Bernoulli Numbers and Ideal Classes

Alex Borselli

1/27/2014

An algebraic number field K is an extension of \mathbb{Q} by a root of a polynomial. An important characteristic of a number field K is its class number, h(K), which essentially tells us how far away from unique factorization the integers of K are. If h(K) = 1, then the integers of K, O_K , have unique factorization, just like the integers \mathbb{Z} of \mathbb{Q} . One of the most important types of number fields in Algebraic Number Theory are cyclotomic extensions, i.e. $\mathbb{Q}(\zeta_p)$ where ζ_p is a *p*th root of unity for a prime *p*. It was shown about 30 years ago that h(K) = 1, for $K = \mathbb{Q}(\zeta_p)$ iff $p \leq 19$. This talk focuses on a 2008 paper by Kenneth Ribet, which discusses another fact about h(K). The main theorem is that for an even integer k with $2 \leq k \leq p-1$, p divides the class number of K iff p divides the numerator of B_k , where we define the kth Bernoulli number, B_k , to be the the coefficient of $\frac{x_k}{k!}$ in the power series expansion of $\frac{x}{e^{x-1}}$. The talk gives x some historical background from Kummer that leads into this theorem of Herbrand and Ribet.