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Abstract

Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial

abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early

mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function muta-

tion of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential

gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits

of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion,

chromosome condensation, transcription, and DNA repair. Although significant advances

were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the

molecular etiology of RBS remains ambiguous. In this review, we highlight current models of

RBS and reflect on data that suggests a novel role for macromolecular damage in the

molecular etiology of RBS.

Introduction

Roberts syndrome (RBS) (MOM #268300, MIM#269000) is a severe developmental disorder,

first described in 1919, in which patients exhibit prenatal growth retardation, limb malforma-

tions, and craniofacial abnormalities [1–7]. Mildly affected individuals can survive to adult-

hood, but severely affected cases result in spontaneous abortion, stillbirth, or death within 1

month [5,6]. The treatment of RBS is limited to prevention, surgery to correct physical malfor-

mations, prostheses, special education, speech therapy, and treatments for organ dysfunction

[5,6].

Surprisingly, autosomal recessive loss-of-function mutation in establishment of cohesion

(ESCO2) 2 (ECO1/CTF7 in yeast), which encodes an essential acetyltransferase, is the sole

genetic cause for the profound birth defects observed in RBS patients [8–10]. ESCO2 acetylates

various components of the cohesin complex that in turn ensures genomic stability [11–14].

Cohesin is a multi-subunit protein, which in humans is composed of structural maintenance

of chromosomes protein 1A (SMC1A), structural maintenance of chromosomes protein 3

(SMC3), radiation-sensitive 21 homolog protein (RAD21), stromal antigen proteins 1 and 2

(SA1/2) (Smc1, Smc3, Mcd1/Scc1, and Scc3/Irr1 in yeast, respectively), and auxiliary factors

precocious dissociation of sisters proteins 5A and 5B (PDS5A/B) (Pds5 in yeast) and sororin
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[15–17]. Mutation of cohesin and cohesin regulator genes results in a similarly severe develop-

mental malady termed Cornelia de Lange syndrome [18–23]. Cohesin features a central

lumen, which entraps double-stranded DNA and promotes DNA–DNA interactions [24–26].

ESCO2 acetylation of SMC3 promotes sister chromatid cohesion (SCC), chromosome con-

densation, and transcription, while the acetylation of RAD21 promotes homologous recombi-

nation (HR) during DNA repair (Fig 1) [11–14,27–33]. Acetylation of either cohesin subunits

stabilizes cohesin binding to DNA such that non-acetylated cohesin is susceptible to the cohe-

sin DNA release factor wings apart-like protein homolog (WAPL) in humans (Wpl1/Rad61 in

yeast) [34–36]. Despite the 15-year interval since the identification of ESCO2 mutation as

resulting in RBS, the molecular etiology of RBS is not yet fully understood. Here, current mod-

els of RBS are reviewed, and a novel model of macromolecular damage as an underlying factor

in RBS is proposed.

Current models of RBS

Models regarding the molecular defects that underlie RBS continue to evolve. Establishment of

cohesion 1 protein, independently termed chromosome transmission fidelity 7 protein (Eco1/

Ctf7) was first identified on the basis of chromosome segregation defects [28,29]. ESCO2 muta-

tion in RBS cells, or depletion in mice, zebrafish, or medaka (Japanese rice fish), all produce

mitotic failure (cohesion defects) and elevated rates of apoptosis [10,33,37–39]. Thus, an early

and still prevalent model of RBS is one of proliferative stem cell, and developing tissue, loss

due to mitotic failure and apoptosis. An issue with this model is that decreasing either Smc3

acetylation or protein levels exerts little impact on SCC. In contrast, these decreases signifi-

cantly impact condensation, transcription, and DNA repair—only a near-complete absence of

Smc3 acetylation abrogates SCC [32,40,41].

An emerging model of RBS is that ESCO2 is a critical regulator of gene expression such that

ESCO2 mutation results in transcriptional misexpression of developmental genes, similar to

those that occur in response to cohesin mutations [18,33,42–51]. For instance, zebrafish

embryos depleted of ESCO2 exhibit gene dysregulations that overlap with those that result

from rad21 mutation [33,52]. Moreover, morpholino (MO)-directed knockdown (KD) of

either ESCO2 or Smc3 reduces bone regeneration in regenerating zebrafish caudal fins, in the

Fig 1. ESCO2 regulates genome structure, function, and stability. ESCO2 (Eco1/Ctf7 in yeast) is an acetyltransferase

that modifies cohesin proteins during chromosome cohesion and condensation. Cohesin acetylation drives DNA

damage-induced cohesion, which brings sister chromatids into close physical proximity to promote strand invasion

during homologous recombination. ESCO2 acetylates cohesin to regulate chromatin looping, thereby modulating

transcriptional outputs that bring enhancers (E) and promoters (P) into close proximity. Ac, acetylation; Ctf7,

chromosome transmission fidelity 7 protein; Ecol, establishment of cohesion 1 protein; ESCO2, establishment of

cohesion 2 protein.

https://doi.org/10.1371/journal.pgen.1009219.g001

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009219 December 31, 2020 2 / 13

https://doi.org/10.1371/journal.pgen.1009219.g001
https://doi.org/10.1371/journal.pgen.1009219


absence of increased apoptosis. Instead, bone segment and tissue regeneration defects result,

in part, from reduced expression of the gap junction channel protein Cx43. cx43 mutations

result in oculodentodigital dysplasia in humans and bone growth defects in both zebrafish and

mice [53–56]. It is tempting to speculate that ESCO2/cohesin directly regulates cx43 transcrip-

tion given that (1) exogenous cx43 expression partially rescues the bone segment growth

defects that otherwise result from ESCO2 or Smc3 KD; and (2) Smc3 binds multiple domains

upstream of the cx43 coding sequence [56]. Thus ESCO2, through cohesin, likely regulates

enhancer–promoter interactions to modulate gene expression during both bone regeneration

and embryo growth.

ESCO2-dependent regulation of gene expression is complex and appears to also involve

cohesin-independent modes. Microarray of zebrafish embryos depleted of either cohesin or

ESCO2 reveal not only overlapping, but also nonoverlapping gene dysregulations [33,52]. One

way that ESCO2 may regulate gene transcription, independent of cohesin, is by exploiting

physical interactions with other transcriptional regulators. Interestingly, numerous reports

indicate that human ESCO2 binds histone methyltransferases, subunits of the RE1 silencing

transcription factor/neural-restrictive silencing cofactor (CoREST) complex that is involved in

neuronal gene regulation, and also the Notch transcriptional regulator [57–59]. These findings

suggest that ESCO2 can act as a scaffold, which, in association with various transcriptional reg-

ulators, represses gene expression in vertebrate cells in a manner that is independent of cohe-

sin. In yeast, Eco1 also appears to regulate a large subset of genes, independent of cohesin

activation. For instance, yeast cells that harbor an eco1-W216G mutation (analogous to the

W539G ESCO2 mutation that results in RBS) exhibit altered expression of 1,210 genes [60].

While eco1-W216G mutant yeast cells also exhibit chromosome segregation defects, further

evidence supports a role in transcription regulation that may be independent of cohesin. For

instance, deletion of RAD61 bypasses the essential role of Smc3 acetylation by Eco1 [35,36].

Notably, 843 of the 1,210 genes dysregulated in an eco1 mutant remain dysregulated in eco1
rad61 double mutant cells [60]. This suggests that a significant subset of gene expressions regu-

lated by Eco1 occur in a manner that is refractory to the cohesin-releasing activity of Rad61

and thus likely independent of cohesin.

Further insights into defective mechanisms that may contribute to RBS appear in the nucle-

olus. eco1-W216G yeast cells also exhibit abnormal nucleoli size and extensive disruption of

chromatin organization [60–62]. Immortalized RBS cell lines similarly exhibit markedly frag-

mented nucleoli [63], revealing that the Eco1/ESCO2 family role in nucleolar function is con-

served across evolution. Notably, ESCO2 localizes to nucleoli in mammalian cells [64,65].

Even a brief inactivation of cohesin during G1 impacts the transcription of ribosome matura-

tion genes, and thus nucleolar function, in yeast [66]. The role of ESCO2 in the nucleolus thus

constitutes an interesting area of future research that is likely to shed additional light on mech-

anisms that underlie RBS.

The link between ESCO2-dependent gene transcription and nucleolar structure provides

key insights into the translational deficiencies that occur in RBS. To this end, Gerton and col-

leagues pioneered a compelling body of work that establishes translational dysfunction as a

downstream contributor to RBS. Beyond cohesion loss, eco1-W216G mutation in yeast also

results in impaired translation, which coincides with induction of the stress response tran-

scriptional regulator Gcn4 [60,67]. These translational defects likely arise through defects in

both ribosomal DNA (rDNA) transcription and ribosomal maturation [66,67]. Metabolic

labeling analysis and altered ribosome profiling in RBS cells confirm that reduced translation

is a hallmark of RBS [63,68]. Importantly, stimulation of the mammalian target of rapamycin

(mTOR) stress response pathway suppresses both the severity of birth defects in a zebrafish

RBS model and also translation deficiencies in RBS fibroblasts [63,68]. These findings suggest
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that reduced rRNA production and faulty ribosome biogenesis lead to translational defects

that promote RBS phenotypes.

Emerging themes in RBS—Macromolecular damage

RBS patient phenotypes as it relates to DNA damage. Although abnormal gene expres-

sion and increased cell death are hallmarks of RBS, RBS patient characteristics also are intrigu-

ingly reminiscent of recognized diseases of deficient DNA repair. For instance, ataxia–

telangiectasia (AT) occurs through autosomal recessive mutation of the ataxia–telangiectasia

mutated (ATM) DNA repair signaling kinase and leads to cleft lip and palate and growth retar-

dation [69]. Bloom syndrome (BS) is caused by autosomal recessive mutations in the recombi-

nation Q helicase homolog (RECQ) and leads to growth retardation [70]. Fanconi anemia

(FA) is linked to the autosomal recessive mutation of several genes involved in HR that result

in microcephaly and missing radii and thumbs (https://omim.org). Additionally, Cockayne

syndrome (CS) is caused by autosomal recessive mutations in the ERCC6/ERCC8 DNA exci-

sion repair factors that lead to growth retardation and microcephaly (https://omim.org). The

observation that RBS shares clinical symptoms with diseases of defective DNA repair raises the

possibility that the inability to repair DNA damage, which normally arises as a natural byprod-

uct of DNA metabolism (sister chromatid exchanges, replication fork stalling, etc.), is an

underappreciated, but important, aspect of the molecular etiology of RBS.

A link between RBS and DNA damage repair-deficient syndromes is evident from numer-

ous studies. RBS patient cells exhibit hypersensitivities to a broad range of genotoxic agents

that include the DNA cross-linker mitomycin C (MMC), ionizing radiation (IR), the topo-

isomerase II inhibitors etoposide, and the topoisomerase I inhibitor camptothecin (CPT)

[5,10,64,71–74]. The role for cohesin in DNA damage responses includes both serving as a

direct phosphorylation target of checkpoint kinases and promoting DNA repair [30,31,75–80].

This raises the possibility that RBS cell sensitivity to genotoxic stress could be attributed to

either a failure to respond to DNA damage and/or a failure to repair the damaged DNA. On

the one hand, RBS cell lines exhibit phosphorylation of ATM, checkpoint kinase 1 homolog

(Chk1), and the tumor suppressor protein (p53) in response to DNA damaging agents [64,74],

suggesting that these checkpoints are functional in RBS cells. On the other hand, several lines

of evidence suggest that RBS cells exhibit a reduced ability to repair DNA damage after check-

point activation. A combination of western blot analyses of whole cell extracts from RBS

patient-derived fibroblasts and “Comet” assays shows increased phosphorylated histone 2A

variant X (γ-H2AX) levels and chromosomal fragmentation, respectively, that persist long

after IR treatment. These results indicate that double-strand breaks (DSBs) persist into subse-

quent cell cycles due to inefficient repair [74], which likely contributes to increased apoptosis

levels. Similarly, immortalized RBS fibroblasts, 24 h after IR or MMC exposure, contain a

decreased number of repair recombinase Rad51 foci, relative to control cells [64]. In combina-

tion, these results suggest that inefficient repair of DNA damage, through ESCO2-dependent

defects in HR, is an underlying factor in RBS biology.

An ROS model for RBS. RBS birth defects may involve reactive oxygen species (ROS)

pathways, a model in part supported by thalidomide teratogenicity. Thalidomide is a sedative

and antimimetic that was used to treat morning sickness associated with pregnancy between

1957 and 1961. In utero exposure to thalidomide, however, induces severe birth defects, which

resulted in its temporary removal from the market [81–83]. Due to an abundance of overlap-

ping phenotypes, RBS was historically referred to as pseudothalidomide syndrome [3,6,84–

86], but functional or mechanistic links between these 2 developmental maladies are only now

emerging [87–90]. An important aspect of thalidomide teratogenicity is rooted in oxidative
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stress. Thalidomide is converted in vivo to an oxidative metabolite, dihydroxythalidomide

(DHT), which is further oxidized to ROS-generating quinones that induce DNA damage [91].

In human embryonic kidney (HEK293) cells, DHT increases intracellular ROS, which in turn

generates DNA damage in the form of double-strand breaks, as revealed through “Comet”

assay analysis [92]. Importantly, DHT exposure is sufficient to produce developmental defects

in rabbit embryos that include phocomelia [93], defects that are rescued by co-exposure to the

ROS-neutralizing agent alpha-phenyl-N-t-butylnitrone [93]. This suggests that embryonic

exposure to oxidative stress results in DNA damage that is, at least in part, a causative agent of

phocomelia.

Macromolecular damage in RBS comes full circle. Oxidative stress is intimately linked

to biological processes that are aberrant in RBS. For instance, unrepaired DNA damage up-

regulates intracellular ROS to act as signaling molecules to promote stress responses [94–98].

Is it possible that ESCO2 mutation is, in itself, sufficient to produce ROS? In fact, human RBS

models and yeast cohesion mutants exhibit markers of increased ROS levels both in the

absence of challenges and in response to DNA damage [63,74,97,99,100]. Mutual causality

between DNA damage and ROS production may provide a synergistic mechanism, which

enhances mutation rates in RBS cells. Evidence toward this end include yeast genetic interac-

tions between HR regulators (including ECO1) and oxidative stress regulators that are associ-

ated with increased rates of spontaneous mutation and recombination [101–105]. In support

of this, cohesin dysfunction is also a driver of ROS production and apoptosis. For example,

mutation of MCD1 (RAD21), and also PDS5, is sufficient to increase both ROS production

and rates of apoptosis [99,100]. A possible consequence of a dysregulated ROS production

loop may be elevated apoptosis rates—a hallmark of RBS cells (Fig 2) [10,33,37–39,94–98,106–

116].

Cell death could be induced by a variety of non-mutually exclusive ROS-dependent mecha-

nisms in RBS cells. For instance, ROS-dependent apoptosis funnels through oxidation of a

variety of effectors including p53, the c-Jun N-terminal kinase (JNK) signaling kinase, the

tumor necrosis factor (TNF)-α cytokine, and mitochondrial cytochrome c-release regulators

[107–111,113,114]. Another potential mechanism through which DNA damage-induced ROS

leads to apoptosis is oxidation of cohesin subunits. Evidence in support of this mechanism is

that RNA interference (RNAi)-based KD of the ROS scavenger superoxide dismutase (SOD)

in aged Drosophila oocytes increases chromosome arm cohesion defects and segregation errors

that include nondisjunction [117]. Remarkably, overexpression of SOD in aged Drosophila
oocytes reduces the frequency of sister chromatid nondisjunction [118]. This data raises the

possibility that elevated rates of spontaneous DNA damage in RBS cells causes overproduction

of proapoptotic ROS, which oxidizes cell death effector molecules and damages cohesion (Fig

2). Similarly, yeast cohesin mutants, exposed to ROS neutralizing agents, exhibit a reduced fre-

quency of cell death [99], highlighting the likely connection between oxidative stress and apo-

ptosis in RBS.

Separately, overproduction of ROS could compound complications that arise from reduced

protein synthesis in RBS. Reduced ribosome function is associated with inhibition of mTOR

signaling, which leads to increased apoptosis in a zebrafish model of RBS [63]. Additionally,

translation is also inhibited during oxidative stress [119,120]. This indicates that elevated ROS

levels could contribute to the RBS apoptotic phenotype due to its effect on translation and

downstream inhibition of mTOR (Fig 2). Additionally, overproduction of ROS could affect

gene transcription in RBS cells. ROS may directly oxidize DNA to effect transcription effi-

ciency and further compound gene expression irregularities in RBS (Fig 2). Finally, ROS could

affect gene expression by oxidation of cohesin proteins, thereby reducing cohesin-dependent

transcription, which is already disrupted due to lack of ESCO2 function.
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Conclusions

The molecular etiology of RBS is complex and not yet fully understood. Pioneering work in

uncovering the cellular basis for RBS identified both faulty chromosome cohesion and aber-

rant gene expression as playing critical roles in contributing to RBS birth defects. Defects in

DNA repair, however, have long been associated with RBS cell biology—but a DNA damage

component of RBS has gained little traction. DNA damage creates further oxidative damage in

Fig 2. ESCO2 mutation increases ROS production. In normal cells (WT), DNA damage promotes ESCO2-dependent DIC and is

efficiently repaired. DNA damage leads to transient up-regulation of ROS, which promotes DNA repair in combination with

ESCO2 followed by reduction in ROS levels. In RBS, however, DNA damage leads to a dysregulated ROS positive feedback loop.

Here, DNA damage up-regulates ROS, which is further induced by faulty DNA repair in the absence of proper ESCO2 function.

Overproduction of ROS leads to oxidation of DNA and factors, which regulate the stress response, protein synthesis, and

chromosome cohesion. The combination of reduced protein synthesis and elevated apoptosis results in RBS birth defects. DIC,

damage-induced cohesion; ESCO2, establishment of cohesion 2; RBS, Roberts syndrome, ROS, reactive oxygen species; WT, wild

type.

https://doi.org/10.1371/journal.pgen.1009219.g002
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the cell which, in part, can explain known hallmarks of RBS cell biology including cohesion

defects and dysregulated gene expression. Reciprocity may rule the day in that ESCO2 muta-

tions are sufficient to produce oxidative stress and ROS up-regulation. Mitigating the circular

and self-enforcing effects of unrepaired DNA damage and ROS up-regulation in RBS individu-

als thus presents an exciting area of future research. This model may have far-ranging implica-

tions in that RBS is 1 member of a group of multi-spectrum developmental disorders that

include Warsaw Breakage syndrome, Mungan syndrome, Mullegama–Klein–Martinez syn-

drome, Juberg-Hayward syndrome, epileptic encephalopathy, Baller–Gerold syndrome, and

Cornelia de Lange Syndrome [9,10,18–23,48,64,121–123]. It may be of significant benefit to

address the role of DNA damage and ROS up-regulation in these and other maladies (Dia-

mond–Blackfan anemia, Treacher–Collins syndrome, and coloboma, heart defects, atresia

choanae, retardation of growth, genital hypoplasia, and ear abnormalities (CHARGE) syn-

drome) implicated in cohesin mutation and that exhibit phenotypes that overlap with those of

cohesinopathies [51,66,124,125].
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