Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

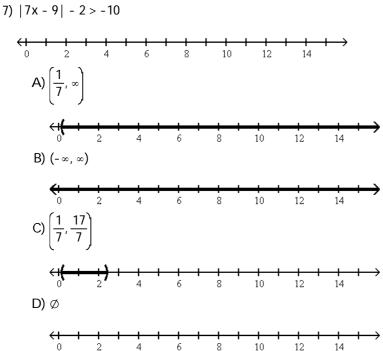
Simplify the exponential expression. 1) $(5x^{-5}y^{9}z^{-2})^{-3}$ 1) A) $\frac{y^{12}}{-15x^{8}z^{5}}$ B) $\frac{x^{15}z^6}{125y^{27}}$ C) $\frac{x^{15}z^6}{-15y^{-27}}$ D) $\frac{y^{12}}{125x^{8}z^{5}}$ Rationalize the denominator. 2) $\frac{4}{\sqrt{10} + \sqrt{14}}$ 2) _____ C) $\sqrt{14} + \sqrt{10}$ D) $\sqrt{14} - \sqrt{10}$ A) $\sqrt{10} - \sqrt{14}$ B) \sqrt{4} Simplify the expression. 3) $\frac{x^2}{\sqrt{x^2+3}} - \sqrt{x^2+3}$ 3) A) $\frac{2x^2 + 3}{x^2\sqrt{x^2 + 3}}$ B) $\frac{3}{x^2\sqrt{x^2+3}}$ C) $\frac{-3}{x^2\sqrt{x^2+3}}$ D) $\frac{x^2}{\sqrt{x^2+3}} - \sqrt{x^2+3}$ Solve the linear equation. 4) $\frac{2x}{5} - x = \frac{x}{40} - \frac{9}{8}$ 4) A) $\left\{\frac{45}{23}\right\}$ B) $\left\{-\frac{9}{5}\right\}$ C) $\left\{ \frac{9}{5} \right\}$ D) $\left\{-\frac{45}{23}\right\}$

Solve the quadratic equation using the quadratic formula.

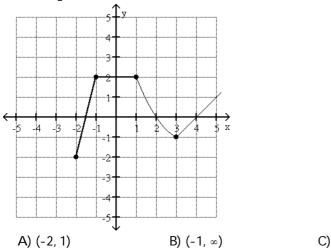
$$x^{2} + 8x = 3$$

A) {4 + $\sqrt{19}$ }
C) {-1 - $\sqrt{19}$, -1 + $\sqrt{19}$ }

5)


B) $\{-4 - \sqrt{19}, -4 + \sqrt{19}\}$ D) $\{-4 - 2\sqrt{19}, -4 + 2\sqrt{19}\}$ 5)

Solve the problem.


- 6) The formula C = 0.5x + 20 represents the estimated future cost of yearly attendance at State University, where C is the cost in thousands of dollars x years after 2002. Use a compound inequality to determine when the attendance costs will range from 24 to 26 thousand dollars. A) From 2010 to 2014
 - C) From 2011 to 2013

- B) From 2009 to 2013

Solve the absolute value inequality. Other than ϕ , use interval notation to express the solution set and graph the solution set on a number line.

Identify the intervals where the function is changing as requested. 8) Increasing

8)

C) (-2, -1) or $(3, \infty)$ D) (-1, 3)

D) From 2011 to 2015

6)

7)

Find and simplify the difference quotient $\frac{f(x + h) - f(x)}{h}$, $h \neq 0$ for the given function.

9)
$$f(x) = 5x^2$$

A) $5(2x+h)$
B) $\frac{5(2x^2 + 2xh + h^2)}{h}$
C) $\frac{10}{h} + x + 5h$
D) 5

Use the given conditions to write an equation for the line in point-slope form. 10) Passing through (4, 2) and (3, 7)

Passing through (4, 2) and (3, 7)	
A) $y - 2 = 4(x + 4)$ or $y - 7 = 3(x - 2)$	B) $y + 2 = -5(x + 4)$ or $y + 7 = -5(x + 3)$
C) y - 2 = - 5(x - 4) or y - 7 = - 5(x - 3)	D) y - 2 = - 5(x - 3) or y - 7 = - 5(x - 4)

9)

10)

12) _____

Begin by graphing the standard quadratic function $f(x) = x^2$. Then use transformations of this graph to graph the given function.

-<u>10</u>

Find the domain of the function.

-10-

12)
$$h(x) = \frac{x - 4}{x^3 - 16x}$$

A) $(-\infty, 0) \cup (0, \infty)$
C) $(-\infty, -4) \cup (-4, 0) \cup (0, 4) \cup (4, \infty)$
B) $(-\infty, 4) \cup (4, \infty)$
D) $(-\infty, \infty)$

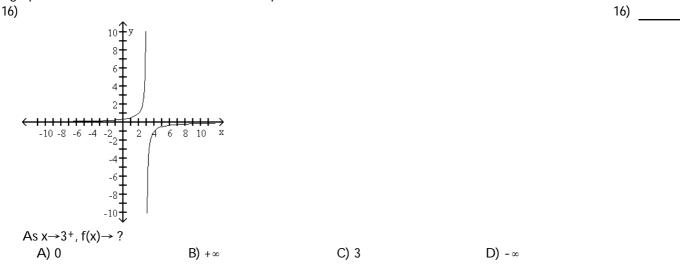
For the given functions f and g , find the indicated composition.

13)
$$f(x) = \frac{4}{x+6}$$
, $g(x) = \frac{7}{8x}$
(f \circ g)(x)
A) $\frac{32x}{7+48x}$ B) $\frac{4x}{7+48x}$ C) $\frac{32x}{7-48x}$ D) $\frac{7x+42}{32x}$

13) _____

14)

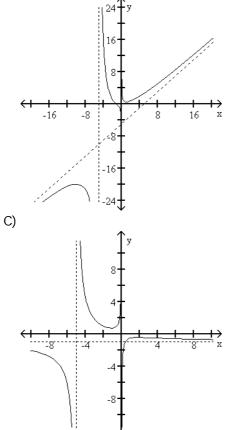
15)

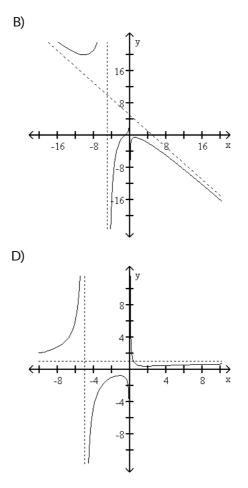

Solve the problem.

14) A person invested \$20,000, part of the money	, x, was placed in a stock that paid 15% annual	
interest. The rest of the money suffered a 4% loss. Express the total annual income from both		
investments, I, as a function of x.		
A) $I(x) = 0.04x - 0.15(20,000 - x)$	B) $I(x) = 0.15x - 0.04(20,000 - x)$	
C) $I(x) = 0.15x + 0.04(20,000 - x)$	D) $I(x) = -0.15x + 0.04(20,000 - x)$	

Solve the polynomial equation. In order to obtain the first root, test the possible rational roots.

15) $x^3 - 6x^2 + 7x + 2 = 0$	
A) {1, -1, -2}	B) {2, 2 + √5, 2 − √5}
C) $\{2, 4 + \sqrt{2}, 4 - \sqrt{2}\}$	D) {-2, 4 + √5, 4 - √5}


Use the graph of the rational function shown to complete the statement.



Graph the function.

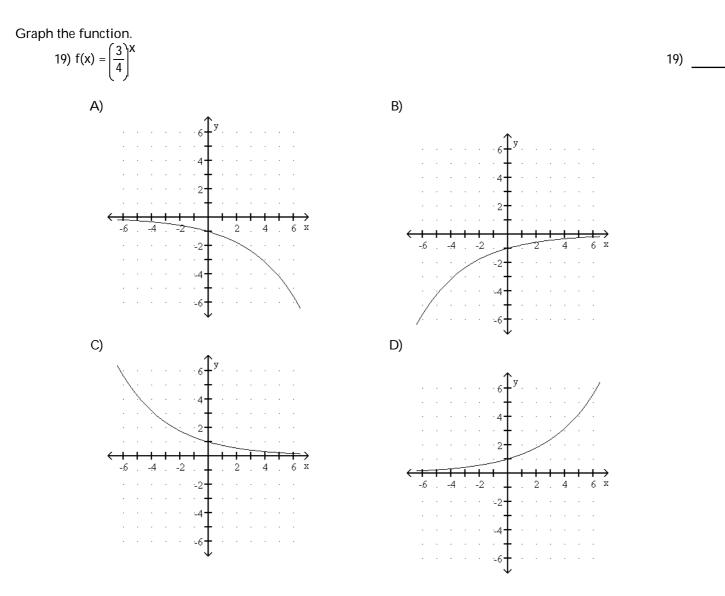
17) $f(x) = \frac{x^3 + 2}{x^2 + 5x}$

Solve the problem.

18) The average cost per unit, y, of producing x units of a product is modeled by $y = \frac{300,000 + 0.25x}{x}$.

18)

Describe the company's production level so that the average cost of producing each unit does not exceed \$1.75.


A) At least 300,000 units

C) Not more than 300,000 units

B) At least 200,000 units

D) Not more than 200,000 units

17) _____

Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions.

20)

20)
$$5 \log_{b} q - \log_{b} r$$

A) $\log_{b} (q^{5} - r)$
B) $\log_{b} (\frac{5q}{r})$
C) $\log_{b} \left(\frac{q^{5}}{r}\right)$
D) $\log_{b} q^{5} \div \log_{b} r$

Solve the equation by expressing each side as a power of the same base and then equating exponents.

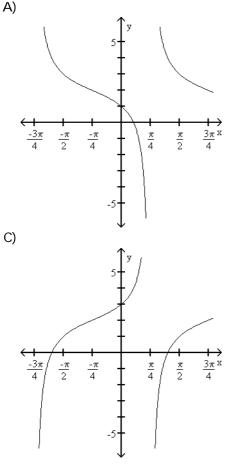
21)
$$2^{(7 - 3x)} = \frac{1}{4}$$

A) $\left\{\frac{1}{2}\right\}$ B) {-3} C) {1} D) {3}

Convert the angle in degrees to radians. Express answer as a multiple of π .

22) 144°

A)
$$\frac{4\pi}{5}$$
 radians B) $\frac{3}{5}\pi$ radians C) $\frac{3\pi}{4}$ radians D) $\frac{5\pi}{6}$ radians


Use the unit circle to find the value of the trigonometric function.

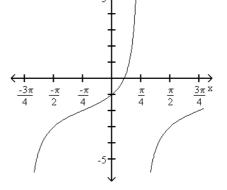
23)
$$\sec \frac{7\pi}{6}$$

A) $\frac{2\sqrt{3}}{3}$
B) $-\frac{1}{2}$
C) $-\frac{\sqrt{3}}{2}$
D) $-\frac{2\sqrt{3}}{3}$

Graph the function.

24) y = 2 - tan (x +
$$\frac{\pi}{4}$$
)

B) $\frac{\pi}{3}$


Find the exact value of the expression.

25) sin⁻¹
$$\frac{\sqrt{3}}{2}$$

A) $\frac{3\pi}{4}$

B) $\frac{-3\pi}{4}$ $\frac{-\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{2}$ D)

22)

24)

25) D) $\frac{2\pi}{3}$ C) $\frac{\pi}{4}$

Use a sketch to find the exact value of the expression.

26)
$$\cos\left[\tan^{-1}\frac{2}{3}\right]$$

A) $\frac{3\sqrt{13}}{13}$ B) $\frac{3}{13}$ C) $\frac{\sqrt{13}}{3}$ D) $\frac{2}{3}$

Solve the problem.

27) A surveyor is measuring the distance across a small lake. He has set up his transit on one side of the lake 27) lake 140 feet from a piling that is directly across from a pier on the other side of the lake. From his transit, the angle between the piling and the pier is 30°. What is the distance between the piling and the pier to the nearest foot?

A) 70 feet
B) 121 feet
C) 81 feet
D) 242 feet

26)

Complete the identity.

 $28) \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = ?$ $A) -2 \tan^2 x$ $B) \sin x \tan x$ $C) 1 + \cot x$ $D) \sec x \csc x$