Preventing Waterborne Disease

Professor Kristen Jellison
BioS 10
December 3, 2014
Waterborne Disease – Global Statistics

- **748 million people** lack access to improved water supply
- **2.6 billion people** lack access to improved sanitation
- Between **1.085 to 2.187 million deaths** each year due to diarrheal diseases can be attributed to the ‘water, sanitation, and hygiene’ risk factor
 - 90% of these deaths are among children under age 5
Burden of Waterborne Disease

- Water-related disease is the 2nd biggest killer of children worldwide (1st = acute respiratory infections)

- At any one time:
 - half of the world’s hospital beds are occupied by patients suffering from water-related diseases (WaterAid, 2008)
 - half of the population of the developing world is suffering from one or more diseases associated with inadequate water and sanitation (WaterAid, 2008)
Burden of Waterborne Disease

- 443 million school days lost annually to water-related diseases

 - to reduce by half the proportion of people without access to safe water and sanitation by 2015
 - Drinking water target met in 2010 (although unequal progress among marginalized and vulnerable groups)
 - Sanitation goal unlikely to be met by 2015
The lowest levels of drinking water coverage are in sub-Saharan Africa

Fig. 3. Proportion of the population using improved drinking water sources in 2012
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

- Water treatment technologies (emphasis on developing countries)
 - Biosand filtration
- Watershed management
 - Parasite fate and transport
Biosand Filtration

- Dimensions: 0.3m x 0.3m x 0.9m
- Weight: 170 lbs.
- Costs: $10-45 USD
Biosand Filtration

From spiked water tank

- 2 concrete BSFs
- 2 concrete BSFs modified with rusty nails
- 2 bucket (5-gal) BSFs
- 2 bucket (5-gal) BSFs modified with rusty nails
- 2 bucket (2-gal) BSFs
- 2 bucket (2-gal) BSFs modified with rusty nails
Biosand Filtration
Biosand Filtration

![Image showing biosand filtration setup with water samples in beakers]

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent</td>
<td>4.82</td>
<td>61.37</td>
<td>30.17</td>
<td>18.40</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.15</td>
<td>1.61</td>
<td>0.43</td>
<td>0.29</td>
</tr>
<tr>
<td>5gal buckets</td>
<td>0.15</td>
<td>1.60</td>
<td>0.46</td>
<td>0.31</td>
</tr>
<tr>
<td>2gal buckets</td>
<td>0.23</td>
<td>1.41</td>
<td>0.53</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Biosand Filtration

Total Coliforms Removal

E. coli Removal

Log$_{10}$ Removal

- Concrete
- Concrete - Nails
- 5-gal bucket
- 5-gal bucket - Nails
- 2-gal bucket
- 2-gal bucket - Nails

- 1-hr
- 3-hr
- 6-hr
- 12-hr
- 24-hr
- 72-hr
Biosand Filtration

Cryptosporidium Removal

- Log_10 Removal
- Concrete, Concrete - Nails, 5-gal bucket, 5-gal bucket - Nails, 2-gal bucket, 2-gal bucket - Nails

MS2 Virus Removal

- Log_10 Removal
- Concrete, Concrete - Nails, 5-gal bucket, 5-gal bucket - Nails, 2-gal bucket, 2-gal bucket - Nails
Biosand Filtration

Conclusions:

- Biosand filtration can be effective with smaller units
 - The addition of nails to the diffuser basin enhanced virus removal
 - No appreciable correlation between bacterial and C. parvum removal and pause period was identified
 - Increasing the pause period increased virus removal for all filter sizes (this relationship was stronger for filters without nails)
Biosand Filtration

How does moving the filter impact performance?
Biosand Filtration

- How does moving the filter impact performance?
Acknowledgements

Graduate Students
- Elizabeth Wolyniak
- Julie Napotnik
- Xia Luo
- Kyle Doup
- Robin Barnes-Pohjonen
- Colin McCleod
- Sandra Connelly
- Amy Lynch
- Joseph Ziemann
- Ryan Smith

Undergraduate Students
- Tom Jawin
- Annie Cornell
- Jennifer Markham
- Natalie Tacka
- Natalie Smith
- Kyle Doup
- Sara Zientarski
- Margo Wilson
- Nadine Kotlarz
- Kelsey Preston
- Ally Mayer
- Kevin Myers

Funding Agencies
- National Science Foundation
- U.S. Environmental Protection Agency
- Lindbergh Foundation
- PA Department of Community and Economic Development
- Pennsylvania State University

Collaborators
- Philadelphia Water Department
- U.S. Centers for Disease Control
- Centre for Affordable Water and Sanitation Technology (CAWST)
Questions?
Contact Information

Prof. Kristen Jellison
Office: STEPS Room 344
Phone: x8-3555
Email: krj3@lehigh.edu