Surface Chemical and Mechanical Properties of Plasma-Polymerized N-Isopropylacrylamide

Xuanhong Cheng, Heather E. Canavan, M. Jeanette Stein, James R. Hull, Sasha J. Kwseski, Matthew S. Wagner, Gabor A. Somorjai, David G. Castner and Buddy D. Ratner

University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, University of Washington, Seattle, Washington, and Department of Chemistry, University of California at Berkeley and Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Received February 16, 2005. In Final Form: May 3, 2005

Surface-immobilized poly(N-isopropyl acrylamide) (pNIPAM) is currently used for a wide variety of biosensor and biomaterial applications. A thorough characterization of the surface properties of pNIPAM thin films will benefit those applications. In this work, we present analysis of a plasma-polymerized NIPAM (ppNIPAM) coating by multiple surface analytical techniques, including time-of-flight secondary-ion mass spectrometry (ToF-SIMS), contact angle measurement, atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. ToF-SIMS data show that the plasma-deposited NIPAM polymer on the substrate is cross-linked with a good retention of the monomer integrity. Contact angle results confirm the thermoresponsive nature of the film as observed by a change of surface wettability as a function of temperature. Topographic and force–distance curve measurements by AFM further demonstrate that the grafted film shrinks or swells depending on the temperature of the aqueous environment. A clear transition of the elastic modulus is observed at 31–32 °C. The change of the surface wettability and mechanical properties vs temperature are attributed to different conformations taken by the polymer, which is reflected on the outmost surface as distinct side chain groups orienting outward at different temperatures as measured by SFG. The results suggest that a ppNIPAM thin film on a substrate experiences similar mechanical and chemical changes to pNIPAM bulk polymers in solution. The SFG result provides evidence supporting the current theory of the lower critical solution temperature (LCST) behavior of pNIPAM.

Introduction

Poly(N-isopropyl acrylamide) (pNIPAM) has been studied extensively for decades for its reversible phase transition behavior: the swollen polymer matrix in an aqueous solution collapses as the temperature is increased above the lower critical solution temperature (LCST). This transition around physiological temperature has recently found numerous applications including drug release, chromatography for bioseparation, biosensors, catalytic reaction control, gene delivery, protein folding, and microactuators. When immobilized onto a flat substrate, the LCST behavior of pNIPAM leads to a temperature-controlled wettability change on the surface and has been used for control of protein adsorption and cell adhesion. The recent work by Okano and colleagues to recover cell sheets from pNIPAM-grafted surfaces brings exciting applications of the grafted polymer to 2-D and 3-D tissue engineering.

Author to whom correspondence should be addressed. Buddy D. Ratner, Director, University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, Box 351720, University of Washington, Seattle, WA 98195-1720. E-mail: ratner@uweb.engr.washington.edu. Tel: (206) 685-1005. Fax: (206) 616-9763.

1 University of Washington Engineered Biomaterials.
2 Department of Bioengineering, University of Washington.
3 Department of Chemical Engineering, University of Washington.
4 University of California at Berkeley and Lawrence Berkeley National Laboratory.
5 Department of Bioengineering, University of Washington.
6 National ESCA and Surface Analysis Center for Biomedical Problems.
7 Department of Chemical Engineering, University of Washington.
8 University of California at Berkeley and Lawrence Berkeley National Laboratory.
9 Author to whom correspondence should be addressed.
10 Director, University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, Box 351720, University of Washington, Seattle, WA 98195-1720. E-mail: ratner@uweb.engr.washington.edu. Tel: (206) 685-1005. Fax: (206) 616-9763.

1 Author to whom correspondence should be addressed.
2 Director, University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, Box 351720, University of Washington, Seattle, WA 98195-1720. E-mail: ratner@uweb.engr.washington.edu. Tel: (206) 685-1005. Fax: (206) 616-9763.
3 University of Washington Engineered Biomaterials.
4 Department of Bioengineering, University of Washington.
5 Department of Chemical Engineering, University of Washington.
6 University of California at Berkeley and Lawrence Berkeley National Laboratory.
7 Department of Bioengineering, University of Washington.
8 National ESCA and Surface Analysis Center for Biomedical Problems.
9 Department of Chemical Engineering, University of Washington.
10 University of California at Berkeley and Lawrence Berkeley National Laboratory.
11 Author to whom correspondence should be addressed.
12 Director, University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, Box 351720, University of Washington, Seattle, WA 98195-1720. E-mail: ratner@uweb.engr.washington.edu. Tel: (206) 685-1005. Fax: (206) 616-9763.
13 Department of Bioengineering, University of Washington.
14 Department of Chemical Engineering, University of Washington.
15 University of California at Berkeley and Lawrence Berkeley National Laboratory.
16 Department of Bioengineering, University of Washington.
17 National ESCA and Surface Analysis Center for Biomedical Problems.
18 Department of Chemical Engineering, University of Washington.
19 University of California at Berkeley and Lawrence Berkeley National Laboratory.
20 Author to whom correspondence should be addressed.
21 Director, University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, Box 351720, University of Washington, Seattle, WA 98195-1720. E-mail: ratner@uweb.engr.washington.edu. Tel: (206) 685-1005. Fax: (206) 616-9763.
22 Department of Bioengineering, University of Washington.
23 Department of Chemical Engineering, University of Washington.
24 University of California at Berkeley and Lawrence Berkeley National Laboratory.
25 Department of Bioengineering, University of Washington.
26 National ESCA and Surface Analysis Center for Biomedical Problems.
27 Department of Chemical Engineering, University of Washington.
28 University of California at Berkeley and Lawrence Berkeley National Laboratory.
29 Author to whom correspondence should be addressed.
30 Director, University of Washington Engineered Biomaterials, National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering, and Chemical Engineering, Box 351720, University of Washington, Seattle, WA 98195-1720. E-mail: ratner@uweb.engr.washington.edu. Tel: (206) 685-1005. Fax: (206) 616-9763.
31 Department of Bioengineering, University of Washington.
32 Department of Chemical Engineering, University of Washington.
33 University of California at Berkeley and Lawrence Berkeley National Laboratory.
Recent studies have examined the physical and chemical properties of immobilized pNIPAM using various techniques such as infrared (IR) spectroscopy, contact angle, secondary-ion mass spectrometry (SIMS), and ellipsometry. However, a comprehensive study of the grafted pNIPAM thin film—including its mechanical properties and surface transition details—has yet to be undertaken and will enable further surface applications of pNIPAM.

In this paper, we studied a pNIPAM-grafted surface with multiple complementary surface analytical techniques. The pNIPAM thin film is produced using plasma polymerization (ppNIPAM), which is a one-step, solvent-free, vapor-phase technique to produce conformal, sterile, tightly adhering, and ultrathin coatings. Previously, we demonstrated that ppNIPAM stimulates different cell responses depending on the surface temperature and explored its application for proteomic and cellomic studies. Here, we characterized the mechanical and chemical properties of the thin film to better understand the behavior of the polymer itself. We used time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) and principal component analysis (PCA) of the ToF-SIMS data to compare the surface chemistry of ppNIPAM to conventionally synthesized pNIPAM by free-radical polymerization.

The temperature-induced wettability change of the polymer coating was studied by contact angle measurements. To correlate the surface wettability with the polymer chemical properties, atomic force microscopy (AFM) was applied to study the topography and modulus of the thin film under ambient conditions in water.

Experimental Methods

Substrate Preparation. Silicon wafers were obtained from Silicon Valley Microelectronics (San Jose, CA) and diced into 1 cm × 1 cm squares. Calcium fluoride (CaF₂) crystals were purchased from International Scientific Products (Irvine, NY). The wafers and CaF₂ samples were cleaned by sonication in methylene chloride, acetone, methanol, and 18 mΩ deionized (DI) water (Millipore, Billerica, MA) twice each for 10 min. The wafers and CaF₂ crystals were then subjected to a 30 min UV/ozone oxidation treatment to remove trace organic contaminants before further use.

Plasma Polymerization. Plasma polymerization of NIPAM was carried out in a custom-built reactor using the protocol described earlier. In brief, the powered electrode was connected to a 13.56 MHz radio frequency power source and a manual impedance matching network. The deposition process included an 80 W methane plasma deposition followed by NIPAM plasma deposition with stepwise decreasing powers from 80 to 1 W for 30 min with a processing pressure of 100 mTorr. The ppNIPAM-grafted surfaces were rinsed three times with cold, deionized water to remove un-cross-linked molecules before use.

Preparation of Film Thickness Measurement. To measure ppNIPAM film thickness, a mask was applied on the center of a silicon chip to block deposition in a small region on the substrate. The mask solution was prepared by dissolving poly(vinyl alcohol) (PVA) in 6 mL of deionized water at room temperature to make a 10% (w/v) solution. The reaction was carried out in benzene using azobisisobutyronitrile (AIBN, CH₂N₂) as the free-radical initiator to obtain the polymer. One gram of polymer was dissolved in deionized water at room temperature to make a pNIPAM solution. Twenty microdrops of solution was pipetted on a piece of silicon (8 mm × 8 mm) and spun-cast at 4000 rpm for 20 s to form the control surface for the ToF-SIMS study.

ToF-SIMS and Principal Component Analysis (PCA). ToF-SIMS data acquisition was performed using a PHI Model 7200 Physical Electronics instrument (PHI, Eden Prairie, MN) equipped with an 8 keV Cs⁺ primary ion source, a reflectron time-of-flight mass analyzer, a chevron-type multichannel plate (MCP) time-to-digital converter (TDC), and a silicon detector. The data were analyzed using custom software written in house. The secondary ion mass spectra were collected over a mass range from m/z = 0 to 400 and analyzed with PHI ToFSpec software. As both the positive- and negative-ion mass spectra showed similar trends, only positive-ion ToF-SIMS spectra were presented in this study. The area of analysis for each spectrum was 100 μm × 100 μm, and the total ion dose used to acquire each spectrum was less than 2 × 10^11 ions/cm². The mass resolution of the secondary ion peaks in the positive-ion spectra was typically between 4000 and 6000. Positive-ion spectra were calibrated using CH₃⁺, C₂H₅⁺, C₃H₇⁺, and C₄H₉⁺ peaks before further analysis.

Finally, we used sum frequency generation (SFG) vibrational microscopy to probe the species of the surface functional groups. Our study demonstrates that temperature affects the wettability, mechanical properties, and conformation of the ppNIPAM thin film. These observations are consistent with those previously reported for bulk pNIPAM in solution.
Three replicates were prepared for each sample type, with three spectra acquired from different locations on each replicate. ToF-SIMS spectra from different sample types (ppNIPAM or pNIPAM) were compared using principal component analysis (PCA), which captures the linear combination of peaks that describe the majority of variation in a dataset (the principle components, PCs). Although a detailed description of PCA is not covered here, the interested reader is referred to a more complete discussion of PCA by Jackson and Wold. A “complete” peak set using all of the peaks with intensities >3 times the background in the $0–400 \text{ m/z}$ region was generated from all of the spectra. The peaks were then normalized to the total ion intensity to account for fluctuations in secondary-ion yield between different spectra, and all the datasets were mean-centered. PCA was then used to analyze the positive ToF-SIMS spectra, and was performed using PLS Toolbox v. 2.0 (Eigenvector Research, Manson, WA) for MATLAB (MathWorks, Inc., Natick, MA).

From this input, an output of both “scores” and “loadings” plots were obtained to compare the main differences of the samples and contribution of the chemistries to the difference. The scores describe the relationship or spread of the samples. They represent the amount of the PC in each sample and are the projection of the samples onto the PC axes. Loadings plots describe which variables are responsible for the differences seen within the dataset.

Contact Angle Measurement. Surface wettability was evaluated by a captive air bubble method. This was done by measuring static contact angles of air bubble in contact with the samples submerged in pure water using a contact angle goniometer (Ramé-Hart, Mountain Lakes, NJ). The samples were allowed to equilibrate for at least an hour in the water bath at the appropriate temperature before any measurements were taken.

AFM Measurements. All AFM measurements were performed using a PicoScan microscope (Molecular Imaging (MI), Phoenix, AZ) on ppNIPAM deposited onto silicon chips. Samples were incubated in DI water for an hour and then transferred to a Teflon cell containing DI water for measurement. The cell was mounted on a MI thermal stage controlled by a temperature controller (Model 321, Lake Shore Cryotronics, Phoenix, AZ) on ppNIPAM deposited onto silicon chips. Samples were allowed to equilibrate for at least half an hour at each temperature before the measurements were taken.

Topography images were obtained in the acoustic AC mode using rectangular silicon cantilevers with integrated sharp tips, having resonance frequencies in the range of $260–410 \text{ kHz}$ (PPP-NCH type, Nanosensors, Neuchatel, Switzerland). The boundary between the plasma polymer coated and uncoated regions were aligned directly below the AFM tip using an add-on CCD camera. The images were analyzed using Image J software (http://rsb.info.nih.gov/ij/) to get height histograms, average step height, and roughness information.

The force displacement curves were taken with standard V-shaped silicon nitride cantilevers (Nanoprobe AFM tips, Type PPP-NCH, Digital Instruments, Santa Barbara, CA). The tip spring constant was 0.06 N/m according to the manufacturer’s specifications. The tip radius was measured to be $50–60 \text{ nm}$ by scanning an Ultrasharp calibration grating that contains an array of sharp tips (TGT01 model, Silicon-MDT, Moscow, Russia). These V-shaped silicon nitride cantilevers (Nanoprobe AFM tips, Type PPP-NCH type, Nanosensors, Neuchatel, Switzerland). The tip radius was measured to be 50 nm.

The force displacement curves were taken on a reference surface, which is assumed to have infinitely high stiffness and no deformation from pressing. In our study, a piece of clean silicon wafer was used as the reference surface, whose modulus is 160 GPa and several orders of magnitude higher than the polymer. To exclude the possibility of polymer plastic deformation, tens of force displacement curves on the same location were recorded and identical curves were obtained, indicating full recovery of surfaces for each indentation cycle. The measured force–displacement curves were converted to plots relating indentation depth vs loading force according to previously described methods. The indentation of the cantilever under a given load was fit to the Hertz model for indentation of a sphere on an elastic solid and used to calculate the elastic modulus of the surface thin film. The indentation depth was controlled to no greater than 20% of the film thickness to minimize the influence of the substrate on the results. From the difference of polymer plastic deformation, force displacement curves on the same location were recorded and identical curves were obtained, indicating full recovery of surfaces for each indentation cycle.

ToF-SIMS Analysis of Surface Chemistry. ToF-SIMS spectra acquired from different locations on each replicate. For a given condition, SFG measurements were repeated on at least three different samples with 1–3 spots probed on each sample. For each sample spot, 4–5 scans were performed with 100 shots/data point to increase the signal-to-noise ratio. The collected data were averaged to produce the final spectra presented here.

Results and Discussions

ToF-SIMS Analysis of Surface Chemistry. Previously, we presented an ESCA analysis on ppNIPAM indicating that its surface chemical composition is close to that predicted by the monomer’s stoichiometry. To better assess whether the polymer film structure is retained after plasma deposition, ToF-SIMS was used as a complementary technique, as it yields information regarding molecular species at interfaces. A representative ToF-SIMS positive ion spectrum of ppNIPAM in the range (51) Chizhik, S. A.; Huang, Z.; Gorbunov, V. V.; Myskhin, N. K.; Tsukruk, V. V. Langmuir 1998, 14, 2606–2609.

from \(m/z = 0 \) to 200 is shown in Figure 1a, as very few peaks of interest are beyond this range. The molecular fragment of the NIPAM monomer (\(\text{C}_6\text{H}_{12}\text{NO}^+ \)) is clearly evident at \(m/z = 114.093 \). Fragments at \(m/z = 43.055 \) and 58.065 are indicative of the monomer fragments \(\text{C}_3\text{H}_7^+ \) and \(\text{C}_3\text{H}_8\text{N}^+ \), respectively. The ToF-SIMS spectra of pNIPAM by free-radical polymerization also contain these peaks. Observation of the monomer molecular fragments supports the hypothesis that at least some of the monomer units remain intact on the surface following plasma deposition.

We next compare the surface chemistry of ppNIPAM to that of conventionally synthesized pNIPAM. ESCA analysis reveals the similarity of ppNIPAM to pNIPAM in both the elemental composition and chemical bonding (data not shown). However, a direct comparison of ppNIPAM and pNIPAM SIMS spectra is difficult, as SIMS spectra from each type contain hundreds of peaks in the 0–400 \(m/z \) range. Principal component analysis (PCA) is used to aid in the interpretation of spectra by identifying related variables and focusing on the differences between spectra.\(^{48,49}\) Figure 1b shows a scores plot of principal component 1 (PC1), which captures 97% of the variance in the data, vs the spectrum number. Examination of Figure 1b shows that ppNIPAM and pNIPAM samples are distinctly grouped from each other: ppNIPAM samples cluster above the \(x \) axis, and pNIPAM samples cluster below the \(x \) axis. To appreciate the reason for these differences, we must inspect the loadings plot for PC 1.

Figure 1c represents the loadings from PC1. Peaks are shown only in the mass range from \(m/z = 0 \) to 200, as few peaks of interest are observed beyond this range. Each of the positive peaks in the PC1 loadings plot corresponds to samples in the scores plot with positive scores. Of key interest in the loadings plot is the absence of molecular fragments arising from the intact NIPAM moiety in the negative loadings corresponding to conventional pNIPAM. This indicates that the differences between ppNIPAM and pNIPAM surfaces are not due to the absence of monomer units. Instead, when comparing the PC1 loadings plot to the PC1 scores, we find that separation of ppNIPAM from pNIPAM is due to peaks loaded positively with ppNIPAM, including 74.062 (\(\text{C}_3\text{H}_8\text{NO}^+ \)), 97.080 (\(\text{C}_3\text{H}_9\text{N}_2^+ \)), and 156.144 (\(\text{C}_9\text{H}_{18}\text{NO}^+ \)). These peaks are likely produced by cross-linking or other reactions occurring during the plasma deposition process as they do not contain the monomer structure. This is expected considering the numerous reactive species created in the energetic plasma process.\(^{59}\) The fact that hydrocarbon peaks at 27.024 (\(\text{C}_2\text{H}_3^+ \)) and 43.055 (\(\text{C}_3\text{H}_7^+ \)) loaded negatively with pNIPAM indicate the cross-linking may be occurring through the side-chain propyl groups. Therefore, a comparison of the positive-ion spectra of the two surfaces indicates that the NIPAM monomer units are immobilized onto the substrate in the plasma film with high retention of the NIPAM structure despite the concern of significant monomer fragmentation in the plasma state.\(^{59}\) Two hypotheses may explain the maintenance of the monomer integrity: (1) low RF power (as used in our process) reduces monomer fragmentation in plasmas\(^{59}\) and (2) condensation of polymerizable molecules (e.g., molecules with unsaturated backbones) in conjunction with plasma deposition.

onto the surface helps with the formation of predictable chemical functionalities that resemble the monomer.60–62 That the monomer structure is retained suggests that the phase transition properties of the ppNIPAM thin film will be retained as well. However, as both ESCA and ToF-SIMS are ultrahigh vacuum techniques, they cannot probe the phase transition behavior in situ. Thus, we employ several other techniques in the rest of the paper to directly study the structure and behavior of ppNIPAM films below and above the LCST in water.

Change in Surface Wettability by Contact Angles

To directly evaluate the wettability of the ppNIPAM film, a captive air bubble contact angle of the ppNIPAM film surface was measured in water. A summary of the advancing contact angles measured on ppNIPAM-coated silicon and bare silicon is found in Table 1. The contact angles on ppNIPAM change from $34 \pm 1.0^\circ$ at 20°C to $40 \pm 0.5^\circ$ at 45°C ($n \geq 11$), which are comparable with measurements by Akiyama et al. using a silane-grafted pNIPAM thin film.63 Similar measurements taken on untreated bare silicon show no statistical change in the surface contact angles over the same temperature range ($41 \pm 0.6^\circ$ at 20°C to $40 \pm 0.6^\circ$ at 45°C). The significantly lower contact angle at room temperature on ppNIPAM indicates that the plasma film becomes more hydrated when the temperature is below the LCST. Thus, the surface wettability change with temperature confirms the thermoresponsive behavior of ppNIPAM film, as expected from the intact monomer structure observed in ToF-SIMS.

Surface Topography by AFM

Bulk pNIPAM polymer demonstrates a transition in volume and modulus through its LCST.52,23 To test whether this is also the case with the plasma-deposited thermoresponsive film, we studied the surface topographic and mechanical properties of ppNIPAM using AFM. Figure 2 shows the surface topography of a ppNIPAM film imaged in water by AFM at 25 and 37°C. The surface is fairly smooth at 37°C with a root-mean-square (RMS) roughness of 3.5 ± 0.5 nm over a $5 \mu m \times 5 \mu m$ scan area. When the same size image is taken at 25°C, the RMS roughness increases to 5.3 ± 1.1 nm. It has been previously observed that, when ppNIPAM hydrates at room temperature, it creates nanocavities on the surface63 that probably account for the slight increase in surface roughness observed in the swollen state. This may suggest an inhomogeneous cross-link density over the surface at a nanometer scale causing some areas to swell less than others.

To determine the film thickness in water at different temperatures, ppNIPAM steps are created by plasma deposition over a partially masked sample and then removing the mask afterward. Two characteristic AFM images of the same area across a ppNIPAM step with the height histograms and section analysis are shown in Figure 3a and d. The height histograms obtained for each image give two characteristic peaks corresponding to the substrate and coating heights (gray areas in Figure 3b and e). By subtracting the lower peak value from the upper, the film thickness is obtained. To accurately estimate the peak location in the histogram, a Gaussian model is used to fit each peak in the histograms (black curves in Figure 3b and e). The distances between the two peaks are 73.7 and 63.7 nm at 25 and 37°C, respectively, indicating a 10 nm decrease in film thickness above the LCST compared to below the LCST. The section analysis on individual scan lines (Figure 3c and f) in the two images confirms the values obtained from the histograms. The broadening of the height histogram at 25°C (Figure 3b) also indicates higher roughness and scattering of the height distribution. Identical histogram analyses were performed on four samples of different deposition batches and three spots on each sample. The results are summarized in Figure 3g. Although the thickness of deposited polymer varies from batch to batch, decreased film thickness is observed in all the samples and areas tested as temperature increases from below to above the LCST, with the error bars in Figure 3g resulting from variations in film thickness on individual samples at each temperature. The batch-to-batch variation of the film thickness at the same temperature may arise from variation in the plasma polymerization process.

Recently, Akiyama et al. reported that temperature-controlled cell adhesion and detachment from ppNIPAM surface is dependent on the thickness of the thermoresponsive film.39 However, in our cell culture study, no obvious difference was observed on different batches of coatings.45 This suggests that the variation in film thickness we observed arises mainly from the thickness variations in the underlying adhesion-promoting layer formed during the high-power deposition, not thickness variations in the top functional ppNIPAM coating.

Mechanical Property by Force Displacement Curves

Since the ppNIPAM film thickness/volume changes with temperature, it is expected that the polymer mechanical properties also vary.32 Atomic force microscopy has been shown as a unique tool to probe the micro-mechanical properties of thin-film coatings.64–67 Figure 4a shows sample AFM force vs distance curves obtained on bare silicon at room temperature and on ppNIPAM surface at 25 and 37°C in pure water. In this figure, the cantilever deflection is presented as a function of the z piezo displacement. It is clearly seen that the cantilever deflection is less for the same z piezo movement at 25°C than at 37°C, indicating the polymer is softer and more swollen at 25°C.

To quantitatively compare the thin-film mechanical properties, the force-displacement data (Figure 4a) are converted to plots relating the indentation depth as a function of the loading force (squares and circles in Figure 4b). The elastic moduli are obtained from best fitting to the indentation vs load data using the Hertz model (thin solid lines in Figure 4b). The parameters used are $R = 53$ nm and $v = 0.5$ assuming elastic deformation. The spring constant is 0.06 N/m taken from the manufacturer’s specifications. For easier comparison of the fitted curve and experimental data, the same plot is shown in the log–log presentation in Figure 4c. It is observed that the experimental data are described satisfactorily using a simple Hertz model for the force displacement measure-

ment taken at 37 °C (solid squares in Figure 4b and c). However, at 25 °C, the fitted curve deviates from the experimental measurement when the indentation depth goes beyond 12–13 nm. As the Hertz model assumes that the two contacting surfaces have homogeneous elastic properties in the z direction, this deviation is likely due to the substrate effect that the simple Hertz model cannot explain, as reported by Domke and Radmacher.44 Using the optimal fitting parameters, the elastic moduli are calculated to be 185.2 kPa at 25 °C and 1.592 MPa at 37 °C for the two curves shown in Figure 4a. Thus, the local stiffness of ppNIPAM is more than 8 times higher in the collapsed state at 37 °C than in the swollen state at 25 °C.

In an aqueous environment, bulk polymer chains of pNIPAM are believed to adopt a random coil configuration below the LCST and a more compact globular configuration above the LCST. This conformational transition accounts for changes in both polymer volume and mechanical properties.33 The AFM study in our work demonstrates that the ppNIPAM thin film is still able to transition between the collapsed and swollen state as the temperature is changed. However, when comparing the mechanical characteristics of the ppNIPAM thin film produced in our system with those of the pNIPAM gel synthesized by free-radical polymerization in the bulk state, some obvious differences are noticed. Matzelle et al. recently reported a swelling ratio of eight and elastic moduli of 2.8 and 183 kPa at 25 and 35 °C, respectively for a lightly cross-linked pNIPAM gel (100:1 monomer-to-cross-linker molar ratio) cast onto mica.63 The surface-immobilized ppNIPAM, however, has a higher moduli (185 kPa and 1.592 MPa) and lower swelling ratio (<1). This would seem to support our conclusion from PCA analysis of theToF-SIMS data that the ppNIPAM film is more cross-linked, as cross-links have been shown to restrict the magnitude of the swelling ratio and reinforce the polymer mechanical properties.32,33,68,69 Nevertheless, the moduli below and above the LCST obtained by us still fall in the soft hydrogel range of kilopascals to a few megapascals.70

To determine at which temperature the transition in surface stiffness happens, force–distance curve measurements were taken at 1 °C increments from 24 to 37 °C.

Five to 10 randomly selected spots were probed at each temperature with the average elastic moduli summarized in Figure 4d. The surface stiffness increases significantly around 31–32 °C, close to the transition temperature measured by Pan et al. using an AFM modulation measurement.41 To confirm that the stiffness transition behavior is reversible, the surface was cooled to 25 °C again and the measured modulus is shown as an open square in Figure 4d. It is clearly observed that the film rehydrates and swells after cooling to below its LCST. The relatively larger deviation for measurements taken above the transition temperature may arise from reduced sensitivity to modulus differences in the range of the higher modulus above the LCST.

Surface Group Rearrangement by SFG. To determine whether the surface chemistry of ppNIPAM films changes in situ at different temperatures, we next analyzed the ppNIPAM film with SFG vibrational spectroscopy. SFG selection rules allow the detection of chemical species that are ordered and lack inversion symmetry, thus allowing the top few atomic layers of the polymer surface to be probed directly.55–57 Figure 5 shows characteristic SFG spectra for the CH stretching region taken in water at room temperature and 37 °C. For comparison, the spectrum of ppNIPAM in air at room temperature is plotted in the same figure. As water absorption tends to attenuate the signal, the spectra in water are multiplied by a factor of 4. Figure 5a shows the spectrum of fully dehydrated ppNIPAM film in air where two peaks are predominant and centered at 2875 and 2940 cm–1. These two peaks are assigned as the CH2(s) stretch and Fermi resonance between the CH3 stretching and bending modes. There are also three shoulder peaks measured at approximately 2855, 2925, and 2960 cm–1, which are assigned as the CH3(s), CH2(a), and CH3(a) stretches. The strong CH3 stretch peak indicates the presence of ordered isopropyl groups tilting toward the surface normal from the polymer side chain in the dehydrated state. The CH2 stretch in the spectrum may arise from the backbone or from random cross-linking induced by the plasma-deposition process. This is expected given that SFG spectra provide averaged chemical information over a 1 mm2 spot size. When the spectrum is acquired in water at 37 °C, a broad peak is observed between 2900 and 2980 cm–1, which is associated with the CH2(a) stretch, CH3 Fermi resonance, and CH3(a) stretch peaks. This suggests organization of the hydro-

phobic isopropyl side chain to the aqueous environment above the LCST. In contrast, we find no evidence of these peaks at room temperature. This indicates disordering of the hydrophobic isopropyl groups away from the surface normal, either orienting to the interior of the polymer or in the plane of the surface. It has been hypothesized that, the hydrophobic isopropyl groups away from the surface normal, either orienting to the interior of the polymer or in the plane of the surface. It has been hypothesized that,
below the LCST, the amide groups will extend into the aqueous environment to participate in hydrogen bonding, although we are not able to directly observe this as the characteristic peaks are not detected in this region. The results from our SFG characterization of ppNIPAM films in situ above and below the LCST support the hypothesis that ppNIPAM films retain the behavior characteristic of their conventionally formed counterparts. The structural rearrangement of the ppNIPAM polymer side chain provides evidence to support the currently proposed mechanism of LCST behavior of thermoresponsive polymers. It has been proposed that, below the LCST, well-hydrated pNIPAM chains take a random-coil configuration in an aqueous environment, with amide groups forming hydrogen bonds with water, but a more-compact globular configuration and an increased hydrophobic interaction accompanied by a sudden dehydration above its LCST. Associated with the polymer conformational changes, we directly observe the reorientation of the surface chemical functionalities using SFG. In the dehydrated state, the polymer surface orients the hydrophobic group outward to maximize hydrogen bonding underneath the surface. In the aqueous environment at room temperature, on the other hand, the hydrophobic isopropyl groups appear to bend inward to allow hydrogen bonding of the polar amide groups with water to lower surface energy. Above the LCST in water, the surface rearranges to resemble the one in air due to an entropy-driven process to free the bound water molecules and reform intramolecular hydrogen bonds under the surface. This exposure of surface chemical functionalities of different polarities may also help to explain the change of surface contact angles as a function of temperature. This preliminary examination of the C—H stretch region shows promising results in that we detect rearrangement of the isopropyl groups, although more studies of the amide

![Figure 4](image)

Figure 4. (a) Force—displacement curves by AFM on ppNIPAM coatings in pure water at 25 °C (bottom line) and 37 °C (middle line) and on silicon (top line). The same z piezo displacement results in a smaller cantilever deflection on the ppNIPAM surface in comparison to the hard silicon surfaces because of elastic indentation. The plasma-polymerized NIPAM surface appears to be stiffer at 37 °C than at 25 °C, as there is less deflection from the same z piezo movement. (b) Plot of indentation vs loading force obtained on ppNIPAM at 25 °C (open circles) and 37 °C (solid squares). Each data set has been modeled by the Hertz theory for a sphere indenting a flat surface (solid lines). The optimal fitting parameters from the Hertz theory are used to calculate Young's modulus of each temperature. The corresponding log—log presentation of (b) is given in (c) for easier comparison of the measured data with the theoretical fittings. To determine the transition temperature, Young's modulus of ppNIPAM are calculated from force displacement curves acquired at 25–37 °C with a 1 °C temperature increment. The results are demonstrated in (d) with 5–10 replicates for each data point. A clear transition in the surface modulus is noticed at around 31–32 °C. The open square at 25 °C shows recovery of the film to the swollen state after cooling the sample down from 37 to 25 °C.

![Figure 5](image)

Figure 5. SFG spectra of ppNIPAM in (a) air at room temperature, (b) pure water at 37 °C, and (c) pure water at room temperature (25 °C). The spectra obtained in water are enhanced by a multiple of 4 to counteract the low signal intensity in the water measurements brought on by the absorption of the IR signal by water. The lines are guides to the eyes, and the peak assignments are labeled in the figure.
group transition and water structure on ppNIPAM are needed to provide a more complete picture of the mechanism behind LCST behavior.

Conclusion

We report in this paper characterization of a plasma-deposited NIPAM thin film using multiple, complementary techniques. The ppNIPAM film is found to resemble the conventional bulk polymer in surface wettability, structural, and elasticity transition through the LCST near 31–32 °C. The surface wettability, as well as polymer thickness, decreases while the film elastic modulus increases when water temperature goes from 25 to 35 °C. However, the magnitude of moduli and swelling ratio differs between ppNIPAM and pNIPAM. This may arise from cross-linking in the plasma polymer, as suggested by the ToF-SIMS spectra. Associated with the wettability and mechanical property transition, reorientation of the side-chain groups is directly probed by SFG measurements. Disappearance of the features attributed to methyl groups at room temperature suggests different hydrogen bonding and water structure at the surfaces. The value of SFG to observe transitions in polymers at the nanometer scale is confirmed in this study. Direct molecular measurement of subtle but significant surface changes as a function of temperature in a NIPAM polymer were made for the first time here. Future experiments will further investigate this hypothesis by detecting signals in the hydroxyl and amide stretch region to further understand the orientation of those groups.

Acknowledgment. This research was supported by NSF-Engineering Research Center program Grant No. ERC-9529161 to the University of Washington Engineered Biomaterials group (UWEB) and NIBIB Grant No. EB-002027 to the National ESCA and Surface Analysis Center for Biomedical Problems (NESAC/BIO). The SFG study was supported by the Director, Office of Science, Office of Basic Energy Sciences, Divisions of Materials Science and Chemical Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. J.R.H. was supported by an NIH Biomaterials grant (GM-065098). The authors thank Rosnita Talib and Sally McArthur at the Department of Engineering Materials at University of Sheffield, as well as Winston Ciridon and Dr. Vickie Pan for expertise.