Graduate Student Handbook

Department of Biological Sciences
Academic Year 2017-18
Table of Contents

Introduction to Department and Program ...3
Departmental Support...4-5
University Requirements ...6
Grading Policy and Coursework..7-9
Pre-candidacy...10
Post-candidacy..11
Progress meetings and Dissertation Defense...12
Fellowships...13
Seminar series, job talks, and internal talks..14
Biology Organization of Graduate Students (BOGS)...15
Is a PhD for you? 00 A few critical considerations..16-20
Introduction to Department and Program

Welcome to the Department of Biological Sciences! This handbook is intended to provide you with the details of our graduate programs. Most of this information can also be found on the Departmental website under “graduate programs.” If you find details missing that you would like to be included here, please let the graduate committee know – we will revise the content of the handbook as needed. In the meanwhile, if you have questions or concerns at any time during your education, feel free to send an email/make an appointment with the Graduate Director. The composition of the graduate committee and the graduate director changes periodically; current members are listed below.

For the academic year 2017-2018:
Department Chair: Linda Lowe-Krentz
Graduate Director: Matthias Falk
Graduate Committee: Matthias Falk, Julie Haas, Kathy Iovine, Greg Lang, Michael Layden, Amber Rice, Vassie Ware

Office staff:
Administrative Secretary: Vicki Ruggiero
Financial officer and Infrastructure: Maria Brace
Graduate Coordinator: Delia Chatlani

Communication:
Throughout your time here, you will receive program-related information via email from the office staff, from the graduate committee, and from other faculty. Sometimes these emails will invite you to lunch with an outside speaker, or to remind you to do something important (i.e. register for classes). Please take the time to read the email carefully and to respond! More often than not these emails contain or request relevant information. Please make the jobs of the people helping you easier by responding to emails in a timely manner.

Other places you can find information relevant to attaining your degree:
Biology Department website: http://www.lehigh.edu/~inbios/Grad/Grad_General.html
Lehigh’s College of Arts and Science Graduate Studies website: http://cas.lehigh.edu/casweb/default.aspx?id=7
The College of Arts and Sciences graduate student handbook: http://cas.lehigh.edu/casweb/default.aspx?id=56
Departmental Support

General timeline for completion of the PhD:
Year 1 – Coursework, find a research lab (ideally by the beginning of the Summer)
Year 2 - Coursework, take qualifying exam, continue research
Year 3 - Coursework if necessary, complete proposal defense, continue research
Year 4 - Research towards PhD
Year 5 - Research towards PhD and complete thesis defense

The Department of Biological Sciences is committed to five years of support for all graduate students in good standing and with demonstrated timely completion of the requirements of their program. This includes satisfactory performance in required coursework, admission to candidacy, passing of qualifier examinations, defense of a doctoral thesis proposal and regular progress meetings. Determination of satisfactory progress is accomplished through the student meetings with the Graduate Committee and includes grades, progress in supervised research, and input from the research adviser.

Funding after five years is not guaranteed, but instead is contingent upon the availability of funds either from the student’s mentor or from the Department of Biological Sciences. Students and their mentors may request support beyond the student’s fifth year in writing to the Graduate Committee. At the beginning of the fifth year students will receive a letter from the graduate committee with instructions for requesting Departmental support beyond the Spring semester of their fifth year in the program. Students requesting support should expect to provide feedback from the dissertation committee to the graduate committee and a timeline for completion of their degree.

Existing mechanisms of support:

Teaching Assistantship (TA): A TAship is when a graduate student helps a faculty member to teach an undergraduate course. Responsibilities may include grading, leading a lab section, leading a recitation section, proctoring exams, and meeting with students. You are expected to give about 20 hours/week towards this position. Assignments are made by a combination of student expertise, student preferences, faculty preferences, and course demand. Please remember that the faculty member (and perhaps other TAs for that course) are counting on you to fulfill your responsibilities for the course. Therefore, it is best to avoid making arrangements for travel during the semester when you are a TA.

Research Assistantship (RA): An RAship is when a faculty member supports the student stipend/tuition using external funding, as from a federal grant from the NIH or NSF. You are expected to give a minimum of 40 hours/week towards this position. Please refrain from scheduling personal travel while receiving this support until you have spoken with your faculty adviser.
Internal fellowship: The Department has two endowed accounts that are used to support existing students. More information can be found on page13 of this handbook and on the Departmental website. Department fellowships are competitive and based on student progress in research. Students that have completed their proposal defense are given preference for these awards.

External fellowship: Students are strongly encouraged to prepare and submit research proposals to support themselves. Possible agencies that will support pre-doctoral research include the NIH, the NSF, and the American Heart Association. Please discuss these and other options with your faculty adviser.

During the Summer, students may be supported by a TA (if available), as an RA, from a University Fellowship (nominations are submitted via the Graduate Committee), from the BDSI program, or by Departmental funds. When provided, Summer support is intended for students that will continue into the Fall semester, unless the student defends their thesis during the Summer.

Please understand that you are being supported to give full-time effort towards your education, unless you are being supported as a TA. In the latter case, your full-time effort will go towards both your research and your teaching assignment. In any case, your support carries with it the stipulation that you are NOT employed outside of the graduate program. External employment will result in the termination of financial support (stipend and tuition).

Graduate student offices: The Department provides all graduate students with a desk in an office that is separate from your research lab. This space is meant to give students a quiet place to read, think, write, etc. There is an attempt to mix students with different levels of experience (to facilitate mentoring between new and mature students) and between programs (to facilitate interactions across disciplines). As a result, you may be asked to change desks/offices during your time here. Due to the large number of students in the Department it is typically not possible to put students in offices within a particular location or to group students by lab.

Please do not bring in pets, refrigerators, microwaves, or an excess of personal items. A fridge and microwave are located in the Biology Common room across from the main office.
University requirements

Course credits:
All graduate students are required to take 24 course credits, where at least 12 credits are at the 400 level.

Total credits:
Students that enter with a B.S. degree are required to take at least 72 credits (24 course credits and 48 research credits).
Students that enter with an M.S. degree are required to take at least 48 credits (24 course credits and 24 research credits).

Once you complete the appropriate number of credits (i.e. as noted above) and complete your proposal defense (see page 11), you will continue to take 1 credit per semester as “maintenance of candidacy.” You must be registered for at least 1 credit in each semester until you defend your thesis. If you defend over the Summer, you must have been registered for 1 credit in the preceding Spring semester.

University Time limits:
Students that enter with a B.S. have 10 years to complete the PhD degree.
Students that enter with an M.S. have 7 years to complete the PhD degree.

In both cases, it is possible to petition for additional time. See Graduate Coordinator for help in completing the petition forms.

The University time limit should not be confused with the amount of time that you will receive Departmental support (see pages 3-4). In the event that Departmental support is terminated, you may still utilize additional time to complete your degree (however you will no longer receive a stipend and may have to pay for your tuition).

Terminal Master’s degree:
You have entered a PhD program. We do not offer an on-campus M.S. degree. However, should you decide to leave the program before completing the PhD, you may receive a terminal master’s degree if you meet the requirements (30 credits total, 24 course credits and 6 research credits).
Grading policy and Coursework

Grading Policy

A regular status graduate student pursuing a doctoral degree who receives a grade lower than a B- in more than one program-related course numbered 300 or above will be dropped from the program.

Coursework

All graduate students are required to take 24 course credits towards the PhD. Each program has specific requirements as well as acceptable elective courses. Of the 24 total credits, at least 12 must be at the 400 level.

As part of the 24 credits all students will enroll and attend:

- BioS 408 (0 credits) Responsible Conduct of Science within their first year of graduate study.
- BioS 406 (1 credit) Biological Sciences Seminar at least twice in the first four semesters.
- All Departmental Seminars including seminars from job candidates.
- In order to meet the University requirement for 24 course credits, students may take 1-3 credits of Bios405 (Special Topics) with their research advisor.

Specific course requirements and electives follow for each of the three graduate programs in Biochemistry, Cell and Molecular Biology, and Integrative Biology and Neuroscience.

Biochemistry (updated for 2016/2017 academic year):

Required Core Courses (17 credits in core)
- Bios371 and 372 - Elements of Biochemistry I and II
- One literature-critique based course (Bios471 - eukaryotic signal transduction, Bios421 – Molecular Cell Bio I/cell bio, Bios422 – Molecular Cell Bio II/mol gen)
- Chm423 - Bio-organic Chemistry OR a 400-level bioinformatics course (through CSE or Bios)
- Bios345 - Molecular Genetics OR Bios411 Advanced cell biology
- Seminar Course in Biological Sciences (Bios406 – 2 credits)

Elective Courses
- Additional courses to reach 24 course credits (12 at the 400-level) may be chosen from the upper level courses in Biochemistry, Molecular Biology, and Bio-Organic Chemistry.
 Electives examples: any of the alternative courses listed above, Chm472 (Lipids and membranes, offered periodically), Chm### (protein structure/function combined lab/lecture course).
We suggest that the qualifying exam is the same Biochem. from the cell-molecular exam, where the second topic would be Molecular Genetics or Cell Bio. A third topic could be based on their alternate course selections (i.e. bioinformatics), or could be another biochemistry question.

Cell and Molecular Biology:

Recommended Core Courses

- BioS 345 - Molecular Genetics (or equivalent)
- BioS 371 - Elements of Biochemistry I (or equivalent)
- BioS 372 - Elements of Biochemistry II (or equivalent)
- BioS 411 - Advanced Cell Biology
- BioS 421 - Molecular Cell Biology I (prerequisite = BioS 411 or equivalent)
- BioS 422 - Molecular Cell Biology II (prerequisite = BioS 345 or equivalent)

Elective Courses

- Additional courses to reach 24 course credits may be chosen from the upper level courses in Biochemistry, Molecular Biology, and Cell Biology.

Integrative Biology and Neuroscience:

The Integrative Biology and Neuroscience program has two tracks: Animal Behavior and Evolution, and Neuroscience. Below are the current requirements to meet the needs of the qualifying exam (four 400 level courses from four different instructors). Please note that additional courses will be required to meet the 24 course credit minimum (these may be 300-level or 400-level courses). Course offerings may be added/deleted based on faculty availability.

Additional Requirement for ALL Integrative Graduate Students

BioS 401: Professional Graduate Skills
(strongly recommended to be taken in first two years)

TRACK 1: ANIMAL BEHAVIOR AND EVOLUTION

Three courses from the Evolution/Behavior area:

BioS 426: Coevolution
BioS 428: Molecular Evolution
BioS 434: Speciation
BioS 439: Advanced Behavioral Ecology

Take one course from EITHER the 400-level Cell and Molecular offerings (listed above) OR the 400-level Neuroscience offerings (listed below).

TRACK 2: NEUROSCIENCE

One course from each of the four listings below:

Behavioral Neuroscience – 1 course

BioS 453: General Neuroanatomy
BioS 457: Advanced Behavioral Neuroendocrinology

Neurophysiology – 1 course

BioS 415: Synapses, Plasticity & Learning
BioS 424: Advanced Neurobiology of Sensory Systems

Neuroscience elective – 1 course

Choose from courses in Behavioral Neuroscience, Neurophysiology, or from the courses listed below:

BioS 471: Eukaryotic Signal Transduction
BioS 486: Genes and the Brain

Non-neuroscience elective – 1 course

Choose from EITHER the 400-level Cell and Molecular offerings (top of page 8) OR the 400-level Evolution and Behavior offerings (bottom of page 8).
Pre-Candidacy

Finding a research lab

All graduate students are encouraged to rotate among different labs during the Pre-Candidacy Phase. Rotations provide 1) first-hand laboratory experience, 2) training in lab-specific techniques and 3) one-on-one interactions with faculty. After a maximum of three lab rotations, the graduate student and Faculty Advisor together will decide upon a lab for completion of the dissertation research. While there are no set time frames for rotations, it is in the student’s best interest to decide upon a research lab by the end of the first Spring semester so that research towards the PhD can begin over the Summer.

Qualifying exam

All students must take a “qualifying exam” in order to continue in the program. The examination consists of a two-day written examination followed separately by an oral examination. Faculty will evaluate both written and oral exams. Passing the written exam is required to progress to the oral exam. If a student fails his/her first attempt at either portion of the exam, s/he will be provided one opportunity to re-take the exam.

Biochemistry students take the qualifying exam in January of the second year in the program. All faculty that contribute to the Biochemistry program (i.e. from both Biology and Chemistry Departments) have the option of preparing questions for the written exam and participating in the oral exam. Written exam questions are based on general knowledge obtained primarily from coursework.

Cell and Molecular Biology students take the qualifying exam in January of the second year in the program. All faculty in the Cell and Molecular program have the option of preparing questions for the written exam and participating in the oral exam. Written exam questions are based on a set of literature that students were exposed to during the Core courses.

Integrative students typically take the qualifying exam in May/June of the second year in the program (some students opt to take the exam in January of the second year). The composition of the faculty examiners depends on coursework taken by the student. The written/oral exam committee will be comprised of no less than four faculty members that were instructors in four different 400-levels courses taken by the student.
Post-candidacy

Candidacy is the second stage of the graduate experience. In this phase, the Doctoral Candidate engages primarily in research activities with the goal of publishing new and novel results. Throughout this phase, the student meets regularly with a Dissertation Committee chosen by the student in consultation with the student’s Major Advisor. Candidacy is typified by research publications, attendance and participation in both research conferences and departmental colloquia. This phase culminates in the generation and defense of a PhD Dissertation.

Within one year of successfully completing the qualifying exam, the student should prepare a written document representing their proposal thesis research. This should be written in conjunction with their advisor. The proposal should be submitted to the Dissertation Committee (determined by the student and the Faculty Advisor) two-weeks in advance of the proposal defense. The minimum four-member Dissertation Committee includes three departmental Faculty (including the Faculty Advisor) and one doctoral level scientist from outside of the department (either within Lehigh or outside of Lehigh). At the proposal defense, the student will orally present the contents of the thesis and will address questions and concerns of the committee.

The Proposal defense includes a General Examination in which the student’s adequate understanding of the science related to his or her field of study will be assessed. Upon successful defense of the Dissertation Proposal and satisfactory performance in the General Examination, the following two forms must be signed by all members of the Dissertation Committee and submitted to the Graduate Programs Office of the College of Arts and Sciences:

1. Proposal Title Page (this is part of your proposal document)
2. “Report on the General Doctoral Examination” – found here: https://cas.cas2.lehigh.edu/content/general-exam-form

Upon successful completion of your proposal defense, you will meet with the Associate Dean for Research and Graduate Studies. This meeting is intended for you to explain briefly your dissertation research and to review the process and timeline for completion of your degree.

Please note that if the composition of your dissertation committee changes, you must inform the University Graduate Office as soon as possible (and before completing your dissertation defense). This is accomplished by filing a petition. Graduate Coordinator can help you to fill out the appropriate forms.

In summary, the successful completion of coursework, written and oral qualifying exams and defense of a Dissertation Proposal/General Examination are requirements for Admission to Candidacy. By University regulations, Admission to Candidacy requires 72 credits beyond the Bachelor’s degree or 48 credits beyond the Master’s degree. At
least 24 of the credits must be in course work. Students that have progressed to Candidacy will continue to take 1 credit per semester.

Progress meetings

Progress is assessed of all students throughout their time in the graduate program. Prior to the proposal defense, students meet twice per year with the graduate committee. After the proposal defense, students meet regularly with their dissertation committee.

Pre-candidacy

The Graduate Coordinator will set up meetings with students in December and May of each year in order to evaluate student progress, address concerns related to progress, and/or to address concerns/questions of the student. Students are required to bring completed progress report forms (provided by the Graduate Coordinator ahead of the meeting) and an updated CV.

Post-candidacy

Following the proposal defense, the student should schedule annual meetings with their Dissertation Committee to report on progress. If things are going well, this provides you with an opportunity to update your committee. If you are experiencing difficulties, it gives your committee an opportunity to help you through the challenge before you have an extended delay. Regular meetings also signal that you are meeting requirements for adequate progress towards your degree. This may contribute to documentation used by the graduate committee to make funding decisions beyond your 5th year in the program. At the completion of a Progress Report meeting, please complete the Progress Report Form as documentation of your meeting (see Graduate Coordinator in the Biology office).

The graduate committee will send out reminders if it becomes apparent that you are not meeting regularly with your committee. However, the progress you make towards your degree is your responsibility and it is up to you to schedule meetings.

Dissertation defense

The graduate student, together with their dissertation committee, will determine when the student is prepared for their final examination as a student: the thesis defense. The student will prepare a written document representing the novel research completed during the thesis, including relevant background and discussion that provides context for the completed research. The thesis should be distributed to the committee two weeks ahead of the defense date. Guidelines for preparation of the dissertation itself, as well as all requirements for completion of the PhD can be found here: http://cas.cas2.lehigh.edu/content/graduation-management-assistant.
Fellowships

At the discretion of the Graduate Committee and Department Chair, the Department of Biological Sciences awards fellowship funds provided by both Gordon C. Thorne and Marjorie Nemes to support graduate research. The fellowships are awarded on a competitive basis to recognize exceptional students who have demonstrated excellence in research and have made significant progress toward their Ph.D.

Eligibility: All full time Ph.D. students are eligible to apply, but preference will be given to students who have advanced to candidacy. Nominations are accepted from faculty, fellow students, or from the candidate.

The award: Fellowships provide tuition and stipend support for one semester. Students may receive a fellowship for no more than 2 semesters. Fellows are required to present their research to the department as part of the regular seminar series.

The primary consideration for these fellowship awards is *progress towards the degree*. Please remember this as you prepare your application.

Application: Successful applications should document the student’s achievements in research. In order to receive full consideration for the award, the application should include (please submit to Graduate Coordinator electronically):

1) A nomination letter from the nominator (or candidate if self-nominated) carefully explaining why the candidate is deserving of special recognition by the department.
2) The candidate should submit a brief 1-2 page proposal to explain how the award will help him/her achieve specific research goals for the duration of the award. If the candidate is self-nominated, this proposal may be incorporated into the justification for nomination (above).
3) A letter from the candidate’s advisor addressing the candidate’s qualifications and demonstrated commitment to their studies. Of particular importance is an explanation of how this award will enhance the student’s progress toward completing his/her degree. The advisor is welcome to address any factors related to how the award will impact their research laboratory.
4) A CV including all research, teaching, and service accomplishments.

Applications should be submitted electronically and are due to the department’s academic coordinator by:

Spring Semester Fellowships: November 15th
Fall Semester Fellowships: April 15th
Seminar series, job talks, and internal talks

Seminar series: Thurs at 4:10 pm during the academic year
The Department hosts weekly seminars from outside speakers, Lehigh faculty, and from Fellowship recipients. These speakers are hosted by Department faculty or BOGS, and they represent leaders in their fields of research. What you can learn from these seminars is not limited to the current research on a particular research topic. You can also observe different speaking styles and learn how to give an effective research presentation (note that you can learn the latter whether a particular seminar was effective or not). These are important skills. Barring a program-related conflict such as TA-responsibilities, all graduate students are expected to attend weekly seminars.

Job talks: Seminar topics and times posted weekly
When searching for a new faculty position, the Department invites up to six candidates for 2.5 day visits. Each candidate gives both a formal seminar and a less formal “chalk-talk” on future research plans. This can mean up to four seminars in a week during a job search. All graduate students are expected to attend unless they have a program-related conflict. This will take a lot of everyone’s time. For those of you that will be looking for jobs some day (i.e. all of you), consider our job candidates equivalent to your future competition. What does a good job talk look like/sound like? What kind of evidence do you need to convince a group of critical scientists that your hypothesis is worth pursuing? What do you have to do now to compete at this level?

As part of this process, the Search Committee will ask for feedback from all members of the Department. Please take these opportunities to provide informed feedback to the Search Committee on each candidate.

Internal talks: Tues at 4:10 pm during the academic year (not scheduled during a faculty search)
Graduate students and post-docs are invited to give research seminars during the academic year. These talks are a good opportunity to learn first-hand how to give a good seminar and also to learn more about what your fellow graduate students are doing in the lab. Faculty attend these seminars and stay after to provide feedback on the presentation and content.
Biology Organization of Graduate Students (BOGS)

Within the Department of Biological Sciences, the graduate students together form BOGS.

We are an organization with four goals:

1. To promote effective communication between the department faculty and the graduate students
2. To provide professional enrichment to graduate students through career-related seminars and activities,
3. To promote scientific outreach through community service,
4. To encourage social interaction among all graduate students via non-academic activities.

Highlights include a Graduate Student Research Symposium during candidates’ day, and invitation of an external seminar speaker. Social activities include weekly dinners following departmental seminars, bowling and movie events. June Day, an outdoor picnic, hikes, and a summer softball league are among the recreation activities BOGS participates in. BOGS is very involved in community outreach; these events include a Bio Fair hosted at a local middle school, park clean-ups and tree planting, and clothes and book drives.

It is encouraged for you to reach out to other graduate students in our Department. We are a diverse group of people with a broad range of experiences and interests, and we are always thrilled to meet new colleagues.

The following was written by a group of faculty in a Computer Science PhD program, and can be found on the web at: http://www.cs.purdue.edu/homes/dec/essay.phd.html. While some of the comments may be particular to Computer Science, the vast majority of the piece is applicable to PhD programs in general, including ours.
Notes On The PhD Degree

Last week at the department colloquium coffee hour, several students engaged the faculty in a discussion about our Ph.D. program. It became clear that many of the students did not understand the basics; they were surprised at some of the questions and confused by some of the answers.

These notes provide basic information about the purpose of a Ph.D. program in an attempt to help students decide whether to pursue a Ph.D. degree.

The Basics

A Doctor of Philosophy degree, abbreviated Ph.D., is the highest academic degree anyone can earn. Because earning a Ph.D. requires extended study and intense intellectual effort, less than one percent of the population attains the degree. Society shows respect for a person who holds a Ph.D. by addressing them with the title ``Doctor''.

To earn a Ph.D., one must accomplish two things. First, one must master a specific subject completely. Second, one must extend the body of knowledge about that subject.

Mastering A Subject

To master a subject, a student searches the published literature to find and read everything that has been written about the subject. In scientific disciplines, a student begins by studying general reference works such as text books. Eventually, the student must also search scholarly journals, the publications that scientists use to exchange information and record reports of their scientific investigations.

Each university establishes general guidelines that a student must follow to earn a Ph.D. degree, and each college or department within a university sets specific standards by which it measures mastery of a subject. Usually, in preparing for Ph.D. work in a given field, a student must earn both a Bachelor's and Master's degree (or their equivalent) in that field or in a closely related field. To demonstrate complete mastery of the subject, a student may be required to complete additional graduate-level courses, maintain a high grade average, or take a battery of special examinations. In many institutions, students must do all three.

Because examinations given as part of a Ph.D. curriculum assess expert knowledge, they are created and evaluated by a committee of experts, each of whom holds a Ph.D. degree.

Extending Knowledge
The essence of a Ph.D., the aspect that distinguishes Ph.D. study from other academic work, can be summarized in a single word: research. To extend knowledge, one must explore, investigate, and contemplate. The scientific community uses the term *research* to capture the idea.

In scientific disciplines, research often implies experimentation, but research is more than mere experiments -- it means interpretation and deep understanding. For Computer Scientists, research means searching to uncover the principles that underlie digital computation and communication. A researcher must discover new techniques that aid in building or using computational mechanisms. Researchers look for new abstractions, new approaches, new algorithms, new principles, or new mechanisms.

To complete a Ph.D., each student must present results from their research to the faculty in a lengthy, formal document called a dissertation (more popularly referred to as a thesis). The student must then submit their dissertation to the faculty and defend their work in an oral examination.

Relationship To Products

In some cases, the results of scientific research can be used to develop new products or improve those that exist. However, scientists do not use commercial success or potential commercial profits as a measure of their work; they conduct investigations to further human understanding and the body of knowledge humans have compiled. Often, the commercial benefits of scientific research are much greater in the long-term than in the short-term.

Research Activities

Computer Science research can include such diverse activities as designing and building new computer systems, proving mathematical theorems, writing computer software, measuring the performance of a computer system, using analytical tools to assess a design, or studying the errors programmers make as they build a large software system. Because a researcher chooses the activities appropriate to answer each question that arises in a research investigation, and because new questions arise as an investigation proceeds, research activities vary from project to project and over time in a single project. A researcher must be prepared to use a variety of approaches and tools.

A Few Questions To Ask

Many of you are trying to decide whether to pursue a Ph.D. degree. Here are a few questions you might ask yourself.

1. **Do you want a research career?**

 Before enrolling in a Ph.D. program, you should carefully consider your long-term goals. Because earning a Ph.D. is training for research, you should ask yourself whether a research position is your long-term goal. If it is, a Ph.D. degree is the standard path to your chosen career.
(a few people have managed to obtain a research position without a Ph.D., but they are the exception, not the rule). If, however, you want a non-research career, a Ph.D. is definitely not for you.

2. Do you want an academic position?

A Ph.D. is the de facto "union card" for an academic position. Although it is possible to obtain an academic position without a Ph.D., the chances are low. Major universities (and most colleges) require each member of their faculty to hold a Ph.D. and to engage in research activities. Why? To insure that the faculty have sufficient expertise to teach advanced courses and to force faculty to remain current in their chosen field. The U.S. State Department diplomatic protocol ranks the title "professor" higher than the title "doctor". It does so in recognition of academic requirements: most professors hold a Ph.D., but not all people who hold a Ph.D. degree are professors.

3. Do you have what it takes?

It is difficult for an individual to assess their own capabilities. The following guidelines and questions may be of help.

Intelligence:
In your college and graduate courses, were you closer to the top of your class or the bottom? How well did you do on the GRE or other standardized tests?

Time:
Are you prepared to tackle a project larger than any you have undertaken before? You must commit to multiple years of hard work. Are you willing to reduce or forego other activities?

Creativity:
Research discoveries often arise when one looks at old facts in a new way. Do you shine when solving problems? Do you like "brain teasers" and similar puzzles? Are you good at solving them? In school, did you find advanced mathematics enjoyable or difficult?

Intense curiosity:
Have you always been compelled to understand the world around you and to find out how things work? A natural curiosity makes research easier. Did you fulfill minimum requirements or explore further on your own?

Adaptability:
Most students are unprepared for Ph.D. study. They find it unexpectedly different than course work. Suddenly thrust into a world in which no one knows the answers, students sometimes flounder. Can you adapt to new ways of thinking? Can you tolerate searching for answers even when no one knows the precise questions?

Self-motivation:
By the time a student finishes an undergraduate education, they have become accustomed to receiving grades for each course each semester. In a Ph.D. program, work is not divided neatly into separate courses, professors do not partition tasks into little assignments, and the student does not receive a grade for each small step. Are you self-motivated enough to keep working toward a goal without day-to-day encouragement?

Competitiveness:
If you choose to enroll in a Ph.D. program, you will compete with others at the top. More important, once you graduate, your peers will include some of the brightest people in the world. You will be measured and judged in comparison to them. Are you willing to compete at the Ph.D. level?

Maturity:
Compared to coursework, which is carefully planned by a teacher, Ph.D. study has less structure. You will have more freedom to set your own goals, determine your daily schedule, and follow interesting ideas. Are you prepared to accept the responsibility that accompanies the additional freedoms? Your success or failure in Ph.D. research depends on it.

A few warnings:

Students sometimes enroll in a Ph.D. program for the wrong reasons. After a while, such students find that the requirements overwhelm them. Before starting one should realize that a Ph.D. is not:

Prestigious in itself
Almost everyone who has obtained a Ph.D. is proud of their efforts and the result. However, you should understand that once you graduate, you will work among a group of scientists who each hold a Ph.D. degree. (One faculty member used to chide arrogant graduate students by saying, "I don't see why you think it's such a great accomplishment -- all my friends have a Ph.D.!").

A guarantee of respect for all your opinions
Many students believe that once they earn a Ph.D. people will automatically respect all their opinions. You will learn, however, that few people assume a Ph.D. in one subject automatically makes you an authority on others. It is especially true in the science community; respect must be earned.

A goal in itself
A Ph.D. degree prepares you for research. If all you want is a diploma to hang on the wall, there are much easier ways to obtain one. After you graduate, you will have occasion to compare your record of accomplishment to those of other scientists. You will realize that what counts is the research work accumulated after a scientist finishes their formal education.

A job guarantee
When an economy slows, everyone can suffer. In fact, some companies reduce research before they reduce production, making Ph.D.s especially vulnerable. Furthermore, once a person earns a Ph.D., many companies will not hire that person for a non-research position. As in most professions, continued employment depends on continued performance.

A practical way to impress your family or friends
Your mother may be proud and excited when you enroll in a Ph.D. program. After all, she imagines that she will soon be able to brag about her child, "the doctor." However, a desire to impress others is insufficient motivation for the effort required.

Something you can "try" to find out how smart you are
Sorry, but it just doesn't work that way. Unless you make a total commitment, you will fail. You will need to work long hours, face many disappointments, stretch your mental
capabilities, and learn to find order among apparently chaotic facts. Unless you have adopted the long-range goal of becoming a researcher, the day-to-day demands will wear you down. Standards will seem unnecessary high; rigor will seem unwarranted. If you only consider it a test, you will eventually walk away.

The only research topic you will ever pursue
Many students make the mistake of viewing their Ph.D. topic as a research area for life. They assume each researcher only works in one area, always pursues the same topic within that area, and always uses the same tools and approaches. Experienced researchers know that new questions arise constantly, and that old questions can become less interesting as time passes or new facts are discovered. The best people change topics and areas. It keeps them fresh and stimulates thinking. Plan to move on; prepare for change.

Easier than entering the work force
You will find that the path to successful completion of a Ph.D. becomes much steeper after you begin. The faculty impose constraints on your study, and do not permit unproductive students to remain in the program.

Better than the alternatives
For many students, a Ph.D. can be a curse. They must choose between being at the top among people who hold a Masters degree or being a mediocre researcher. The faculty sometimes advise students that they must choose between being ```captain of the B team'' or a ```benchwarmer'' on the A team. Everyone must decide what they want, and which profession will stimulate them most. But students should be realistic about their capabilities. If you really cannot determine where you stand, ask faculty members.

A way to make more money
While we haven't heard any statistics for the past couple of years, graduate students used to estimate the ```payoff'' using the starting salaries of Ph.D. and M.S. positions, the average time required to obtain a Ph.D., the value of stock options, and current return on investments. For a period of at least five years that we know, the payoff was clearly negative. Suffice it to say that one must choose research because one loves it; a Ph.D. is not the optimum road to wealth.

The good news: Despite all our warnings, we are proud that we earned Ph.D. degrees and proud of our research accomplishments. If you have the capability and interest, a research career can bring rewards unequaled in any other profession. You will meet and work with some of the brightest people on the planet. You will reach for ideas beyond your grasp, and in so doing extend your intellectual capabilities. You will solve problems that have not been solved before. You will explore concepts that have not been explored. You will uncover principles that change the way people use computers.

The joy of research: A colleague summed up the way many researchers feel about their profession. When asked why he spent so many hours in the lab, he noted that the alternatives were to go home, where he would do the same things that millions of others were doing, or to work in his lab, where he could discover things that no other human had ever discovered. The smile on his face told the story: for him, working on research was sheer joy.