Control Mechanisms for Residential Electricity Demand in Smart Grids

Lawrence Snyder1, Shalinee Kishore2

1Department of Industrial and Systems Engineering, Lehigh University
2Department of Electrical and Computer Engineering, Lehigh University

\section*{Introduction}

\subsection*{Demand Response}
- Most electricity grids sized to meet peak demand.
- Demand Response (DR) programs aim to reduce peak usage.
- Why?
 - 5\% reduction in peak demand would eliminate 625 combustion turbines, save \$3B/year.
 - Other benefits: Reduced cost (to utility and customer), improved grid stability, fewer blackouts/brownouts, increased renewable integration.
- DR programs can be based on pricing
- Customers cannot react to frequently changing pricing signals.
- Energy Management Controller (EMC) needed.

\subsection*{Our Contributions}
- Optimization Models and algorithms for EMC decision-making.
- Negative aggregate impact of off-peak pricing model if consumers are "smart" (use EMCs).
- Novel communication protocol for energy allocation among local EMCs.

\section*{Simple EMC Optimization Algorithm}

\subsection*{Appliance Timing Optimization}
- Determine optimal start times of (deferrable) appliances.
- \textbf{T} : Planning Horizon
- \textbf{d}_{\text{max}} : Maximum allowable number of periods of delay
- \textbf{\psi}_n : Delay penalty, per period
- \textbf{\psi}^1_{\text{max}} :
- \textbf{\psi}^0_{\text{max}}

- \textbf{\psi}^0_{\text{max}} :
- \textbf{\psi}^1_{\text{max}}

\begin{itemize}
 \item Appliance \textit{n} requested at time \textit{t}. When to turn on?
 \end{itemize}

\begin{itemize}
 \item \textbf{Objective:} Choose \textbf{\psi} set of appliances to turn on based on
 \end{itemize}

\begin{itemize}
 \item Decision: Choose \textbf{\psi} set of appliances to turn on based on
 \end{itemize}

\begin{itemize}
 \item Expected cost of peak demand reduction with minimal inconvenience/cost to consumer
 \end{itemize}

\begin{itemize}
 \item Reduced by 40\%.
 \item Significant reductions in peak demand possible with minimal inconvenience/cost to consumer
 \end{itemize}

\begin{itemize}
 \item Peak reduced by 40\%.
 \item Significant reductions in peak demand possible with minimal inconvenience/cost to consumer
 \end{itemize}

\begin{itemize}
 \item Approach executes very quickly \textbf{O}(\textbf{T}^2)
 \end{itemize}

\begin{itemize}
 \item Makes restrictive assumptions (linear pricing, no constraints)
 \item Dynamic Programming model will be more flexible.
 \end{itemize}

\section*{Simulation}

\begin{itemize}
 \item 50 homes, 3 smart appliances each
 \item Arrival rate of appliances peak around 6PM.
 \item Electricity prices (ConEd time-of-user) (21\textcent\textit{kWh} during peak and 1.4\textcent\textit{kWh} during off-peak).
\end{itemize}

\begin{itemize}
 \item Shaded regions represent peak periods.
 \item \textbf{Rebound Peak:}
 \begin{itemize}
 \item Peak shifts from 6PM to 10PM
 \item Becomes larger (83.2 kW vs. 68 kW)
 \end{itemize}
 \item Load is more variable
 \item Off-peak pricing fails to reduce peak load.
\end{itemize}

\begin{itemize}
 \item Peak reduced by 40\%.
 \item Significant reductions in peak demand possible with minimal inconvenience/cost to consumer
\end{itemize}

\begin{itemize}
 \item Approach executes very quickly \textbf{O}(\textbf{T}^2)
 \item Makes restrictive assumptions (linear pricing, no constraints)
 \item Dynamic Programming model will be more flexible.
\end{itemize}