Molecular and Biophysical Mechanisms of Lung Cell Injury

Samir N. Ghadiali, PhD, Respiratory Biomechanics Laboratory
Frank Hook Assistant Professor of Bioengineering
Department of Mechanical Engineering and Mechanics
Lehigh University
Respiratory System

Upper Respiratory Airways (Eustachian Tube)
Otitis Media (Ear disease)

Pulmonary Airways/Alveoli
Acute Lung Injury

Goal: Utilize engineering, mathematical and biological techniques to understand the pathogenesis of these disorders and develop novel treatments.
Structure of Pulmonary Airways

- Complex bifurcating geometry of pulmonary airways.

- **Rigid** vs. **Compliant** regions of the lung.

- Alveolar contact with circulating blood.

Kitoka, Takakai, Suki, JAP 1999
Pulmonary Mechanics – How do we breath?

Breathing mechanics:
- Negative pressure breathing
- Contraction of Diaphragm
- Deformation of Lung Tissue
- Generates negative pressure which “sucks” air in.
- Elastic recoil during exhalation

Alveolar Expansion/Compression
Infant Respiratory Distress Syndrome

- Lung Immaturity → Surfactant Insufficiency
- Surfactant Insufficiency → Atelectasis
- Atelectasis → Epithelial Injury
- Epithelial Injury → Alveolar Leakage
- Alveolar Leakage → Hyaline membranes
- Hyaline membranes → Fibrosis

• ↑Reopening Pressure → Cell Injury/Fluid Leakage
• Surfactant Function → ↓γ and reopening pressure

Courtesy, D.P. Gaver, Tulane Univ.
Acute Lung Injury

- Infections → Necrosis and Detachment of alveolar epithelial cells.
- ↑ permeability of alveolar-capillary barrier → Flooding of small airways and alveoli
- ↓ gas exchange, severe hypoxia
- Standard of care: Mechanical Ventilation
 - Weaning, Sedation, *Ventilator Induced Lung Injury*
- 30% to 40% mortality rates

S. Ghadiali, Lehigh University
Ventilation Induced Lung Injury (VILI)

- Low Volume Injury (Atelectrauma)
 - Injury due to mechanical stresses exerted during the opening of fluid-filled airways
 - Mechanisms of injury are not well known!

- High Volume Injury (Volutrauma)
 - In-vitro cell-culture studies used to identify mechanism of stretch-induced injury

\(V_T: 12 \text{ ml/kg} \rightarrow 6 \text{ ml/kg} \)

Mortality: 39.8% → 31.0%
How do Airways Close during ALI?

- Original Theory: Pulmonary edema \rightarrow ↑lung weight \rightarrow airway collapse
- Surfactant Inactivation Experiments (Schiller et. al.):
 - Sub-pleural photomicrographs indicate alveolar instability
 - Limitation: no disruption of epithelium
- Oleic Acid Injury
 - Fluid-filled of non-collapsed regions

Figure 1. *In situ* photomicrographs of alveoli during tidal ventilation in a normal lung (CONTROL) and after acute lung injury by Tween lavage (TWEEN). Photomicrographs at end expiration (EXP-...
Fluid Forces During Airway Reopening

• Summary of Computational Fluid Dynamic Modeling

Computational Fluid Dynamic Model

Evolution Eqn
\[\frac{\partial h^*}{\partial t^*} = - \frac{\partial q^*}{\partial x^*} \]

Kinematic Condition
\[q^* = \frac{\gamma_{eq} h^*}{3 \mu} \frac{\partial k^*}{\partial x^*} \]

Stokes Flow
\[\nabla P^* = \mu \nabla^2 u^* \]

LUBRICATION THEORY

BOUNDARY ELEMENT

Stress Balance
\[\tau_{eq} = \gamma_{eq} k^* \hat{n} \]

Governing Parameter:
\[Ca = \frac{\mu U}{\gamma} \]
Hydrodynamic Stresses

Epithelial Cells (not to scale)

Air bubble

Bubble Velocity

Occlusion fluid
Velocity, u
Viscosity, μ
Surface tension, γ

Maximum stress values (dimensional):

$$\left(\frac{dP}{dx}\right)_{\text{max}} = 0.34 \left(\frac{\gamma}{H^2}\right)Ca^{-0.29}$$

$$\left(\tau_s\right)_{\text{max}} = 0.69 \left(\frac{\gamma}{H}\right)Ca^{0.36}$$

$$\left(\frac{d\tau_s}{dx}\right)_{\text{max}} = \left(\frac{\gamma}{H^2}\right)^* \left(0.22 + 1.2Ca^{0.75}\right)$$
Mechanobiology of Reopening

Mechanical Response:
• Cell Deformation
• Plasma Membrane Disruption
• Cell Detachment

Hydrodynamic Stresses

Biological Response:
• Protein/Gene expression

Cell Necrosis
Barrier Disruption

Apoptosis
Inflammatory Mediators

Current Research Focus:

How do different biophysical properties (fluid stresses, cell morphology, cell microrheology) influence cellular deformation and injury during airway reopening?
Experimental Flow System

- Protocol:
 a) Fill chamber with occlusion fluid (PBS or Cell Culture Media, F12K).
 b) Retract fluid to generate bubble propagation.
 c) Fill chamber with live/dead (Calcein / Ethidium) stain and visualize *in-situ*.

- System can accommodate:
 a) Various microchannel geometries
 b) Flexible membranes

Bioscience in the 21st Century, October 5th, 2007
Effect of Airway Diameter and Bubble Velocity

- 4-5 day culture of Rat L2 Epithelial cells (ATCC) till 100% confluent.
- Bubble propagation with high surface tension fluid (PBS)

- More cellular necrosis at slower bubble velocities and in smaller channels
- Implications - High frequency ventilation protocols may help protect the cells in distal regions of the lung.
- Why less death at slower velocities?

Bioscience in the 21st Century, October 5th, 2007
Correlation of Hydrodynamics with Cell Death

- Correlate with maximum value of each stress component during re-opening.
 - Strong correlation with \((dP/dx)_{\text{max}}\)
 - Weak correlation with \((d\tau_{S}/dx)_{\text{max}}\)
 - No correlation with \((\tau_{S})_{\text{max}}\)

\[
(dP/dx)_{\text{max}} = 0.34(\gamma / H^2)Ca^{-0.29}
\]

\[
(d\tau_{S}/dx)_{\text{max}} = (\gamma / H^2)* (0.22 + 1.2Ca^{0.75})
\]

\[
(\tau_{S})_{\text{max}} = 0.69(\gamma / H)Ca^{0.36}
\]
Emergent Phenomena

- Knowledge of the components of a system (reductionism) is not sufficient to understand system behavior.
 - Example 1: Paint Set -> Monet Painting?
 - Example 2: Gene sequence -> Life patterns?
 - Example 3: Different types of Mechanical Stresses (shear, normal, etc.) -> Cell Injury Patterns?

Understanding the emergence of pressure gradients required engineering approaches (i.e. coupling computational and experimental techniques).
Effect of Confluence on Cellular Injury

- 1 day or 4 day culture of Rat L2 cells (ATCC) (25% and 100% confluence).
- Bubble propagation in 0.5mm height channel with cell culture media at 25°C

- Why is there less death for the 100% confluent cells?
- Hypothesis: Cell morphology influences the amount of cell deformation/death.
Quantification of Cellular Morphology

- Laser scanning confocal images of cells with cytoplasmic stain (Calcein AM).
- Cells in 100% monolayer are flatter and thinner.
Fluid-Structure Models of Cell Deformation

- Model cells as viscoelastic medium with linear-elastic plasma membrane.

\[\sigma_{ij}^s = G' \varepsilon_{ij} + G'' \frac{\partial \varepsilon_{ij}}{\partial t} \]

- Apply transient hydrodynamic stresses due to bubble propagation (Ghadiali et al., JFM, 2003).

\[n_j \sigma_{ij}^s = n_j \sigma_{ij}^f \]

\[n_i v_i = n_i \frac{\partial d_i^s}{\partial t} \]

\[d_i^f = d_i^s \]
Effect of Morphology on Membrane Strains

Subconfluent

Confluent

Given the same loading and mechanical properties, subconfluent cells develop higher effective strains.

Cell morphology is an important factor for cellular injury.

\[G'_{cell} = 500 \text{ dyn/cm}^2 \]
\[G'_{mem} = 1E8 \text{ dyn/cm}^2 \]
100% monolayers contain cell-cell contacts and tight actin networks.

25% monolayers exhibit significant changes in cytoskeletal networks (dividing cell).

Indicates that the microstructural (or micromechanical) properties may play a role in a cell’s susceptibility to injury.
Effect of Cytoskeletal Structure on Cell Injury

- Alter cytoskeletal structure and expose cells to equivalent reopening conditions.

- Jasplakinolide → rigid cells → expect less necrosis. √

- Latrunculin → softer cells → expect more necrosis X?

- Hypothesis: ↑ viscous dampening of transient hydrodynamic loads → less deformation.

- Question: Are Latrunculin cells more viscous?
Measurement of Cell Mechanics

- Oscillating Optical Tweezers
 - Forced oscillation of external bead attached to the cytoskeleton at $\omega = 1$ to 1000Hz
 - Obtain elastic and viscous components of G^*: $G^*(\omega) = G'(\omega) + iG''(\omega)$
 - Advantages: Total displacement is ~ 100nm – no plastic deformations

\[
G'(\omega) = \frac{k_{OT}}{4\pi a} \left(\frac{3}{2 \sin \theta} + \frac{\cos \theta}{\sin^3 \theta} \right) \left(\frac{A \cos \delta(\omega)}{D(\omega)} - 1 \right)
\]

\[
G''(\omega) = \frac{3k_{OT}}{16a \sin \theta} \left(\frac{A \sin \delta(\omega)}{D(\omega)} \right)
\]
• Power-law rheology: $\beta=0.18$ for untreated cells is consistent with other intracellular measurements (Fabry, PRL, 2001)

• β is related to elastic vs. fluid like properties, $\beta=0 \rightarrow$ elastic, ↑$\beta \rightarrow$ more viscous
 • Normal cells: $\beta = 0.18 \pm 0.07$
 • Latrunculin-treated cells: $\beta = 0.24 \pm 0.08$ (p<0.03)
Viscous Dampening during Bubble Flows

- Peak hydrodynamic stresses are applied quickly (~100-200 ms).
- ↑ viscous relaxation time ($t_R = \eta/G_{cell}$) mitigates deformation/injury
- Fluidization of cell may explain ↓ necrosis in latrunculin treated cells!
Cell Adhesion Studies

- Bubble propagation with different fluids.
 - Serum-free cell culture media, $\gamma = 57 \text{ dyne/cm}$
 - PBS, $\gamma = 72 \text{ dyne/cm}$

- $\uparrow \gamma$ results in significant detachment for sub-confluent cells.

- Why is there more detachment for 25% monolayer?

- Hypothesis: Cell morphology influences forces at and rupture of focal adhesions bonds.

Bubble Velocity

<table>
<thead>
<tr>
<th>Confluence</th>
<th>Control</th>
<th>0.3 mm/s</th>
<th>30 mm/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Media**
 - PBS ($\uparrow \gamma$)
 - Media ($\downarrow \gamma$)

Ghadiali et al., submitted JAP, 2007
Multi-scale Modeling of Cell Adhesion

- Model FA complex with linear adhesion springs

- Spring constant, rupture distance based on integrin-Fn system (Chan et. al., Biomaterials, 1999)
 - $\sigma \sim 1.0$ dyne/cm
 - $x_{\text{rupture}} \sim 10$ nm

- Location of Focal Adhesions?

\[f_{\text{bond}} = \sigma (x_m - \lambda) \]
Focal Adhesion Distribution

- TIRF Microscopy
 - Excitation at $\theta > \theta_c$
 - Evanescent wave propagates 100-200 nm into sample
 - High resolution imaging of focal adhesion sites.

- Peripheral organization of actin (green) and vinculin (red).

- Investigate effect of heterogeneous spring properties (interior vs. exterior).
Effect of Morphology on Cell Detachment

\[k_i = k_p = 0.6 \]
\[G'_\text{cell} = 2500 \text{ dyn/cm}^2 \]
\[E_{\text{mem}} = 1E8 \text{ dyne/cm}^2 \]

Subconfluent cell peeled 50%
Confluent cell peeled 32%

- Sub-confluent cells are more susceptible to detachment due to change in morphology.
- Clinical implication: Injured lungs (subconfluent conditions) are highly susceptible to further lung damage (cell detachment)
Microbubble Induced Cell Detachment

Increasing Pressure Gradient

\[\Delta P = 380 \]
\[\Delta P = 780 \]
\[\Delta P = 1180 \]

Increasing Shear Gradient

\[\Delta \tau_s = 500 \]
\[\Delta \tau_s = 1000 \]
\[\Delta \tau_s = 1500 \]

Microbubble flows can peel cell off surface

Z-Displacement Magnitude [\(\mu m \)]

0 1 2 3 4 5

Bioscience in the 21st Century, October 5th, 2007

S. Ghadiiali, Lehigh University
Effect of Membrane Mechanics

Increasing Membrane Stiffness → Less Peeling

Subconfluent

<table>
<thead>
<tr>
<th>Membrane Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{mem}} = 1E7$</td>
</tr>
<tr>
<td>67%</td>
</tr>
</tbody>
</table>

Confluent

<table>
<thead>
<tr>
<th>Membrane Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{mem}} = 1E7$</td>
</tr>
<tr>
<td>45%</td>
</tr>
</tbody>
</table>

Displacement Magnitude [µm]

$k_f = k_p = 0.6 \text{ dyn/cm}$

$G'_{\text{cell}} = 2500 \text{ dyn/cm}^2$
Conclusions

- Hydrodynamic stresses, Cell morphology, Cell mechanics, Molecular mechanics may all play a role in cellular injury.

- Coupling of mathematical models and experimental data is critical for understanding the mechanisms of cell injury during airway reopening
 - ↑Pressure gradients is responsible for ↑death at low bubble velocities
 - Changes in cell morphology is partly responsible for ↑death in sub-confluent cells
 - ↑Viscous dampening may be responsible for decreases in cell deformation/death.

- Advanced modeling techniques are required to understand complex emergent phenomena (effect of dP/dx and morphology on cell injury/detachment).
Integrating Life Science and Engineering

Biological/Physiological System are very complex!

Biologist/Physiologist provide powerful tools to probe these systems.

Engineers provide mathematical tools which can be used to understand how the different components interact.