Waterborne Disease - USA

Number of Drinking Water Outbreaks, 1991 - 2000

Number of Cases of Illness Due to Drinking Water Outbreaks, 1991 - 2000

Waterborne Disease – Global Statistics

- 1.1 billion people lack access to improved water supply
- 2.6 billion people lack access to improved sanitation
- Between 1.085 to 2.187 million deaths each year due to diarrheal diseases can be attributed to the ‘water, sanitation, and hygiene’ risk factor
 - 90% of these deaths are among children under age 5
LEGEND Proportion of the population using improved drinking water sources, total

- 100%
- 90% - 99%
- 70% - 89%
- 50% - 69%
- Less than 50%
- No data

* disclaimer
Burden of Waterborne Disease

- Water-related disease is the 2nd biggest killer of children worldwide (1st = acute respiratory infections)

- At any one time:
 - half of the world’s hospital beds are occupied by patients suffering from water-related diseases (WaterAid, 2008)
 - half of the population of the developing world is suffering from one or more diseases associated with inadequate water and sanitation (WaterAid, 2008)
Burden of Waterborne Disease

• 443 million school days lost annually to water-related diseases

 • to reduce by half the proportion of people without access to safe water and sanitation by 2015
 • An extra $10 billion needed each year to reach the goal (this is about half of what rich countries spend on mineral water)
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

- **Water treatment technologies**
 - Chlorination (SWS)
 - Ceramic filtration
 - Biosand filtration

- **Watershed management**
 - Parasite source tracking (Cryptosporidium)
 - Parasite fate and transport
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

Water treatment technologies
- Chlorination *(SWS)*
- Ceramic filtration
- Biosand filtration

Watershed management
- Parasite source tracking *(Cryptosporidium)*
- Parasite fate and transport
Safe Water System (SWS)

- Strategy devised by CDC and PAHO to reduce waterborne diarrheal disease
- Three components to SWS
 - Water treatment with dilute sodium hypochlorite
 - Storage of water in a safe container
 - Education to improve hygiene and water and food handling processes
Safe Water System (SWS)

- Sodium hypochlorite (= dilute chlorine bleach)
 - Particles in water will bind to chlorine, reducing the amount of chlorine that is available to disinfect microorganisms
 - By removing particles in water before disinfecting with chlorine, a smaller dose of chlorine can be used to achieve effective disinfection
 - Fewer taste and odor issues
 - Saves money (a bottle of chlorine solution will last longer)
Safe Water System (SWS)

- Jellison lab undergraduate research project with the U.S. Centers for Disease Control
 - Evaluate water pretreatment methods for the potential to
 (i) remove particulates
 (ii) reduce the amount of sodium hypochlorite solution necessary to maintain a safe disinfection residual
 - Current SWS recommendations: add single capful of SWS solution per 20 L water (add two capfuls per 20 L for turbid water)
Safe Water System (SWS)

- Some common water pretreatment methods
 - Physical pretreatment
 - Cloth filtration
 - Sand filtration
 - Settling/Decanting
Safe Water System (SWS)

- Some common water pretreatment methods
 - Chemical pretreatment
 - Coagulants – alum, moringa seeds
Safe Water System (SWS) - Conclusions

- Turbidity reduction
 - all five clarification methods were effective
- Chlorine demand reduction/maintaining safe chlorine residual at 24 hrs
 - Sand filtration, settling & decanting, and alum coagulation were effective across all turbidity levels
 - Cloth filtration and moringa coagulation were not effective
Safe Water System - Recommendations

- Recommended sodium hypochlorite dosages after pre-treatment of the source water:
 - After sand filtration = 1.875 mg/L (single capful)
 - After settling/decanting = 1.875 mg/L (single capful)
 - 24 hr settling time recommended
 - After cloth filtration = 3.75 mg/L (double capful)
 - After alum coagulation = 1.875 mg/L (single capful)

- Using raw moringa seeds for pre-treatment before chlorine is no longer recommended
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

Water treatment technologies (emphasis on developing countries)
- Chlorination (SWS)
- Ceramic filtration
- Biosand filtration

Watershed management
- Parasite source tracking (Cryptosporidium)
- Parasite fate and transport
Ceramic Filtration

- Potters for Peace filter
 - 2 separate parts: (i) ceramic pot and (ii) plastic container that the pot sits inside
 - Ceramic pot has colloidal silver coating (germicide)
 - Ceramic has very small pores which entrap contaminants as water passes through
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

Water treatment technologies (emphasis on developing countries)
- Chlorination (SWS)
- Ceramic filtration
- Biosand filtration

Watershed management
- Parasite source tracking (Cryptosporidium)
- Parasite fate and transport
Biosand Filtration

- Dimensions: 0.3m x 0.3m x 0.9m
- Weight: 170 lbs.
- Costs: $10-45 USD
Biosand Filtration

2 L Pitcher Filter
Biosand Filtration
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

- **Water treatment technologies** (emphasis on developing countries)
 - Chlorination (SWS)
 - Ceramic filtration
 - Biosand filtration

- **Watershed management**
 - Parasite source tracking (Cryptosporidium)
 - Parasite fate and transport
Cryptosporidium
Cryptosporidium Life Cycle

(Adapted from Current & Blagburn, 1990)
Methods

Surface Water Filtration

Immunomagnetic Separation

DNA Extraction

Nested PCR

Clone & Sequence

Phylogenetic Analysis

Fecal Sample Collection
Wissahickon Creek Watershed

(From: National Institute for Environmental Renewal, 1999)
Wissahickon Creek, May 2005 - April 2006

- Genotypes Not Associated with Human Disease (33%)
 - Goose (n=1)
 - Snake (n=2)
 - Deer Mouse (n=3)

- Other Genotypes Associated with Human Disease (33%)
 - Cervine (n=3)
 - Skunk (n=5)

- Human Pathogens (34%)
 - C. hominis (n=6)

n=18

Wissahickon Creek, May 2006 - April 2007

- Genotypes Not Associated with Human Disease (33%)
 - Goose (n=1)
 - Deer Mouse (n=1)
 - Other (n=2)

- Human Pathogens (34%)
 - C. hominis (n=1)
 - C. pansum (n=3)

- Other Genotypes Associated with Human Disease (33%)
 - Cervine (n=3)
 - Skunk (n=1)

n=12

Wissahickon Creek, May 2007 - April 2008

- Genotypes Not Associated with Human Disease (37.5%)
 - Goose (n=1)
 - Chipmunk (n=1)
 - Mink (n=1)
 - Other (n=1)

- Human Pathogens (25%)
 - C. hominis (n=4)

- Other Genotypes Associated with Human Disease (37.5%)
 - Cervine (n=2)
 - Skunk (n=2)

n=16
Jellison Lab Research

Ultimate goal: Prevention of waterborne disease

Water treatment technologies
(emphasis on developing countries)
- Chlorination (SWS)
- Ceramic filtration
- Biosand filtration

Watershed management
- Parasite source tracking
 (Cryptosporidium)
- Parasite fate and transport
Grazing:
UV Exposure

Artificial UV-B Exposure

% Infectivity (Adjusted)

- Dark Control
- 48% UVB
- 100% UVB
UV Exposure

Solar Exposure

% Infectivity (Adjusted)

- Dark Control
- 48% solar
- 100% solar

15-Jul
16-Jul
UV Exposure

Solar Exposure +/- UV

% Infectivity (Adjusted)

Dark Control
Full Solar
Solar (- UV)

7-Sep
10-Sep
Cryptosporidium and Biofilms
\[R = \frac{1}{N} \sum_{i=1}^{N} \frac{|L_{fi} - \bar{L}_f|}{L_f} \]

where \(\bar{L}_f \) is the mean thickness, \(L_{fi} \) is the \(i \)th individual thickness, and \(N \) is the number of thickness measurements.
The figure shows the percentage distribution of oocysts in two different conditions: Lab Stock and Biofilm.

- **Lab Stock**:
 - % DAP I+/P I- (intact): 62%
 - % DAP I-/P I- (broken): 12%
 - % DAP I+/P I+: 20%

- **Biofilm**:
 - % DAP I+/P I- (intact): 56%
 - % DAP I-/P I- (broken): 20%
 - % DAP I+/P I+: 20%

The percentage distribution is visually represented in the bar chart, with different colors indicating each condition.
Biofilms as Biomonitors
<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Biofilm FISH</th>
<th>Water Sample FISH</th>
<th>Water Sample PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Aug-09</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>18-Aug-09</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>31-Aug-09</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>29-Sep-09</td>
<td>Positive</td>
<td>N/A</td>
<td>Negative</td>
</tr>
<tr>
<td>13-Oct-09</td>
<td>Positive</td>
<td>N/A</td>
<td>Negative</td>
</tr>
<tr>
<td>3-Nov-09</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10-Nov-09</td>
<td>Positive</td>
<td>N/A</td>
<td>Positive</td>
</tr>
<tr>
<td>9-Dec-09</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>26-Jan-10</td>
<td>Positive</td>
<td>N/A</td>
<td>Negative</td>
</tr>
<tr>
<td>9-Feb-10</td>
<td>Positive</td>
<td>N/A</td>
<td>Negative</td>
</tr>
<tr>
<td>17-Feb-10</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>23-Feb-10</td>
<td>Positive</td>
<td>N/A</td>
<td>Negative</td>
</tr>
<tr>
<td>9-Mar-10</td>
<td>Positive</td>
<td>N/A</td>
<td>Positive</td>
</tr>
<tr>
<td>13-Apr-10</td>
<td>Positive</td>
<td>N/A</td>
<td>Negative</td>
</tr>
<tr>
<td>27-Apr-10</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>11-May-10</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>25-May-10</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>1-Jun-10</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8-Jun-10</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>10-Jun-10</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>29-Jun-10</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>20-Jul-10</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>27-Jul-10</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive (Pending)</td>
</tr>
<tr>
<td>10-Aug-10</td>
<td>Positive</td>
<td>Negative</td>
<td>Inconclusive</td>
</tr>
</tbody>
</table>
Summary

Ultimate goal: reduce prevalence of waterborne disease

- Understand parasite fate and transport in the environment
- Identify public health risk associated with parasites in drinking water supplies
- Improve methods for watershed monitoring of parasites
- Optimize household water treatment options in developing countries and develop standard operating procedures for their use
Acknowledgements

Graduate Students
- Elizabeth Wolyniak
- Julie Napotnik
- Robin Barnes-Pohjonen
- Colin McCleod
- Sandra Connelly
- Amy Lynch
- Joseph Ziemann
- Ryan Smith

Undergraduate Students
- Natalie Smith
- Kyle Doup
- Sara Zientarski
- Margo Wilson
- Nadine Kotlarz
- Kelsey Preston
- Ally Mayer
- Kevin Myers

Funding Agencies
- National Science Foundation
- U.S. Environmental Protection Agency
- Lindbergh Foundation
- PA Department of Community and Economic Development
- Pennsylvania State University

Collaborators
- Philadelphia Water Department
- U.S. Centers for Disease Control
- Centre for Affordable Water and Sanitation Technology (CAWST)
Questions?
Contact Information

Prof. Kristen Jellison
Office: STEPS Room 344
Phone: x8-3555
Email: krj3@lehigh.edu