October 29, 2010

Microchips for Global Health AIDS Diagnostics

Xuanhong Cheng
Materials Science and Engineering
Bioengineering
Overview of Presentation

1. Global Health Challenges
2. HIV/AIDS Statistics and Biology
3. HIV/AIDS Diagnostics
4. Microchip Technology for HIV/AIDS Diagnostics
Leading causes of death, Global

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ischemic heart disease</td>
<td>12.7</td>
</tr>
<tr>
<td>2</td>
<td>Cerebrovascular disease</td>
<td>9.9</td>
</tr>
<tr>
<td>3</td>
<td>Acute lower respiratory infections</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>HIV/AIDS</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>Chronic obstructive pulmonary disease</td>
<td>4.8</td>
</tr>
<tr>
<td>6</td>
<td>Perinatal conditions</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>Diarrheal diseases</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>Tuberculosis</td>
<td>3.0</td>
</tr>
<tr>
<td>11</td>
<td>Malaria</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Leading causes of death, Africa

<table>
<thead>
<tr>
<th>Rank</th>
<th>Disease</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HIV/AIDS</td>
<td>20.6</td>
</tr>
<tr>
<td>2</td>
<td>Acute lower respiratory infections</td>
<td>10.3</td>
</tr>
<tr>
<td>3</td>
<td>Malaria</td>
<td>9.1</td>
</tr>
<tr>
<td>4</td>
<td>Diarrheal diseases</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>Perinatal conditions</td>
<td>5.9</td>
</tr>
<tr>
<td>6</td>
<td>Measles</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>Tuberculosis</td>
<td>3.4</td>
</tr>
<tr>
<td>8</td>
<td>Cerebrovascular disease</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>Ischemic heart disease</td>
<td>3.0</td>
</tr>
<tr>
<td>10</td>
<td>Maternal conditions</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Cell

Bacteria (TB, Typhoid)

Virus (HIV, hepatitis, SARS, influenza)

HIV emerging from a cell
Global diversity of different HIV-1 strains

Source: Los Alamos Database http://hiv-web.lanl.gov/
33 million adults living with HIV/AIDS, 2008

Source: WHO/UNAIDS, 2008
Growth of the AIDS Epidemic

People With HIV/AIDS, Cumulative Regional Totals

Millions

*Western and Central Europe & North America.
Changes in Life Expectancy, 1950 - 2000

Projected changes in life expectancy in selected African countries with high HIV prevalence, 1995–2000

Average life expectancy at birth, in years

UNAIDS–AIDS–May 1999
AIDS’ Toll on Population Structure, Botswana

Population Structure in 2020 (Projected)

<table>
<thead>
<tr>
<th>Age</th>
<th>Thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>80+</td>
<td>75</td>
</tr>
<tr>
<td>75</td>
<td>7065</td>
</tr>
<tr>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

With AIDS

Without AIDS

AIDS’ Effect on African Agriculture

Percent of Agricultural Labor Force Lost to HIV/AIDS, 1985-2020 (Projected)

- Namibia: 26%
- Botswana: 23%
- Zimbabwe: 23%
- Mozambique: 20%
- South Africa: 20%
- Kenya: 17%
- Malawi: 14%
- Uganda: 14%
- Tanzania: 13%

HIV Pathophysiology - Life Cycle
HIV Pathophysiology - Life Cycle

CD4 Binding

Co-receptor (CCR5 or CXCR4)
HIV Pathophysiology - Life Cycle

Fusion
HIV Pathophysiology - Life Cycle
HIV Pathophysiology - Life Cycle
HIV Pathophysiology - Life Cycle

Reverse transcription

HIV DNA
HIV Pathophysiology - Life Cycle

Translocation to nucleus
HIV Pathophysiology - Life Cycle
HIV Pathophysiology - Life Cycle

Transcription / Translation of HIV mRNA / polyprotein
HIV Pathophysiology - Life Cycle

Protease processing and viral assembly
HIV infection

HIV attacks CD4 cells, the generals of the immune system’s army. HIV inserts itself into our genes. HIV creates many different strains.
HIV infection

- **Viral load**
- **CD4**

![Graph showing the progression of HIV infection over time with viral load and CD4 counts.](image-url)
Relationship Between CD4 count and Viral Load

Figure 1. T-cell count = distance to crash, HIV RNA = speed of train

HIV RNA (viral load) = speed of train

Slow: <5,000, Fast: 50,000+

Source: John Coffin, PhD, Tufts University.
WHO Stage 1:
Asymptomatic HIV infection
CD4 >500

WHO Stage 2 and 3:
Symptomatic HIV infection
CD4 200 - 500
Mild infections
Weight loss, fatigue
TB, Thrush

WHO Stage 4
AIDS
CD4 < 200
TB, infections
Death ~18 months

Time (years)
CD4 Count

1000
200
6
Goals of HIV Treatment

- Improve quality of life
- Prevent opportunistic infections
- Prevent progression to AIDS
- Prevent death
- Reduce the likelihood of transmission to others ("Secondary prevention")
HIV Treatment - Antiretrovirals

- Fusion/Entry Inhibitors (1)
- Maturation Inhibitors (~2008)
- Protease Inhibitors (8)
- Reverse Transcriptase Inhibitors (11)
- Integration Inhibitors (~2008)
HIV Treatment - Timing of HIV Treatment

• Therapy is delayed until patients develop WHO Stage 3 or Stage 4 disease
 – Delaying therapy until Stage 3 or 4, if done carefully, does not decrease the likelihood of successful treatment

 – Treatment is lifelong and expensive, do not want to start unnecessarily early

 – Delayed therapy minimizes opportunity for side effects

 – Delayed therapy minimizes opportunity for drug resistance
CD4 and Mortality - Zimbabwe

Survival Probability

Time from enrolment to death (years)

CD4 > 200

CD4 50-200

CD4 < 50
Impact of Treatment

Before
Impact of Treatment

After 9 months
Impact of Treatment

Begin ART

CD4

Viral load (HIV RNA level)

time

Weeks

Years
Impact of Treatment - Society

Effective ARVs available

- Unintentional injury
- Cancer
- Heart disease
- Suicide
- HIV infection
- Homicide
- Chronic liver disease
- Stroke
- Diabetes

Deaths per 100,000 Population

Year

Source: Centers for Disease Control, 2001
Number of Individuals Receiving ART

Number of people receiving antiretroviral therapy (end of year, lower- and middle-income countries)

Source: AVERT.org
Community-based Care

Care takes place in the community. Reinforced in the clinic.
State of the Art Technologies

CD4-count
start treatment < 200 cells/ul

Viral load count
measure resistance to treatment
Lab Diagnostics in Resource Poor Settings
What is Needed

- Low cost
- Easy to use
- Rapid and Robust
- Portable
- Sensitive and specific
Microchip Technology for Medicine
CD4 counting microchip
Mechanism of the CD4 Counter
Nanoporous Membrane for Viral Processing and Sensing

- Controllable pore size
- High porosity
- Bio-functionality
- Tight pore size distribution
- Thin membranes
Embedded Nanoporous Membranes for Viral Processing

- **200nm Pores**
 - Filtrate
 - Absorbed on membrane
 - Suspended above membrane

- **20nm Pores**
 - Filtrate
 - Absorbed on membrane
 - Suspended above membrane

Viral Concentration (mL)

- Original Sample
- 1mL filtration + 10μL Wash

% of Virions Captured on Membranes

- Bare
- PEG

AntiCD44

Filtration Efficiency (%)

- 80
- 100
- 120

Pore Sizes

- 200nm
- 20nm