How your body decides if bacteria are friends or foes
How would you feel about:

• A child eating food that dropped on the ground?

• A child sucking their thumbs?

• Take antibiotics without knowing the true reason you are feeling sick?
Antibiotic Resistance
The First Antibiotic

The first antibiotic was discovered by Alexander Fleming in 1928 when he noticed that the fungus penicillium killed disease causing bacteria.
Antibiotic Classes

Penicillins
- penicillin
- amoxicillin

Cephalosporins
- cephalexin (Keflex)

Sulfonamides
- co-trimoxazole (Bactrim)

Fluoroquinolones
- ciprofloxacin (Cipro)
- levofloxacin (Levaquin)
- ofloxacin (Floxin)

Prevents bacteria from making cell walls

Tetracyclines
- Tetracycline (Sumycin)
- doxycycline (Vibramycin)

Aminoglycosides
- gentamicin (Garamycin)
- kanamycin
- tobramycin (Tobrex)

Macrolides
- erythromycin (E-Mycin)
- azithromycin (Zithromax)

Inhibits Folate synthesis

Inhibits DNA replication

Inhibits protein synthesis
Antibiotic Usage

Not simply used to fight primary infections… antibiotics are the backbone of modern medicine

Transplants

Dialysis

Suppressed Immune Systems

Invasive surgeries
Lack of New Antibiotics

Despite the fact that they are essential for modern medicine, few new antibiotics have been discovered and developed in the last several decades.

More than 30-Year Void in Discovery of New Types of Antibiotics

Why? It is much more profitable for pharmaceutical companies to pursue lifestyle type therapies (drugs that patients need for years/decades).
- $20 billion in excess direct healthcare costs
- Costs to society for lost productivity as high as $35 billion a year (2008 dollars)
- The use of antibiotics is the single most important factor leading to antibiotic resistance
- \textbf{↑} \textit{C. difficile} infections1
 - 453,000 cases 2011
 - 29,000 deaths 2011

Death Toll of Antimicrobial Resistance

2015

50,000

700,000

10,000,000

2050

North America

317,000

“Things as common as strep throat or a child’s scratched knee could once again kill.”

Dr. Margaret Chan
Director-General
Humans and Microbes

• Leeuwenhoek’s discovery of microorganisms in 17th century led people to suspect they might cause diseases

• Robert Koch (1876) offered proof of what is now considered germ theory of disease; showed *Bacillus anthracis* causes anthrax

• Today, we now know that most of the bacteria we associate with are not pathogens, and many are critical for our health.
Bacteria Are Ubiquitous

- We contact numerous microorganisms daily
 - Every surface on earth is covered!
 - Even clouds have microbes
 - Could play a role in seeding rain..
 - Some have tremendous commercial value
 - Yogurts, wine, cheese, vinegar, pickles, etc.
 - Our bodies:
 - Breathe in, ingest, pick up on skin
 - Vast majority do not make us sick, or cause infections
 - Some colonize body surfaces; or slough off with dead epithelial cells
 - Most that are swallowed die in stomach or are eliminated in feces
 - Relatively few are pathogens that cause damage
Microbes, Health, and Disease

- Most microbes are harmless
 - Many are beneficial

- **Normal microbiota** (normal flora) are organisms that routinely reside on body’s surfaces

 - Relationship is a balance, and some can cause disease under certain conditions—opportunistic infections

 - Weaknesses in innate or adaptive defenses can leave individuals vulnerable to invasion
 - malnutrition, cancer, AIDS or other disease, surgery, wounds, genetic defects, alcohol or drug abuse, and immunosuppressive therapy
Human commensals and mutalistic microbes

Resident microbiota inhabit sites for extended periods

Transient microbiota inhabit temporarily

- Important to human health
- Relatively little is known
- Human Microbiome Project aimed at studying
 http://en.wikipedia.org/wiki/Human_Microbiome_Project

- Nose
 Staphylococcus
 Corynebacterium

- Throat
 Streptococcus
 Moraxella
 Corynebacterium
 Haemophilus
 Neisseria
 Mycoplasma

- Skin
 Staphylococcus
 Propionibacterium

- Mouth
 Streptococcus
 Fusobacterium
 Actinomyces
 Leptotrichia
 Veillonella

- Large intestine
 Bacteroides
 Escherichia
 Proteus
 Klebsiella
 Lactobacillus
 Streptococcus
 Candida
 Clostridium
 Pseudomonas
 Enterococcus

- Urethra
 Streptococcus
 Mycobacterium
 Escherichia
 Bacteroides

- Vagina
 Lactobacillus
The Normal Microbiota

The Protective Role of the Normal Microbiota

- Significant contribution is protection against pathogens
 - Covering of binding sites prevents attachment
 - Consumption of available nutrients
 - Production of compounds toxic to other bacteria

- When killed or suppressed (e.g., during antibiotic treatment), pathogens may colonize, cause disease
 - Some antibiotics inhibit *Lactobacillus*
 - Oral antibiotics can inhibit intestinal microbiota, allow overgrowth of toxin-producing *Clostridium difficile*
The Normal Microbiota

- **The Dynamic Nature of the Normal Microbiota**
 - Healthy human fetus sterile until just before birth
 - Exposure during birth and through contact with people, food, and environment lead to microbes becoming established on
 - Find that families often share similar microbial populations, and important gut microbes are acquired from the mother
 - Critical for proper gut development—first colonizers from mom

- Composition of normal microbiota is dynamic
 - Changes occur over the life of a person. Younger people tend to have different compositions than older people.
 - Responses to physiological changes (e.g., hormonal changes), activities and diet (e.g., consuming food)
Microbiota alter the chemistry of your gut

- Obese mice had 50% fewer Bacteroidetes and 50% more Firmicutes in their bowels than their lean counterparts.

The link between the microbiota and obesity became even clearer when Gordon looked at a special strain of mice with no microbiota of their own.

When the team transplanted the microbiota from fat and lean mice into the germ-free strains, those colonized by microbiota from fat donors packed on far more weight than those paired with lean donors.
PROBIOTICS, ADHD, AND AUTISM

Your Gut Bacteria Linked to Anxiety and Depression. Here’s What to Do to Stay Mentally Healthy

Gut Bacteria May Play Role in Crohn’s Disease

CAN BACTERIA Talk To Your YOUR BRAIN?
YOUR MICROBES AND MENTAL HEALTH

Our brain and our digestive system are intricately linked. So closely linked, in fact, that some experts say it should be viewed as one system, with the gut often being referred to by scientists as “the second brain”...and the contents of this second brain can profoundly affect our first!

CHEMOTHERAPY AND THE MICROBIOME

NEWBORN GUT MICROBIOME LINKED TO ALLERGY & ASTHMA RISK IN LATER LIFE
- Gut microbes in infancy increase the risk of asthma and allergies in childhood
- Avoid situations or substances that trigger attacks of asthma
- Monitor lung functions closely

www.omegahospitals.com | @omegahospitals
Microbiome

- So far... more questions than answers

- But there are major indications that the microbiome (the combination of all microbes living in and on us) may be thought of as an organ
Colonization—microbe establishes on body surface

- **Infection** usually refers to pathogen

 - **subclinical**: no or mild symptoms

- **Infectious disease** shows noticeable impairment
 - **Symptoms** are subjective effects experienced by patient (e.g., pain and nausea)
 - **Signs** are objective evidence (e.g., rash, pus formation, swelling)

- Initial infection is **primary infection**
Principles of Infectious Disease

Pathogenicity

- **Primary pathogen** is microbe or virus that causes disease in otherwise healthy individual
 - Diseases such as plague, malaria, measles, influenza, diphtheria, tetanus, tuberculosis, etc.
- **Opportunistic pathogen** (opportunist) causes disease only when body’s innate or adaptive defenses are compromised or when introduced into unusual location
- **Virulence** refers to degree of pathogenicity
- **Virulence factors** are traits that allow microorganism to cause disease
Distribution of Pathogen

- **Localized infection**: microbe limited to small area (e.g., boil caused by *Staphylococcus aureus*)
- **Systemic infection**: agent disseminated throughout body (e.g., measles)

- Suffix *-emia* means “in the blood”
 - **Bacteremia**: bacteria circulating in blood
 - Not necessarily a disease state (e.g., can occur transiently following vigorous tooth brushing
 - **Toxemia**: toxins circulating in bloodstream
 - **Viremia**: viruses circulating in bloodstream
 - **Septicemia or sepsis**: acute, life-threatening illness caused by infectious agents or products in bloodstream
Mechanisms of Pathogenesis—how do pathogens make us sick?

- General patterns
 - Produce toxins that are ingested
 - Colonize mucous membranes, produce toxins
 - Invade host tissues, avoid defenses
 - Invade host tissues, produce toxins
 - Pathogens and hosts usually evolve toward balanced pathogenicity (e.g., myxoma virus and rabbits)
Invasion—Breaching the Anatomical Barriers

- Penetrating the Skin
 - Difficult barrier to penetrate; bacteria rely on injuries
 - Staphylococcus aureus enters via cut or wound; Yersinia pestis is injected by fleas, Lyme’s disease by tick bite

- Penetrating Mucous Membranes—respiratory and gut tracts
 - Common Entry point pathogens
 - Directed Uptake by Cells
 - Pathogen induces cells to engulf via endocytosis

Borrelia burgdorferi
(Lyme’s disease)
Avoiding the Host Defenses

- **Hiding Within a Host Cell**
 - Allows avoidance of complement proteins, phagocytes, and antibodies
 - *Shigella* directs transfer from intestinal epithelial cell to adjacent cells by causing host cell actin polymerization
 - *Listeria monocytogenes* (meningitis) does the same

- **Avoiding Killing by Immune System**
 - Serum resistant bacteria resist
Infection – your options

- What happens when a pathogen invades our bodies?

- There are two options:
 - It may be detected and removed by our immune system
 - It avoids our immune systems and takes hold (an infection ensues)
 - Antibiotics is the only option then
To microbes, human body is nutrient-rich
- But most of our internal systems are sterile (except the gut)
- **Innate immunity** is routine protection
 - Skin, mucous membranes prevent entry
 - Sensor systems detect invaders, general microbe pattern recognition
- **Adaptive immunity** develops
 - throughout life:
 - **antigens** cause response, system
 - Produces **antibodies** to bind
 - Can also destroy **host cells**
Overview of Innate Defense System

First-line defenses
Prevent microbial entry

- Skin and mucous membranes
 - Microbial invasion

Sensor systems
Detect microbial invasion
- Pattern recognition receptors
 - Surfaces, endosomes, and phagosomes of sentinel cells
- Pattern recognition receptors
 - Cytoplasm of many cell types
- Complement system
 - Blood and tissue fluids

Innate effector actions
Destroy invader
- Inflammatory response
- Inflammatory response
- Interferon response
- Inflammatory response
 - Opsonization
 - Membrane attack complexes