals. It makes it possible to determine correct values for the
third-order effects in the various possible DFWM experi- third-order susceptibilities and to compare results obtained
mental setups. with different experimental setups.

Second-order contributions to nondegenerate wave mix- | will first present the nomenclature and formalism used
ing were first discussed in RdR], where the principles and in this work by reviewing the usual treatment of DFWM in a
most important features of the cascading contributions havpure third-order material and describing the two experimen-
already been recognized. Second-order contributions ttal geometries with which DFWM can be realized. | will then
DFWM have been analyzed in Ref40-13, and the pecu- introduce the two mechanisms with which a nonlinear polar-
liar geometry dependence of the OR/EO contribution toization can interact with the electric field of an optical wave.
DFWM was first pointed out in Ref$10,12. However, no  From this discussion | will then derive expressions for both
complete treatment of DFWM that takes into account allthe SHG/DFG and the OR/EO contributions to DFWM, and
second-order contributions has been published to date. Adefine an effective third-order susceptibility tensor that com-
important point that has not been treated consistently in therises all second- and third-order contributions. Finally, |
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will discuss the manifestations of these second-order contri- (@ @
butions and their dependence from the experimental param-
eters in the example of two different materials: the fer-
roelectric oxide KNbQ@ and the molecular cryst-

al 4-N,N-dimethylamino-4-N’"-methyl-stilbazolium tosylate
(DAST).

(b)
l. GENERAL DESCRIPTION OF DFWM FOR PURE @ed®
THIRD-ORDER NONLINEARITIES

sample>
The following is a short review of DFWM for the case

where the interaction of the optical waves is mediated only
by a pure third-order effect. It serves as an introduction to the @
subject of DFWM and to the formalism and the definitions

that are used throughout this work. FIG. 1. Two possibilities for an experimental realization of

In the most general case of DFWM there are three sepaprwm. (a) “Forward geometry”: The three input beams 1, 2, and
rate “input” waves that can be distinguished by their propa-3 propagate in the same general direction. They go through the
gation direction. We are interested in the case where the inertices of a square in a plane parallel to the surface of the sample
teracting beams are weakly focused into the material and casnd nearly perpendicular to the propagation direction and they meet
be described by spatially and time-modulated plane wavesn the sample. The signal beam 4 exits the sample so that, in the
Then the total electric field at a positia;nand timet can be  square defined by the three transmitted input beams, it hits the
written in the form corner opposite to the one of beam(B) “Phase-conjugation ge-
ometry”: Beams 1 and 2 are counterpropagating to each other, and
all interacting beams propagate inside the same plane. The signal
beam 4 is then counterpropagating to beam 3.

>

E(r,t)= %{E(w,ﬁl)exqi(ﬁf— wt)]

+E(o,ky)exdi(kr —wt)] Pi(g)(w,k4)=Eeo)(i(ﬁ(),(—w,—w,w,w,—k4,—k3,k2,k1)

+E(w,ky)exdi(ksr —wt)]+c.c}. (1)

XEj(—w,~K3)Ex(w,K)E (k). (3)

This represents three plane waves with the same frequency o )
and three different wave vectoks. They are described by Wherek,=k;+kp—ks, Ej(—w,—k3) is the complex con-
complex amplitude€(w,K;) that are nearly constant on the jugate  of Ej(w,ks), and x(J(—w,—o,0,0,—k,,
time-scale of the optical frequency and the space scale of the I23,I22 ,El) is the complex third-order susceptibility tensor.
optical wave vector. *c.c.” indicates addition of the Under the assumption that the third order response is both
complex-conjugate term. instantaneous and local, it does not depend from either the
In a nonlinear optical material with an instantaneous andrequencies or the wave vectors and is a constant directly
local third-order response, the electric figlt) induces a related to the time-domain tensor introduced in EB).
material polarization which, in Sl units, can be written asHowever, it is often useful to consider some slight noninstan-
[15,9,14 taneous effects that lead to a frequency dispersion. | also
explicitly included a wave vector dependence in E).be-
cause it will be required for the effective third-order suscep-
tibility introduced below to account for the second-order
contributions. Only for a pure third-order effect the locality
where the Einstein summation convention over repeated ireRssumption we introduced above removes any wave vector
dices is used, angl(}), is the third-order susceptibility tensor dependence, and the wave vector arguments can be dropped.
in the time domain. There are two alternative experimental setups where a
Given the field(1), the material polarizatiorf2) has a  Unique signal wave is radiated by the polarizati8n They
complicated time and space-dependence corresponding tod€ sketched in Fig. 1. In both of these configurations the
sum of various plane-wave terms with different frequenciessignal wave is emitted in a phase-matched way over the
and wave vectors. For DFWM one is interested in thosavhole thickness of the materigl7]. Besides Eq(3), there
terms that have the frequeney which are produced by the are two other polarization components at the frequeacy
interaction of all three waves in Eql), and which can ra- that have wave vectork,=k;—k,+ks and k,=—k;+k,
diate a signal wave in a bulk material. By judicious choice of + k,. However, the magnitude of these wave vectors does
the wave vectorsﬁl, IZZ, and Eg one can obtain a well- not fulfill the dispersion relation of a propagating electro-
defined signal wave from the one single term with the com-magnetic wave of frequency. The corresponding DFWM
plex amplitude signal, which has a different propagation direction than the

PE(r 1) = eox(3 Ej(r OEW(r, DE(T 1), ¥
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one radiated by Ed3), can only be observed in thin samples from normal Fresnel reflection losses and from the linear
[18]. We will not consider this case any further. absorption constant; of the material
The numerical factor of 3/2 in Eq3) is a degeneracy

factor that arises when substituting E@) into Eq. (2) and n—1\2
collecting terms with the same space and time dependence to Ti= [ 1= n+1 exp(—aiL/2). ®)
obtain Eq.(3) [19].

The nonlinear polarization3) gives rise to the signal Expression(7) is the final result that can be used in any
wave in DFWM by radiating an electric fielfS that must ~centrosymmetric material to determine experimentally the
fulfill the wave equation components of the third-order susceptibility tensef) -

Note that the results derived here are valid for both DFWM
o 1 2] _ . 1. configurations in Fig. 1. The labelling of the beams has been
VXVXES(r,t)=— 7? E’Es(r,t)+e—P(3)(r,t) , chosen in such a way that E¢3) and the discussion sur-
c 0

rounding it apply for both configurations.

. . . 2(3)/7 II. PRINCIPLE AND DESCRIPTION OF CASCADED
where c is the speed of light in vacuum anB'/(r,t) SECOND-ORDER EFFECTS

= (1/2)P®)(w,k,) exdi(ks — wt)]+c.c.. The wave vectok, _ _ o .

of the polarization(3) has the right magnitude for phase- We will now review the principles of the cascading pro-
matched radiation of the fielS: for P®® oriented along a cess and d.env.e a.ge'neral expression for the effective th'.rd'
main axisi of the dielectric tensok,= e; w/c. In the slowly order polarization it induces. In order not to unnecessarily

: . S . __restrict this particular argument to DFWM, let us consider
varying amphtude approximation and as long as the S'gnatlhree plane F\)/vave but oq[herwise arbitrary, “input” electric
wave remains much weaker than the other waves, (Ex. ’ ’

- 1 _)i " :_)i i _).._).— I ._
implies thatES will grow linearly with propagation distance fields Fl(rltg E ei(g'(ﬁk.' i wt)J with complex amE)Il'
L as tudeskE", E“, andE® [E'=E(w; k)] and assume thdt
andE2 combine to generate a second-order polarizalﬁ&?ﬁ.
s - iky @) ¢ This polarization can be described with the same assump-
Ei (ka4):|—2_€0€ij Pi¥(w,ky), (5 tions and formalism used in the preceding section. Its com-
plex amplitude is
wherelL is the thickness of material along the wave vector
k,. Relating the electric field&€"=E(w,k,) to intensities

Ih=(Céo/2) \/f—ii|Ein|_2 and using EQ(3)10”9 obtains, for in- \yhere, is the appropriate degeneracy factor. This nonlin-

dividual field amplitudey, Ej, andEj polarized along the  ear polarization has the space- and time dependence of a

main axeg, k, andl, respectively, plane wave. When discussing DFWM later on, we will con-
sider the special cases whasg=0 (optical rectification or

, 6) !Zp=_0 (a homogenous polarization harmonically modulated
in time).

Let us start by establishing the conditions under which a
wheren; is the refractive index for light polarized alorig ~ nonlinear polarization with the complex amplitud® can
and)(i(fk)| is the third-order susceptibility tensor introduced in induce an electric fiel&E®. First, the displacement field
Eq. (3) with the frequency and wave vector arguments omit- . . _
ted. DI (r,t) = & Ef (1 1)+ PX(r 1), (10

For pulsed experiments it is useful to express the signal
energyF s as a function of the input pulse energles, with must be divergence-free in the absence of free charges. Sec-

PP (wp,Kp) =K1ox B~ wp, 0, 01)EZEL,  (9)

2
§ (3)

2Xijk|

(,!)2 |1|2|3

c*es ninjngn,

lg=L2

all energies measured outside the sample, ond, forw,=0 the curl of the electric fieldP must vanish,
TT.T.T VXEP(r)=0 (11)
_ 2 17] k'l (3) 2 1
Fs=¢&L —ninjnknl FiFoFslxial® (7

while for w,#0 EP must fulfil the wave equation
whereF , is the pulse energy in beamand¢ is a factor that

. . N . 2

is proportional to the spatial and temporal pulse overlap in- < < =p, >, iﬁ_ -zp, > i*(z) -
tegrals in the material. The “calibration factog must be VXVXEArD= c2 gt2 <E (r,t)+EOP .y
determined for any DFWM experimental setup in order to be (12)

able to measure absolute values for the nonlinear optical sus-

ceptibilities. TheT; are the intensity transmission factors for These conditions lead to separate solutions for oscillatory
a beam with polarization parallel to thexis that propagates and static polarizations. For the purposes of this paper, a
from outside the sample to thaiddle of the sample. They polarization can be seen as static when its time-modulation
can be determined experimentally, or they can be calculateperiod is of the order of the laser-pulse duration.
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Consider an oscillatingd, # 0) nonlinear polarization in  to the effective third-order polarizatiod(® . But this is not
a coordinate system wheeg is diagonal. Then, for a longi- the only possibility. The nonlinear optical polarization can

tudinal polarization withP®(wj, ,K,)[K,, or for an homog-  also combine directly witlE, even wherEP=0 [6]. Calcu-

enous polarization witlk,=0, lating the magnitude of this direct contribution is nontrivial
because the nonlinear optical susceptibilities are defined and
o 1 @) measured using applied electric fields, not polarizations. One

Ei=- o P, (13 way to do this is to move to the microscopic level and con-

sider the effects of the nonlinear polarization and the electric
field on a single polarizable unfa “molecule”) in the ma-
terial [6].
Denoting local fields and dipoles by lower case letters
1 p(2) and, for the sake of simplicity, dropping temporarily the vec-
EP—— i , (14) tor notation, we can write the local field induced by the non-
' €0 (kytlwp)2— € (wp) linear polarizationP® ase”=LP®), while E* generates a
local field e3=f;E3. L and f5 are local-field factors that
under the assumption that the wave vector mismatch beassume the values=1/(3ey) and f;=1+ x(w3)/3 in the
tween the nonlinear polarization and a propagating wave itorentz local-field approximatiofi20]; x(ws) is the linear

SO h|gh tha]ép has the same Spatia| and time dependence &Olarlzablllty The SUbSCfiptS of the local-field faCthriSin-

the source polarizatioﬁ(z). As an example, for non-phase- dicate the frequency at which they_ must be tasken. By second-
. s = o order nonlinear optics, the local fiel@é§ ande® generate a
matched frequency doubling of one fielB=E(w,k),

- 1 5 nonlinear dipolep®=K,e,a?e’e®, where a® is the mi-
kp=2k, (2‘)"p_2‘*” and Eq. (14) becomes Ei  (15scopic second-order susceptibility. To move back to the
= (1eo) Pi”I[ €ji (») — €ii(2w) ], as was found, e.g., in Ref. macroscopic level, the average macroscopic nonlinear polar-

while for a transverse polarizatioﬂ?(z)J_ Rp) the solution of
the wave equation is

[6]. , _ . ization P(©) must be derived from the nonlinear dipg&
For a static, plane-wave modulated nonlinear polarlzatlonusing PC=Nf.pC, and the macroscopic second-order sus-
the solution of Eqs(10) and (11) is [11,12 ceptibility is related to a® by x®(—wy,w,,ws)

=Nf,f,f30®(—w;,w,,w3) [21]. Here, N is the number
density of “molecules.” From this, one obtairB(®) as a
function of the macroscopic quantitié®?, E3, and y(?.
Going back to vector notation, this direct contribution to
which reduces to Eq13) for a longitudinal polarization and P(©) can be written as

to EP=0 for a transverse polarization. The electric field is in 5
this case always parallel to the wave vector of the nonlinear ), _ 31 Yap (2)
polarization, reflecting the requirement that the curl of the Kz€oxijg(— @e, @3, 0p) EfL fo Py (18)
electric field be zero.

From the above it is clear that the existence of an electric The final expression for the total cascaded polarization
field associated to the nonlinear polarization, or its magnHS(C) is obtained by summing Eq§l7) and(18),
tude, depends on the circumstances. For the following dis-
cussion it is useful to write

ki PNY(K)
->P - _ - ] ]
EP(k)= k—eokkek|k|’ (15

PIO=K o~ e 0,0, E}

o,
opt GOL#}PEJZ)'
Ep—ig pNt (16) (19
e L i
0 Substituting Eq.(9) for P®®) and comparing the result

where;; is defined by the expressions above. For any lonWwith the form P = KsX_i(j%(—wc,waw_z,wl)E?EsEﬂ fora
gitudinal polarization{;; = — 1/e;; ; for a transverse static po- third-order effect, one finds the following expression for the
larization,¢;; =0, while for a transverse, oscillating polariza- effective third-order susceptibility describing the cascaded
tion ¢;; has a pole atk,c/w,)?= €;i(w,). The importance of ~ contribution:

these variations if;; will become evident when discussing

c
DFWM later on. X[ (— 0¢, 03,05, 01)
Consider now how the polarizatiaf®) can interact with K. K LS
. . =3 . _ a2 o) €o-9qp
the third optical waveE® to generate a new nonlinear polar- K, Xijg(— we,03,@p)| Lqpt —
ization P(®), which is then of the third order in the fields . P
E!,E2 ES3. Evidently, when the polarizatiof) generates a X xpri(—@p,w2,01). (20)
. "P . . .
_f'eld E ) g|venaFk’3y Eq;gIG), s?cond-order nonlinear optical - pjg s the final result of this section. It is valid in general
interaction ofE™ andE” contributes a term for any two second-order processes that combine to contrib-
ute to a third-order process. A very important fact that is
K (2) _ )E?’EP (17) . . . . o
2€0Xijq(— 0c,w3,wp)EJE,, peculiar to this cascading process is that dhgterm inside
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the square brackets depends on the characteristics of the ithe remaining input wave. The corresponding “cascaded”
termediate second-order polarizatit®. The magnitude of mechanisms ar¢A) noncollinear second-harmonic genera-
the elements of the effective third-order susceptibility tensotion through interaction of beams 1 and 2, and difference
describing the cascading effect will, therefore, change defrequency generation between the polarizati®h) generated
pending on the wave vector, frequency, and orientation of thé" such a way and beam 3; ar@) optical rectification
intermediate second-order polarization, which are in turn inthrough interaction of beams(ar 2) and 3, and electro-optic
fluenced by details of the experimental geometry used. Thi#iteraction between the polarizati¢22) [or (23)] generated

is particularly true for the case of DFWM, because static andn such a way and beam (@r 1).

frequency-modulated second-order polarizations can both In the following, I will designate the effective third-order

contribute to the signal at the same time. polarizations and susceptibilities induced by such “cas-
caded” processes asP(CK” and “ y(CK " where k identi-
Ill. CASCADED SECOND-ORDER EFFECTS IN DFWM fies the wave vector of the relevant second-order polariza-

. *SH .
. : on, e.g.,k>" when cascading occurs through the second-
For noncentrosymmetric crystals, second-order nonline tll » €0, 9 9

optical effects such as second-harmonic generat&c) aharmonic polarization (21). The genuine third-order

N T . . . . = yk . .
and optical rectificatiofOR) become possible. Any two of Polarization P() as well as any of thEP(C, ) radiate in a
the interacting beams in DFWM can give rise to a nonlineaPhase-matched way a wave that contributes to the total

optical polarization that can then interact with the third beamPFWM signal. -
to produce the signal wave. The effective third-order susceptibilities for the three cas-

Referring to Fig. 1 for the labeling of the interacting c@ded processes introduced above are derived in the next

fields, there are three second-order nonlinear-polarizatioR€Ctions.
components that play a role in the generation of the signal
wave by cascaded second-order effects in DFVithkeir

wave vectors are found by picking any two terms, including

A. Second-Harmonic Generation and Difference
Frequency Generation

their signs, from the surk; +k,— k3 found in Eq.(3)]. The interaction of trje sczcond—harmonic polarizati@)
The first one is produced by second-harmonic generatiowith the electric fieldE(w,k3) of the third “input” wave
between wave 1 and wave 2. Its complex amplitude is leads to an effective third-order polarizatié’rﬁc"zsw, which
. ey o - can be calculated using E@19). In a coordinate system
PEP(20,k3" = eox i~ 20,0,0, —kS" Ky, ky) where the dielectric tengor i(g d?agonal, Y
X E(@,ko)Ei(w,Ky), (2D PR (o Ky
where kS"=Kk;+k,. It is interesting to note that for the =x2(~0,~ 0,20, Ky, ~Kg,K5H)
phase-conjugation DFWM configuration of Figb}, k=
—K,, andk®"=0. The resulting wave vector of the “second- XE{(— w,—Kg)| £qo(KS™) + €09k p(SH
harmonic” polarization(21) is zero: it is a homogenous po- : P f P
larization density oscillating at the frequency 2hat cannot (24)
radiate any electromagnetic wave, but which can still con-
tribute to the DFWM signal. The local field factorf , applies to the intermediate polariza-
The second one is produced by optical rectification betion (21) with a frequency of 2 and polarized along. The
tween wave 1 and wave 3 and is tensorgqp(kSH) is defined by Eqs(13)—(14) and Eq.(16),
and takes into account the macroscopic electric field that can
PPR(w=0KkS®) = ox{3(0.— 0,0, KSR, — k3 ,ky) be induced by the polarizatidd>"(kSH), as discussed in the

previous section. Note tha;tqp(IZSH) also depends on the
frequency and on the direction of the intermediate polariza-
tion (21).

Inserting Eq.(21) into Eq. (24) one obtains

XEj(_wy_lzs)El(w:lZl)a (22)

W|th ESR: |21_ |23.
The third one is produced by optical rectification between

wave 2 and wave 3 and is Pi(c,QSH)(wyle): eoxézk’l(—Zw,w,w,—leH, Ky, Ky)
PéOR)(wzo,kboR): eoX(pZJ?((O,— w,w,— IZSR, - E3,k2) XXi(qu)(_ 0, — 20, — |Z4, _ |23’|ZSH)
XEj(~ .~ ko) Ex(w,Ka), 23 XEj(~ o, ~Kg) Ex(@,Kp) Ej(@,Ky)
W|th EORZ |22_|23. ~SH 5qp
A polarization of exactly the same form as H®), with X| Lqp(k>T) + eyl (25
p

frequencyw and wave vectok,=K;+Kk,—Ks, is obtained
when any of the above second-order polarizations—where we introduced the Lorentz expressionsffprandL,
produced by a selected pair of input waves—combine withand we used the refractive inde%= €pp(20).
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In Eg. (25, the second-order susceptibilities describein the same way a,si(f’k), . This is an important point because
second-harmonic and difference-frequency generation. Theiy means that in this configuration the SHG/DFG cascading
can both be expressed in terms of the frequently usgd  contribution cannot be distinguished from the direct third-
coefficients order contribution. It would, therefore, be possible, in prin-
ciple, to include the SHG/DFG contribution in the numerical
value of x{ . This will not be the case for the OR/EO con-
@) . I tribution, or for the SHG/DFG contribution in the forward
Xijg(— @, —©,20,— kg, —k3,k>")=2dgi;, (279 DFWM setup of Fig. 1a).

The SHG/DFG contribution for the phase-conjugation

where the factor of 2 has no special significance and onI)bFWM geometry is normally relatively modest. An order-of-

reflects how the 4 coefficients” were originally defined. . : : o
Following the same way used to derive the general eX_magnltude evaluation of Eq29) using a refractive index of

pression(20), Eq. (25) can be compared to E¢B) to obtain ~ ~2 giveSXi(ﬁikSH)~ —0.2dp;;dpy, which fordp;;=dp =10
the effective third optical susceptibility for the SHG/DFG pm/V becomes(i(ﬁ]ks ~0.2x10 %2 m?/V?, more than an
contribution order of magnitude less than the third-order susceptibility of
fused silica, which is x{3},=4x107% esu=2x10 2
m?/V? [18,22—-24. In this example we used susceptibility
values that are typical of inorganic materials, and the rela-
tively low contribution of the SHG/DFG process can also be
where a factor of 2/3 had to be introduced because of thgnderstood on the basis of the frequency dependence of the
degeneracy factor in Eq3), and a factor of 4 comes from mMmaterial excitations that contribute to the various processes:
the definition of thed coefficients. while the contribution of ionic motiorioptical phononsto

As discussed before_i;qp(ESH) assumes different values DFWM is allowed and large, .onIy the electr_onic response
depending on the characteristics of the second-harmonic p&ontributes to frequency doublig]. For organic materials,
larization. For the phase-conjugation DFWM configuration®" the other hand, the nonlinearity is given by the response

of Fig. 1(b), and whenever the second-harmonic poIarizatiorPf the electron clouds for practically all frequency combina-
. . SSHy . tions, which should tend to make the SHG/DFG contribution
is longitudinal, {,(k Hy=— dqp! €pp as found in Eq(13),

and Eq.(28) becomes more comparable to the direct third-order contribution. More
' detailed examples of the magnitude of the SHG/DFG contri-
i 8d...d 5 butions for different materials and experimental geometries
X,(%IkSH): _ 2FpijFpkl _ (29)  Wwill be given later on.
. 3 ndy(nd+2) The magnitude of the SHG/DFG contribution to DFWM
in the phase-conjugation experimental geometry has also
For a transverse second-harmonic polarization, a situatiobeen calculated in Reff11]. But there the direct contribution
that can only arise in the forward DFWM configuration of of the nonlinear polarizatiofthe term proportional to 1/?
Fig. 1@, {qp= 6qp{[kc/(2a))]2—nf,p(Zw)}*1 as found in  +2) in (28)] was not taken into account. As a consequence,

ijzk)l(—Zw,w,w,—ESH,Ez,El):dekl: (26)

¢kt _ 8dqijdpu

Xijki 3 ; (28)

. 0,
KSH 4 %ap
Laptk™) nf,p+2

Eq. (14). Then EQq.(28) becomes the treatment of the SHG/DFG contribution given in Ref.
[11] predicts effective third-order susceptibilities with the
(C.ASH) 8dpijdpk,[ 1 wrong sign, and which are too large by a factaf ¢ 2)/2.
Xkl = This lead to effective third-ord tibiliti bstantiall
ij 3 [kSHc/(Zw)]Z—ngp(Zw) is lead to effective third-order susceptibilities substantially

larger than the ones given here.

The cascaded contribution by SHG/DFG in the forward
) (30 DFWM setup of Fig. 1a) is also given by Eq(29) whenever

the second harmonic polarization is longitudinal. For a trans-

, verse polarization, however, the effective susceptibility is

The completely different role played by the SHG/DFG given by Eq.(30) and it depends on the refractive index
process for DFWM in the two possible experimental geom-yispersion. In Eq(30) one recognizes the possibility that the
etries is immediately visible from Eq&29) and (30). While  gecond-harmonic polarization radiates a wave, because it has
f_or the phase-(_:onjugatlon geometry the SHG/DFG con_trlbu;,j1 pole forkSH=2wnpp/C. Obviously, the fact that Eq30)
tloq is always independent of the wave vectors of the '”ter'diverges when the second harmonic polarization is phase
acting beams, for the forward geometry the SHG/DFG conynaiched to a propagating electromagnetic wave of the same
tribution becomes very sensitive on the birefringence of thgrequency and wave vector requires a different solution that
material and on the orientation of the wave vector of theyyes into account the linear growth of the radiated wave
intermediate second-harmonic polarizatitiis wave vector ith propagation distance. However, this phase-matching
vanishes for the phase-conjugation DFWM configuration  csndition will be very sensitive to the intersection angle and

For the phase-conjugation DFWM setup of Fi@)1 EQ.  {he polarization of the interacting beams. It would be easily
(29) always applies. In this case the segond—harmonlc Polagetected experimentally and should not adversely affect
ization is spatially homogenous andj;“ " is a constant, DFWM experiments as long as one avoids the particular
only dependent on the polarizations of the interacting beam$ijeam crossing angles, if they exist, where the phase-

1
T
Npp(20)+2
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matching condition is satisfied. In the following we consider\yhere |24:|ZSR+ ;22:|ZbOR+ |Zl and the Lorentz value for
only the SHG/DFG contributions that always contributes to| /f \as used. Because the polarizatid@8) and (23) are
DFWM, independent of phase-matching conditions for SHG static, the(diagona) dielectric tensor must be taken at a fre-
t 'bTT'e magtwtu?e ancé %12\53&[3”5“05 ?f the Sl')"Gé DEG CONguency defined by the length of the optical pulses, while
ribution in the forwar geometry can be better un- , ,-or “OR -

derstood by considering the limit of a small angldoutside Zqpl(nksaer)tir?g (JIIE%]S‘;)E;%)—)(%)G i%lt\éegqbg (gg)(—l(?ﬂé) one obtains

thSeH sam pl}f between beams 1 and 2. Then one can ertethe third-order polarizations induced by the two step process
k>"'= |k +ka| = cos@/2)[ ny(w) + ni(w)]w/c, and of optical rectification and Pockels effect. Once again, they
have exactly the same form as E8g), with frequencyw and
(c.ist _ 8pijdpi .

” wave vectork,,
Xijki 3 ([nk(w)+n|(w)]/2)2_n|23p(2w) 4

CiOfy - > oom o
P (w,Kg) = eox U — ,0,0,— Kg KR K2)

1

—— 3
+nf,p(2w)+2 3

XXg)zjf(O,—w,w,—EgR,—|23,|21)

is a good approximation for Eq30). Consider for example

S
X(ﬁ'lkl " Since n,(w)<n;(2w) because of dispersion, the
first term in the square brackets is negative. And since it has ) ) )
a difference of refractive indices in the denominator it domi- XEj(— o, —K3)Ex(w,Kp)Ei(w,Kq),
nates over the second term. One sees that the SHG/DFG

contribution has the potential of becoming large and negative

. <S . .
fqr d|agonal ele_me_nts qfi(j(f(]k " and for mater_|als _Wlth low P(C’gbOR)( K0 = cox@(— .0.0,— Ky KOR )
dispersion, while it also depends on the birefringence for [ @,K4) = €oXiqil — @, U0, 7Kg, Kp K1
nondiagonal elements of the susceptibility tensor. Some ex-

N 1)
X g (kOR)+ qp
apira €ppt2

(39

e . . . . @0 — _KOR _ k. Lk
amples for specific inorganic and organic materials will be Xxpik(0,— @, 0, —kp™, —Kz,kp)
given below. s

As a final comment to conclude this section it is interest- X| Lapl |2b0R)+ _ar_

ing to note that it would be wrong to expect that SHG/DFG €ppt2

does not contribute to DFWM because the SHG process is - - -
not phase matched. After the two-step SHG/DFG process XEj(— 0, ~kg) Bl @, ko) Bi(@.ky).

takes place, the resulting effective third-order polarization (35

(25) is perfectly phase matched to the direct third-order po-

larization (3) (the signals radiated by both polarizations are It is interesting to discuss the case of quasi-degenerate
in phasg¢. Thus the contribution of SHG/DFG ialways four-wave mixing, described by a third-order susceptibility
phase matched for DFWM. The fact that the SHG processf the kind x(}(— w4, — w3,05,01,—Ks, —Kg,Kz K1),

itself is not phase matched only affects the magnitude of thgvhere the difference between any of the is small com-
effective third-order susceptibility28) by influencing the pared to their value. In this case the OR/EO process goes

value of £,,(kS™) when Bk is transverse. over to a difference frequency generation plus Sum Fre-
quency Generation procesPFG/SFQ. The second-order
B. Optical rectification and Pockels effect susceptibilitiesx(z¢ and x5 appearing in Eq(34) must

. . L " (2)(_ _ k. KPF [
The effective third-order polarization®(C*a) and Pe replaced by xigi(—ws,wa 02, —Ks Ky k7)) and

K (2)¢ _ _ _pDF _ ¢ © .
P(CKY induced by OR/EO cascading can be calculated us¥pil( ~ @a: ~ @3, 01, ~K3", —Ks,ky) [and equivalently for

ing (19) Eq. (35)]. The polarization with wave vectd©" is in this
on case a difference-frequency polarization oscillating at a small
pi(c*a )(w.R4)=)(i(§ﬂ(—w.O.w,—@,EaOR,lzz) frequency. In principle, one should, therefore, use ¢hg

derived from Eqgs(13) and (14) instead of Eq(15) in the

- 1) - expression$32) and(34). This affects the value af,, only
qp . ... ~=ap
X | Lgpl kgRH c +2 PSR( kgR) in the case where the second-order polarization is transverse
PP and Eq.(14) applies. However, even in this case one sees
X Ek(szz), (32)  from Eq.(14) that{,, tends to zero for a small frequeney,
o (corresponding to the present difference-frequengy, so
C.k, N N N > HH i
pi( b )(w1k4):Xi(§|)(_ ©.0,0,— k4,kgR’kl) that one gets a smooth transition from the quasi-DFWM case

to the DFWM casdremember that the wave vectB,g, set

«| ¢, (ROR)+ Sap POR(KOR) by fr_eque_ncy and crossing angle qf two input beams, is es-
ap\®b €ppt2] P b sentially independent from the difference-frequeney).
) This shows that the present treatment also applies in the case
XEj(w,Kkq), (33)  of quasi-degenerate four-wave mixing. The expressions de-
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rived here apply directly when the difference-frequeneigs  wherek is the wave vector of the corresponding optically

andw;, are small compared to the typical infrared resonancgectified polarizationy ), is the electro-optic tensor at con-
frequencies of a material, and will have to take into account -+ oir S is the dielectric tensor at constant straiin
1"

the corresponding resonances otherwise. —k /K afn’ei” the elasto-optic tensoe... is the piezoelec-

The second-order susceptibilities appearing in E84)— i TK Pijl 15 eEe:e\§o optic S SO8ij IS the piezoelec
(35) are those that describe electro-optic effect and opticaific €nsor,Ay=Cijkjk;, andCjj, is the elastic stiffness
rectification. Permuting indices and frequency/wave vectof€nSor.

electro-optic coefficients ties (38) and (39), calculated using the strain-free values of

the electro-optic coefficients, are also valid for quasi-
o 1 degenerate four-wave mixing as long as the frequency differ-
Xi(gl)((—w,o,w,—k4,kgR,k2)=—Enfnﬁrikq, (360  ences between the interacting beams are smaller than the
typical optical phonon or vibronic frequencies of a material.
The two OR/EO contributions depend on the orientation
(37) of the intermediate polarizatiori22)—(23) and of their wave
vectors. This can be most easily seen by noticing how Eq.
(40) is a projection operator that takes the component of the
Using these relations and comparing BE@)—(35) with Eq.  polarization which is parallel to its wave vector. Because of
(3) we find the equivalent of E¢20) for the present special this effect, the OR/EO contribution will depend on the ori-
case, that is, the effective third-order susceptibilities that deentation of the sample for both DFWM geometries in Fig. 1,
scribe the cascading processes related to the second-ordgfen when the directions of polarization of the interacting
polarizations with wave vectoiso R andkOR [13], beams are kept constant inside the material. This allows the
measurement of the OR/EO contributions by comparing the
e 1,55, [ oR ap DFWM signal for different geometrielsl 3]. The fact that a
Xijki -~ = i MMM Tikajip Lqp(ka )+ P strain pattern can be established in the crystal on the pico-
) PR (39) second and nanosecond time scale means that the OR/EO
contribution will also depend on the magnitude of the wave
vectorskR andkP®, not only on their directiofi25]. This is
particularly relevant when comparing experimental results
(39) obtained with the two different DFWM geometries in Fig. 1,
because the spatial period correspondingﬁf@ changes
wheregqp(IZSR) and gqp(EgR) are given by typically from a fraction of a micrometer for the setup in Fig.
1(b) to several micrometers for the setup in Figa)l

_ - 1
XG0~ w,0, kIR, —ks ky) = — SninfTip

“OR 1
(Ckpg)_ = 2.2 2 2
Xijkl = 6 ni nJ ﬂkﬂl r

[ 0
“OR ap
ilgFjkp| £qp(Kp )+ copt 2

k. k
N qmp
Lap(K)=— ke k' (40) IV. EFFECTIVE THIRD-ORDER SUSCEPTIBILITY
7 FOR DFWM

The electro-optic coefficients and dielectric tensor used i \yhen the second-order processes outlined in the preced-
Egs.(38)—(39) are the strain-free values when the durations,y section contribute to DFWM, the separate contributions

of the laser pulse used in a DFWM experiment is muchy.om £q (28) and Eqs(38)—(39) will add to the direct third-
shorter than the time needed by an acoustic wave to propg;qer susceptibility that must be used in Eg). It makes,

gate over a distance given by the spatial period of the intefgerefore, sense to define a total, effective, third-order sus-
mediate polarizations22)—(23) [13,28. The propagation  cenipijity that takes into account all contributions to DFWM

time of”a tﬁpt'lflal a<(:joust|fc vvfavet_over fa distance oprg I\?Vh and that must replacg'3) in Eq. (3) whenever a noncen-
generally of the order of a fraction of a nanosecond. When o orvic material is used

the modulation period of one of the intermediate polariza-
tions (22)—(23) becomes very smalk.g., for Eq.(23) in the N EFE (3 c s RO (CiOR)

DFWM configuration of Fig. (b)], or for longer laser pulses, Xi(jk)l' :Xi(jk)l +Xi(jk’| H)+Xi,-k| * XD - (49

the electro-optic coefficients and dielectric constants to be (3).EFF _

used in Eqs(38)—(39) must take into account the spatially The xiji~ " given here must be used in the standard expres-
modulated strain pattern that can form, and are given bgions(3), (6), and(7) to calculate the effective third-order

[13,25 polarization and the corresponding DFWM sigi26].
) - In Eq. (43), Xi(jck',kSH) is defined by Eq(28) and can depend
ik () =13+ Pijmn€iauknku(A™ (4D on magnitude and direction of the wave vectot'=Kk,
and +IZ2 only for the forward-DFWM configuratiofFig. 1(a)].

COR COR
Xi(ji}ka ) and Xi(ji]kb ) are defined by Eq€38)—(39), and al-

ways depend on the wave vector differené&&=k,— K,

N 1. .
€ (K) =€+ —kpkeeime€iin (A" Y mi, 42 Con o
ik = o "MK (A 42 andkPR=k,—Ks, in a manner described by the wave vector

063813-8



DEGENERATE FOUR-WAVE MIXING IN . .. PHYSICAL REVIEW A64 063813

dependent terf‘@qp(lz) in Egs.(38)—(39). Xi(j3|'<)| , on the other TABLE I. Nonzero, _strain-fre_e electrc_)-_optic coefficient;c',k
hand, does not have any wave vector dependence under tHE°m Ref.[27]) and nonlinear optical coefficient; of KNbO; at

assumption that the direct third-order interaction is a locaf Wavelength of 1.064m (taken from Ref.[28], and rescaled
process using d;1,=0.3 pm/V for quartz The dielectric constantfrom
To analyze a DFWM experiment in a noncentrosymmetricvlzflzfl'e[lze ?’&Tﬁfﬁ ;if(;agl\;\(levignedﬁefrf?gn ;if'cﬁ[ig);)‘t] t:lfes:lr::
material, it is important to be able to measure the direc g .

third-order susceptibilityy(}) , which is buried in the sum ven.

(43). ijk 3 (pmV)  dgi (pmV) & ni(o) ni2e
This could be done by determining})= " with respect j i (P Gy (M) e Mile)  nize)
to a standard reference material, such as @Sused silica, 333 30.5 20.5 37 21194 2.2031
and subtracting all the second-order contributions calculated23 64.0 13.7 780 2.2576 2.3814
for the experimental configuration that was used. Thisl13 16.0 11.8 24 22195 2.3226
method relies both on the knowledge of the susceptibility o232 348 12.8
a reference material, and on the ability to predict the secondt31 23.6 12.3

order contributions.
A better way is to exploit the geometry dependences of

the second-order effects to measure their contribution to the(a)], when the second-harmonic polarization is transverse.

signal, and use the calculated valuesy@f to determine These sometimes complicated dependencies of the cas-
the absolute value in(fk)l:EFF, and, therefore, also Qii(jgk)| , caded contributions on several experimental details can be
without having to rely on a reference matefial13]. best clarified by giving examples of the corresponding effec-

A|ternative|y, using both a reference material and thetive third-order SUSC@ptibilitieS for various DFWM geom-
knowledge about the geometry dependence of the secongtries and for a couple of different materials.
order contributions, it is also possible to measure the magni- In the following I will give numerical values for the cas-
tude of the second-order contributions with respect to th&aded contributions from SHG/DFG and OR/EO for the two
third-order susceptibility of the reference material. ThisDFWM configurations in Fig. 1 and for two example mate-
could for example be used to determine the electro-optic codals: The organic salt DAST and the orthorhombic ferroelec-
efficients in an all-optical way, and at frequencies of thetric perovskite KNbQ.
order of the pulse length, e.g., of the order of 1 THz for 1 ps

lon Ises.
ong pulses A. DFWM in the Inorganic Ferroelectric Crystal KNbO 5
KNbO; has point group mm2 with orthorhombic symme-
V. EXAMPLES OF THE EFFECT OF SECOND-ORDER try. As such, on a total of 81, it has 21 independent nonzero

CONTRIBUTIONS ON DFWM elements of the third-order susceptibility tensor. The addi-

—_— tional symmetry introduced by frequency-degeneracy in
co;—sr;ceje(r:gsg/agi?firgarstgﬂggdje?)é%%gag:S(g)efilriseunr?ael geI_DFWM means that, in our nomenclature, the first pair of
ometry and the material investigated. Since both the SHG, dices and the last pair of indices are symmetric and sepa-

DFG contribution and the OR/EO contribution depend on
boundary conditions, the effective values they assume d

ately interchangeable, so that the total number of indepen-
dent elements of the direg) third(;())rder(;usceggibilit(%/)tensor
pend both on DFWM configuration and on crystal orientaﬁto(g)D':V\(/é\)/I red(‘;)ces o 9%1111’ X22220 X3333 X1133 X2233:
tion, not just on the polarization of the interacting beamsX1313: X2323: X1122: andxiz1-
Some symmetry rules that are valid for direct third-order E@ch index corresponds to a frequency and a wave vector
susceptibilities will not be valid anymore for the effective parameter ofy({)(— o, —w,»,0,— Ky, —Kz .,k ,K;). In or-
susceptibilities coming from a cascading of second-ordedler to measure, e.gy{3s; Using any one of the DFWM set-
contributions. This is clearly visible in the example of theups in Fig. 1, beams 1 and 2 are polarized along 3, and
OR/EO contributions alone, which can change a lot withbeams 3 and 4 are polarized along 1. In order to simplify the
sample orientation when the intermediate rectified polarizadiscussion and the analysis, we assume a situation where the
tions change from transverse to longitudih&8]. angles between the beams are small—so that light polariza-
The difference in magnitude between the relative contritions are well defined—and where the crystal faces are cut
butions of SHG/DFG cascading and of OR/EO cascadingperpendicular to the crystallographic axes and are nearly per-
depends on the pulse length and material used, as well as @endicular to the light beams.
the experimental geometry. This is because optical phonons The material properties of KNbQOthat determine the
can contribute to genuine third-order DFWM and to OR/EOmagnitude of the cascaded contributions are given in Table I.
cascading, but not to SHG/DFG cascading. Thus, SHG/DFG@he coordinate system used in KNp@entifies the 3 axis
cascading becomes comparable to the other effects in organigth the polarc axis, so that the only nonzero second-order
crystals or when using very fast laser pulses shorter than 108usceptibilities are the ones whose indices are any permuta-
fs, while its relative importance is generally smaller other-tion of ii 3, with i=1,2,3. The electro-optic coefficients are
wise. However, SHG/DFG cascading can in all cases beconthe strain-free ones that include optical-phonon contribu-
considerably strong in the forward DFWM geomefisig.  tions, so they are good for calculating the OR/EO contribu-
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tions for DFWM with laser pulse durations ef1 ps or TABLE II. Second-order cascaded contributions to DFWM in
longer. KNbO; for the two DFWM setups shown in Fig. 1. The contribu-
To see see how the OR/EO and the SHG/DEG Contribuﬂons are listed separately for the two OR/EO contributions with
LOR_ D _ b LOR_[, _ I
tions arise from the data in Table I, consider again the ex¥ave vectorky"=k;—ks andk; "=k, —ks, and for the one SHG/

o . . . : ; ; CSH__ o > .
ample of y{34;. A rectified polarization with wave vector DFG contribution with wave vectok™"=k;+k,. The effective
third-order susceptibilities are given for two orientations of the

k"=ky—ks is induced by beams polarized along 3 and Licrystal c-axis parallel or perpendicular to the incidence plane de-
respectively, via the electro-optic coefficient,. This rec-  fined by beams 1 and)3and are in units of 1072 m?/V2. The
tified polarization is, therefore, polarized along 1, and it in-gR/EQ contributions with wave vect&f® for the case of Fig. (b)
teracts with beam 2polarized along Bvia the electro-optic  have been calculated taking into account elastic relax26h
coefficientr 3, to generate beam ¢olarized along L The
second-harmonic polarization has wave ved®i=k; +k, Fig. 1(b) Fig. 1(a)
and it is induced by two beams polarized along 3, via the caxis  kQR kg™ kSR kSR
nonlinear optical coefficiend;33. The second-harmonic po- R
larization is thus polarized along 3, and it interacts withX3333

l33d333 33333 [F333333 333333

beam 3(polarized along JLvia the nonlinear optical coeffi- y —2 33 —2 24
cient d;;; to generate beam {polarized along L In the . z 24 33 24 -2
phase-conjugation DFWM setu®H=0 and the second- X555 ' dasdass dasddass
harmonic polarization is spatially homogenous and does not y andz —-0.7 —29
depend on the wave vectors of the interacting beams. Thisis i
not the case for the forward DFWM setup. X554 = x5 o323z Tosdose Tosdoz2 Tosd2s2
In order to show the various interplays between experi- y 136 136 136 —-0.3
mental geometry, sample orientation, OR/EO contribution, z -0.3 136 -0.3 136
and SHG/DFG contribution, | calculate all contributions for _(c.kS" dazdany dasdans
both DFWM configurations in Fig. 1, two different orienta- 2233 yandz 04 _20
tions of the sample, and all third-order susceptibilities in- . isn d 2d. dapd
volving the indices 2 and 3. These susceptibilities can, e.gX3322 3227333 3227333
be measured in a crystal with a polished face perpendicular y andz —04 32
to the 1 axis and beam wave vectors almost parallel to the 1
axis. These are also the tensor elements where the OR/EQ558 lasd 223 T23d232 Tasdooz Tasd o2
contribution is largest, because of the large electro-optic ten- y -55 136 -55 -35
sor elementr,3, of KNbO;. The results are displayed in z 6.6 136 6.6 136
Table II. . - _ _ X(zg*;:H) o33, da33,
In Table Il, the first column specifies the effective third- y andz —02 —4.4

order susceptibility and, through its indices, the polarizations
of the interacting beams in the sample reference frame. The
column labeledc gives the orientation of the axis of the
crystal in the coordinate system defined in Fig.yland z

vectors have been calculated using the clam(sg@in-free

mean that the axis is in the incidence plane of beams 1 andcoefficients, and are valid up to laser pulse lengths of several
3, or perpendicular to it, respectivelfhe SHG/DFG contri- nanoseconds, depending on the angle between the beams. To
bution is marked with § and z’ because it is the same for obtain the effective susceptibility including elastic relax-
both sample orientationsThe remaining columns list the ation, I used the data in Refl29] to calculate the effective
second-order contributions for the two different DFWM ge- €lectro-optic tensof41) and the effective dielectric tensor
ometries presented in Fig. 1. The two OR/EO contributiond42), and used the resu[t§R|n EC{%%);(39)- Without piezo-
with different wave vectors are Iis'ted'in'separate CO'“”‘,”Selectric relaxation, X(Sgé‘;b :X(sgé';a )= 24% 10722 m2/\?2
while the one SHG/DFG contribution is in a column by it- for the phase-conjugation setup aiit. For y{3., and y()

self. For every contribution, the corresponding pair of > "' P onjugation Setup an. FOr xiiss aNdx2233
electro-optic or nonlinear optical coefficients is also listed.the piezoelectric contribution fde, 1 ¢ always vanishes by
The direct third-order contribution is the same for every hori-Symmetry, as can be demonstrated with E4f). See Ref.

zontal section of Table II. Botly{3, and x$3), are of the  [25] for further details on this effect.
order of ~60x 10722 m?/V2 in KNbO; [13]. It is important to note that the data in the table assumes

To give an example of its effect, | included piezoelectricthat all light polarizations are kept .const_ant.in the sample
elastic relaxation for the contribution with the large wave 'éférence frame when the sample orientation is changed from

SOR i o : c|lx to c||z. While the direct third-order susceptibility does
vectorky™ in Fig. 1(b) (phase-conjugation DFWM setip not change with crystal orientation or experimental setup, the

For the large wave vectdt " of the rectified polarization, indirect second-order contributions do. The considerable
the propagation velocity of elastic waves aldfﬁf can be variations of the effective third-order susceptibilities listed in
so high that the crystal can elastically relax already duringTable Il obviously has important consequences for the inter-
the light pulse. The OR/EO contributions for all other wavepretation of DFWM results in any centrosymmetric material.
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As an example, thg$3;, coefficient can be measured with ~ TABLE Il. The largest electro-optic coefficients;j, (from

(i) c||y and all beams polarized along or (ii) C||z and all Refs. [32,31]) and nonlinear optical coefficient_nsiijl< (f_rom Ref.
beams polarized along Depending on experimental con- [33]) of DAST, at a wavelength of 1.54m. The dielectric constant

figuration, several different results can be obtained. For th%:from Ref.[31)), a.md the refractive indices at the same wavelength
n(w)] and at twice the frequendyn(2w)] are also given.

OR/EO contributions only 535 contributes toP°R, which is
then parallel toc. For the phase-conjugation setlipig. ijk Fik (PMV)  dg; (pmV) & ni(w)  ni(20)
1(b)], both rectified polarizations are transverse fdlz,

S - T 111 47 290 6.5 2.13 2.40
while POR(k?R) becomes longitudinal foc|y. For the for- 991 21 a1 25 160 169
ward setupPOR(kR) is transverse an@°R(kS®) longitu- 331 “01 23 157 162
dinal for ¢z, and vice versa foc|y. The total OR/EO con- 113 5
tributions change by about a factor of two when rotating the,» 14 39

sample (and all polarizations by 90° in the phase-
conjugation setup, or when switching to the forward DFWM
geometry for a sample with the axis parallel toz. The
SHG/DFG contribution, on the other hand, is the same for Table Il is a good example of the sensitivity of the cas-
both sample orientations but is very sensitive to the type otaded contributions to the choice of DFWM experimental
DFWM setup used, changing from being negligible in thesetups and the sample orientation. The same kinds of geom-
phase-conjugation setup of Fig(bl to being the dominant etry dependencies highlighted in Table Il are expected in all
cascading contribgution in téhe forward setup. Similar effectsyoncentrosymmetric materials. Referefit8] presents some
are observed fog53h;andx53ys. Interestingly, in the forward  gata on the OR/EO contributions to DFWM in tetragonal
setup, theotal cascaded contribution does not depend on th‘?saTiO3, another ferroelectric perovskite. In BaTiOthe
orientation of the sample for all coefficients with the eXCeP-glectro-optic coefficients are even larger than in KNb&b

i (3) . "L :
tion of x333- o . . . that the importance of the OR/EO contributions is about
The SHG/DFG contribution is negligibly small in all i a5 large as in KNbO

cases for the phase-conjugation DFWM configuration be- From this example it is obvious that a correct inclusion of

cause in KNbQ the electronic response responsible forthe second-order effects in DFWM measurements is of para-
SHG/DFG is smaller than the optical-phonon contributionsmount importance for a correct reporting of experimental
to EO/OR, and because the second-harmonic polarization is . .
spatially homogenous. But the SHG/DFG contributions be_results, ar_1d n _ordt_ar to be able to compare experimental re-
come important in the forward DFWM configuration of Fig. sults obtained in different laboratories.
1(a), where the second-harmonic polarization is a transverse
plane wave, and the SHG process is nearer to phase match- g cascaded Contributions to DFWM in the Organic
ing. _ _ Crystal DAST

It is very interesting to note that for the SHG/DFG con-
tribution x§5%# X535, While for the direct third-order con- 1o complete our practical examples of the second-order
tribution and for the OR/EO contribution the symmetry rule contriputions to DFWM we consider an organic molecular
Xijmn=Xianij @lways applies. This can be explained as fol-crystal. We chose the organic salt DAST because it is one of
lows. For the SHG/DFG contribution tg53%,, the second- the known organic crystals with better optical quality, high
harmonic polarization is induced by beams polarized alongilectro-optic and nonlinear optical susceptibilities, and is an
3, while for the SHG/DFG contribution tg53),, the second- deal candidate for experiments. Moreover, it has high
harmonic polarization is induced by beams polarized alongecond- and third-order nonlinear optical response and some
2. This does not matter for the DFWM configuration of Fig. second-order contributions to DFWM have already been ob-
1(b), because there the electric field induced by the polarizaggpeq experimentallj31].
tion does not depend on the refractive indices seen by the tapie 111 gives the relevant material tensors of DAST,

fbeamsd IB?:L\j/SII\r/]lg th? sec?_nd—tcr)]rder polzriﬁation. .BUt :‘or' th‘?aken from the literature. Since DAST belongs to the point
orwar configuration theé second-harmonic po.ar'za'groupm, it has ten independent second-order susceptibilities
tion is transverse. The magnitude of the electric field it 9€N$.r OR/EO and SHG/DEG. The ones listed in the table are
erates depends on the pha_se mlsr_nat_ch between the bea”;ﬁ’)ected to be the Iargeét ones because of the molecular
inducing the second-harmonic polarization and a propagatin rientation inside the DAST cryst82,33, which makes the
wave at the second harmonic frequency. This destroys th y o

) =), symmetry. Moreover, normal refractive-index other coefficients negligible.
Xazss™ X352z S Y c i;s'H) Similar to what was done for the example of KNHO

dispersion leads to a negatixg3s; |, because here the po- calculate all second-order contributions for both DFWM
larizations of beams 1 gsnd 2 and the second-harmonic polagpnfigurations in Fig. 1, and two different orientations of the
ization are parallely S5 H’, on the other hand, is positive sample. For DAST, | calculate all third-order susceptibilities
because here beams 1 and 2 have a polarization perpendidavolving the indices 1 and 2, which can be measured in a
lar to the second-harmonic polarization and the refractiveerystal with a polished face perpendicular to the 3 axis and
index differences in the denominator of E§0) change sign. with beam wave vectors almost parallel to the 3 axis. The
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TABLE IV. Second-order cascaded contributions to DFWM in this organic crystal the electro-optic response as well as the
DAST for the two DFWM setups shown in Fig. 1 and at a wave- frequency-doubling response both share a very large elec-
length of 1.54 um. The contributions are listed separately for the {ronjc contribution, while the optical-phonon contributions to
two OR/EO contributions with wave vectok§® andkg®, and for  OR/EO are relatively small. DFWM experiments at a wave-
the one SHG/DFG contribution. The effective third-order suscepti-length of 1.06um in DAST, which demonstrated the pres-
bilities are given for two orientations of the crystal (1-axis parallel ence of the OR/EO cascaded contributions have been re-
or pe_rpendiculzazlr tozthezz incidence plane of beams 1 andr8l are ported in Ref[31].
In units of 107 mr/V". Also notable in Table IV is the very large SHG/DFG con-
tribution to x{3), in the forward DFWM configuration. This

Fig. 1(b) Fig. 1(a) _ FWH
1 axis  KOR KOR KOR KOR is caused by the fact that for this diagonal element the re-
- 2 b 2 i fractive index difference between a frequengyand a fre-
x5 Fafin Ml Faafaan Ml quency 2 is only given by the refractive index dispersion
y 183 183 183 —5.6 between 1.5um and 0.7 um, and not by the(relatively
. . KSH .
z —56 183  -56 183 large birefringence of DAST. Note also that;X, is large
M1 Tmdnsz fadfas Faduas and negative, so that it tends to compensate the genuine
y 41 =36 41 4.1 third-order x {3}, in this configuration.
z 4.1 —3.6 4.1 4.1
S
X5 EEECEE d11:0131 VI. CONCLUSIONS
y andz —-100 —1545 _ ) _ )
This work presented a detailed discussion of all second-
X(ﬁ’z@:)((z(z:’l@ Tord o1y Tordo1o Tiod 122 To1d 21 order COI’]tI‘IbutI‘OI’]S to d_egenerate four-wave mixing in non-
y 78 98 78 98 centrosymmetric materials and gave general expressions for
5 98 98 98 78 the corresponding effective third-order susceptibility that
(C.iSH o ' P ' must be used to calculate the DFWM signal.
X1122 120111 128111 . .
q 4 18 It was found that the three input beams in DFWM can
(i y andz dond dood combine pairwise to generate one second-harmonic polariza-
X2211 111122 111122 tion and two static-polarization gratings. The second-
y andz —-14 —58 harmonic polarization is spatially homogenous in the phase-
) conjugation DFWM geometry, while it is modulated like a
X359 M2z Taad212 Fuf2zr faid2i2 plane wave for the forward DFWM geometry. Everyone of
y 26.1 9.8 298 -7.8 the three second-order polarizations contributes to the
z -8.0 9.8 -8.0 0.8 DFWM signal, phase matched with each other and with the
X(lczz,lﬁzsw Aoy 0y1, dyy0510 genuine third-order_ eff_ect that is alvyays present. qu egch
y andz —6 735 second-order polarization, the magnitude of its contribution

to the DFWM signal depends on the orientation of its spatial
modulation.

) ) . . Because of all these effects the effective susceptibility de-
long axis of the molecules in the DAST crystal is approxi-gcriping DFWM in noncentrosymmetric materials changes
mately oriented along the 1 axis, making the nonlinear optiyramatically for different DFWM setups and on varying the
cal contributions from this axis dominant over all others.  qjentation of the sample with respect to the wave vectors of

The results—obtained by using the data in Table Ill andie jnteracting beams, a fact that is very important when
Egs. (28), (38), and (39)—are displayed in Table IV. As is omparing third-order susceptibility values measured in dif-
readily visible from this table, the second-order contributionsggrent |aboratories. Certain symmetry properties that are
to DFWM in DAST have the same complicated geometrycparacteristic of the third-order susceptibility for DFWM in
dependences as in KNgOand the discussion of the preced- cenrosymmetric materials do not exist anymore for DFWM
ing section applies also in this case, even though here the centric materials. If properly taken into account, the de-
OR/EO contributions are less important when gompared Dendence of the second-order contributions from sample ori-
the direct third order susceptibility. For DASE{(—®,  entation can be used to relate experimentally the values of
—w,0,0) is of the order of 3008 10~?* m?/V? for @ cor-  third-order and second-order susceptibilities. This allows the
responding to 1.06&um (while x{35,~500< 10722 m*V?)  measurement of the third-order susceptibility without relying
and x {3} ,~300x 10722 m?/v?) [31]. For the wavelength of on a reference material or on a detailed characterization of
1.54 um of interest here these values should probably behe spatial and temporal profile of the laser fields inside the
reduced by about 50%. sample.

An important difference between this example of DAST  To date, an experimental confirmation of the predictions
and the previous example of KNRQis that for DAST the of this work has been performed for the OR/EO contribu-
SHG/DFG contributions are comparable to the OR/EO contions in the phase-conjugation DFWM geometry of Fith)1
tributions also in the phase-conjugation DFWM configura-[13,31,25. This gives support to the general theoretical ap-
tion of Fig. 1(b) (while they were negligible in KNbg). In proach used in this paper, and, therefore, also to the predic-
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tions regarding the forward-DFWM setup of Fig(al and
the SHG/DFG contributions.

PHYSICAL REVIEW A64 063813

work should help experimentalists towards a complete re-
porting of DFWM experiments, and towards a reliable deter-

DFWM is a standard tool for the determination of third- mination of third-order susceptibilities of nhoncentrosymmet-
order susceptibilities. The theory and examples given in thisic materials by DFWM.
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