Monday, 24 November 2008

Small Tools for Big Problems: Microchips for Global Health AIDS Diagnostics

Xuanhong Cheng
Materials Science and Engineering
Bioengineering
Overview of Presentation

1 Global Health Challenges
2 HIV/AIDS Statistics and Biology
3 HIV/AIDS Diagnostics
4 Microchip Technology for HIV/AIDS Diagnostics
Leading causes of death, Global

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ischemic heart disease</td>
<td>12.7</td>
</tr>
<tr>
<td>2</td>
<td>Cerebrovascular disease</td>
<td>9.9</td>
</tr>
<tr>
<td>3</td>
<td>Acute lower respiratory infections</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>HIV/AIDS</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>Chronic obstructive pulmonary disease</td>
<td>4.8</td>
</tr>
<tr>
<td>6</td>
<td>Perinatal conditions</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>Diarrheal diseases</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>Tuberculosis</td>
<td>3.0</td>
</tr>
<tr>
<td>11</td>
<td>Malaria</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Leading causes of death, Africa

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HIV/AIDS</td>
<td>20.6</td>
</tr>
<tr>
<td>2</td>
<td>Acute lower respiratory infections</td>
<td>10.3</td>
</tr>
<tr>
<td>3</td>
<td>Malaria</td>
<td>9.1</td>
</tr>
<tr>
<td>4</td>
<td>Diarrheal diseases</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>Perinatal conditions</td>
<td>5.9</td>
</tr>
<tr>
<td>6</td>
<td>Measles</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>Tuberculosis</td>
<td>3.4</td>
</tr>
<tr>
<td>8</td>
<td>Cerebrovascular disease</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>Ischemic heart disease</td>
<td>3.0</td>
</tr>
<tr>
<td>10</td>
<td>Maternal conditions</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Cell

Bacteria
(TB, Typhoid)

Virus
(HIV, hepatitis, SARS, influenza)

HIV emerging from a cell
Global diversity of different HIV-1 strains

Source: Los Alamos Database http://hiv-web.lanl.gov/
39 million adults living with HIV/AIDS, 2006

Source: WHO
Growth of the AIDS Epidemic

People With HIV/AIDS, Cumulative Regional Totals

Millions

*Western and Central Europe & North America.
People With HIV/AIDS, by Region

- Sub-Saharan Africa: 64%
- South and South-East Asia: 18%
- North Africa and Middle East: 1%
- East Asia: 3%
- Latin America: 4%
- Caribbean: 1%
- Oceania: <1%
- North America: 3%
- Eastern Europe and Central Asia: 4%
- Western and Central Europe: 2%

Changes in Life Expectancy, 1950 - 2000

AIDS’ Toll on Population Structure, Botswana

Population Structure in 2020 (Projected)

Thousands

<table>
<thead>
<tr>
<th>Age</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>80+</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>75</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>65</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

With AIDS
Without AIDS

AIDS’ Effect on African Agriculture

Percent of Agricultural Labor Force Lost to HIV/AIDS, 1985-2020 (Projected)

- Namibia: 26%
- Botswana: 23%
- Zimbabwe: 23%
- Mozambique: 20%
- South Africa: 20%
- Kenya: 17%
- Malawi: 14%
- Uganda: 14%
- Tanzania: 13%

HIV destroys immune defenses against TB

Tuberculosis
HIV Pathophysiology - Life Cycle

- HIV
- CD4
- CD4 cell
HIV Pathophysiology - Life Cycle

CD4 Binding

Co-receptor (CCR5 or CXCR4)
HIV Pathophysiology - Life Cycle

Fusion
HIV Pathophysiology - Life Cycle

Virion entry
HIV Pathophysiology - Life Cycle
HIV Pathophysiology - Life Cycle

Reverse transcription

HIV DNA
HIV Pathophysiology - Life Cycle

Translocation to nucleus
HIV Pathophysiology - Life Cycle

Integration
HIV Pathophysiology - Life Cycle

Transcription / Translation of HIV mRNA / polyprotein
HIV Pathophysiology - Life Cycle

Protease processing and viral assembly
HIV infection

HIV attacks CD4 cells, the generals of the immune system’s army
HIV inserts itself into our genes
HIV creates many different strains
HIV infection

- Viral load
- CD4

Time scale:
- Weeks
- Years
Relationship Between CD4 count and Viral Load

Figure 1. T-cell count = distance to crash, HIV RNA = speed of train

HIV RNA (viral load) = speed of train

Slow: <5,000, Fast: 50,000+

T-cell count: Distance to crash

Source: John Coffin, PhD, Tufts University.
WHO Stage 1: Asymptomatic HIV infection
CD4 >500

WHO Stage 2 and 3: Symptomatic HIV infection
CD4 200 - 500
Mild infections
Weight loss, fatigue
TB, Thrush

WHO Stage 4: AIDS
CD4 < 200
TB, infections
Death ~18 months

CD4 Count

Time (years)
WHO Stage 1 - Asymptomatic HIV Disease

- Minimal symptoms
- Daily battle between virus and immune system; 10,000,000 new virus copies each day
- CD4 count drops gradually
WHO Stage 2 - Symptomatic HIV Disease

- Early signs of chronic HIV infection:
 - Weight loss (3-5 kg)
 - Skin rashes
 - Respiratory infections
 - Herpes zoster (“shingles”)
 - CD4 count = 350-500

- Normal activity, able to work / attend school
Opportunistic Infections - Côte d’Ivoire, Thailand

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis</td>
<td>29-37%</td>
</tr>
<tr>
<td>Cryptococcosis</td>
<td>19-38%</td>
</tr>
<tr>
<td>Wasting syndrome</td>
<td>8-28%</td>
</tr>
<tr>
<td>Pneumocystis pneumonia</td>
<td>5-20%</td>
</tr>
<tr>
<td>Bacterial pneumonia</td>
<td>4%</td>
</tr>
<tr>
<td>Esophageal candidiasis</td>
<td>3-6%</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>2-3%</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>1-2%</td>
</tr>
</tbody>
</table>

Sources: Chariyalertsak, 2001; Tansuphasawadikul, 1999; Lorsina, 2004
Goals of HIV Treatment

- Improve quality of life
- Prevent opportunistic infections
- Prevent progression to AIDS
- Prevent death
- Reduce the likelihood of transmission to others ("Secondary prevention")
HIV Treatment - Antiretrovirals

- Fusion/Entry Inhibitors (1)
- Maturation Inhibitors (~2008)
- Protease Inhibitors (8)
- Reverse Transcriptase Inhibitors (11)
- Integration Inhibitors (~2008)
HIV Treatment - Timing of HIV Treatment

- Therapy is delayed until patients develop WHO Stage 3 or Stage 4 disease
 - Delaying therapy until Stage 3 or 4, if done carefully, does not decrease the likelihood of successful treatment

- Treatment is lifelong and expensive, do not want to start unnecessarily early

- Delayed therapy minimizes opportunity for side effects

- Delayed therapy minimizes opportunity for drug resistance
CD4 and Mortality - Zimbabwe

Survival Probability

Time from enrolment to death (years)

CD4 > 200
CD4 50-200
CD4 < 50
Impact of Treatment

Before
Impact of Treatment

After 9 months
Impact of Treatment

After 9 months
Impact of Treatment

“I was a walking skeleton before I began therapy. I was afraid to go out of my house and no one would buy things from my shop. But now I am fine again… My wife has returned to me and now my children are not ashamed to be seen with me. I can work again.”
Impact of Treatment
Impact of Treatment

Begin ART

CD4

Viral load (HIV RNA level)

Weeks

Years

time→
Impact of Treatment - Society

Effective ARVs available

Unintentional injury
Cancer
Heart disease
Suicide
HIV infection
Homicide
Chronic liver disease
Stroke
Diabetes

Deaths per 100,000 Population

Year

Source: Centers for Disease Control, 20
Current Status of Treatment - December 2004

Estimated percentage of people on antiretroviral therapy among those in need, situation as of December 2004

Coverage (%)
- 75 - 100
- 50 - 74.9
- 25 - 49.9
- 10 - 24.9
- Less than 10
- Data not available
Current Status of Treatment - June 2005

Estimated percentage of people on antiretroviral therapy among those in need, situation as of June 2005

Coverage (%)
- 75 - 100
- 50 - 74.9
- 25 - 49.9
- 10 - 24.9
- Less than 10
- Data not available
Number of Individuals Receiving ART

- 1,550,000 on 1/23/2004
- 235,000 on 9/30/2004
- 401,000 on 3/31/2005
- 561,000 on 9/30/2005
- 822,000 on 3/31/2006
- 1,358,500 on 3/31/2007
- 1,641,000 on 3/31/2008

Source: WHO
Community-based Care

Care takes place in the community. Reinforced in the clinic.
Clinical Indicators

- 'Viral load': the number of copies of HIV RNA in the blood.
- CD4 cell count: the number of CD4 cells in the blood.

The graph shows the changes in 'Viral load' and CD4 cell count over time, with 'Viral load' measured in copies/mL plasma and CD4 cell count in cells/μL blood.
State of the Art Technologies

CD4-count
start treatment < 200 cells/ul

Viral load count
measure resistance to treatment
Lab Diagnostics in Resource Poor Settings
What is Needed

- Low cost
- Easy to use
- Rapid and Robust
- Portable
- Sensitive and specific
Microchip Technology for Medicine
Microchips for Bioseparation

silane linker avidin anti-CD4
Microelectrodes for Biosensing

Due to cell lysis, conductance change is observed.

Captured Cells on Chip by Optical Microscopy
Clinical Validation of the Microchip

N = 49
R² = 0.86

Sensitivity = Test Positive / Total Positive
Specificity = Test Negative / Total Negative

<table>
<thead>
<tr>
<th>CD4 Counts (cells/μL)</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 200</td>
<td>0.86</td>
<td>1.0</td>
</tr>
<tr>
<td>< 350</td>
<td>0.90</td>
<td>0.97</td>
</tr>
<tr>
<td>< 500</td>
<td>0.97</td>
<td>0.94</td>
</tr>
</tbody>
</table>
Commercial Development