Expression of GABA_B Receptor in the Avian Auditory Brainstem: Ontogeny, Afferent Deprivation, and Ultrastructure

R. MICHAEL BURGER, JOSHUA D. PFEIFFER, LESNICK E. WESTRUM, AMY BERNARD, AND EDWIN W RUBEL

1Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195
2Departments of Neurological Surgery and Biological Structure, University of Washington, Seattle, Washington 98195

ABSTRACT

Nucleus magnocellularis (NM), nucleus angularis (NA), and nucleus laminaris (NL), second- and third-order auditory neurons in the avian brainstem, receive GABAergic input primarily from the superior olivary nucleus (SON). Previous studies have demonstrated that both GABA_A and GABA_B receptors (GABA_BRs) influence physiological properties of NM neurons. We characterized the distribution of GABA_BRs expression in these nuclei during development and after deafferentation of the excitatory auditory nerve (nVIII) inputs. We used a polyclonal antibody raised against rat GABA_BRs in the auditory brainstem during developmental periods that are thought to precede and include synaptogenesis of GABAergic inputs. As early as embryonic day (E)14, dense labeling is observed in NA, NM, NL, and SON. By E21, when the structure and function of the auditory nuclei are known to be mature, GABA_B immunoreactivity is characterized by dense punctate labeling in NM, NL, and a subset of NA neurons, but label is sparse in the SON. Removal of the cochlea and nVIII neurons in posthatch chicks resulted in only a small decrease in immunoreactivity after survival times of 14 or 28 days, suggesting that a major proportion of GABA_BRs may be expressed postsynaptically or on GABAergic terminals. We confirmed this interpretation with immunogold TEM, where expression at postsynaptic membrane sites is clearly observed. The characterization of GABA_BR distribution enriches our understanding of the full complement of inhibitory influences on central auditory processing in this well-studied neuronal circuit. J. Comp. Neurol. 489:11–22, 2005. © 2005 Wiley-Liss, Inc.

Indexing terms: inhibition; deafferentation; chicken; auditory system; development; immunohistochemistry

Sensory processing involves computations among parallel and serial networks of neurons. These networks utilize the convergence of excitatory and inhibitory inputs to extract relevant features of the external environment. The avian brainstem auditory system is a well-characterized sensory network composed of four pairs of nuclei, where ascending excitatory afferents interact with descending GABAergic efferents (Rubel et al., 2004). The predominant source of GABAergic input in the avian auditory brainstem is the superior olivary nucleus (SON) (Carr et al., 1989; Lachica et al., 1994; Yang et al., 1999), but a small population of neurons residing in the neuropil of nucleus magnocellularis (NM) and nucleus laminaris (NL) also provide GABAergic input (von Bartheld et al., 1989). The SON projects ipsilaterally to both nucleus angularis (NA) and NM, divisions of the avian cochlear nuclei, as well as to NL, a binaural nucleus, where interaural time disparities are computed (Parks and Rubel, 1975; Conlee...
and Parks, 1986; Lachica et al., 1994; Westerberg and Schwarz, 1995; Yang et al., 1999; Burger et al., 2005). A separate SON projection innervates the contralateral SON (Burger et al., 2005).

The GABAAergic input to neurons of both NM and NL via ionotropic GABA\textsubscript{A} receptors generates a potent inhibition through a depolarizing Cl- conductance that has been suggested to influence action potential timing and coincidence detection (Hyson et al., 1995; Funabiki et al., 1998; Yang et al., 1999; Lu and Trussell, 2000, 2001; Monsivais et al., 2000; Monsivais and Rubel, 2001). GABA\textsubscript{B} receptors (GABA\textsubscript{B}Rs) are known to mediate a broad range of metabotropic effects, but typically modulate G-protein–coupled K+ channels postsynaptically and voltage-gated Ca2+ conductances presynaptically (for review, see Kerr and Ong, 1995; Calver et al., 2002). Recent studies have established that GABAAergic influences in NM are also mediated by GABA\textsubscript{B}Rs (Brenowitz et al., 1998; Brenowitz and Trussell, 2001; Lu et al., 2004). These studies demonstrate that activation of GABA\textsubscript{B}Rs can modulate release of transmitter presynaptically from both excitatory and inhibitory terminals.

In the chick auditory system the developmental time course of GABA\textsubscript{B}ergic innervation has been well characterized (Code et al., 1989). On the basis of immunohistochemistry, Code et al. (1989) observed innervation and synaptogenesis of GABA\textsubscript{B}ergic inputs to NM taking place between embryonic day (E)12 and E17. Synaptic physiological studies in our laboratory confirm this basic timeline (unpubl. obs.).

This report represents one component of a broader effort to understand the roles of inhibitory input in information processing and development of the avian brainstem auditory system. We utilized an antibody raised against a peptide sequence common to two of the known isoforms of the rat GABA\textsubscript{B}R1 subunit, GABA\textsubscript{B}R1a and GABA\textsubscript{B}R1b subunits (AB1531, Chemicon, Temecula, CA) diluted to 1:500 or 1:1,000 in a blocking solution of 4% normal goat serum 0.1% Triton-X in PBS. First, endogenous peroxidases were quenched by immersion of sections in a solution of 0.6% H\textsubscript{2}O\textsubscript{2} in methanol for 5 minutes followed by a rinse in PBS. Tissue was then blocked for 1 hour. After blocking, sections were incubated with primary antiserum for 24 hours at 4°C. The tissue was thoroughly rinsed, then incubated with secondary antibody solution of biotinylated goat anti-guinea pig IgG (Vector Laboratories, Burlingame, CA) at 1:200 in block. After rinsing, the tissue was incubated in avidin-biotin peroxidase complex for 1 hour. Tissue was reacted for 1–2 minutes with diaminobenzidine solution (DAB) (0.357 mg/ml DAB in 0.03% H\textsubscript{2}O\textsubscript{2} in PBS). Tissue was then dehydrated in ethanol, cleared in xylene, and coverslipped in DPX (Electron Microscopy Sciences, Fort Washington, PA).

Immunohistochemistry

We used a polyclonal antibody against the peptide sequence PSEPPDRLSCDGSRVHLLYK common to both rat GABA\textsubscript{B}R1a and GABA\textsubscript{B}R1b subunits (AB1531, Chemicon, Temecula, CA) diluted to 1:500 or 1:1,000 in a blocking solution of 4% normal goat serum 0.1% Triton-X in PBS. First, endogenous peroxidases were quenched by immersion of sections in a solution of 0.6% H\textsubscript{2}O\textsubscript{2} in methanol for 5 minutes followed by a rinse in PBS. Tissue was then blocked for 1 hour. After blocking, sections were incubated with primary antiserum for 24 hours at 4°C. The tissue was thoroughly rinsed, then incubated with secondary antibody solution of biotinylated goat anti-guinea pig IgG (Vector Laboratories, Burlingame, CA) at 1:200 in block. After rinsing, the tissue was incubated in avidin-biotin peroxidase complex for 1 hour. Tissue was reacted for 1–2 minutes with diaminobenzidine solution (DAB) (0.357 mg/ml DAB in 0.03% H\textsubscript{2}O\textsubscript{2} in PBS). Tissue was then dehydrated in ethanol, cleared in xylene, and coverslipped in DPX (Electron Microscopy Sciences, Fort Washington, PA).

Antibody validation and Western blotting

Since this is the first study we are aware of using this antibody in avian tissue, we conducted several controls to test antibody specificity in this species. First, Figure 1A illustrates the strong specific immunoreactivity in Purkinje cells of the chicken cerebellum consistent with staining in mammalian preparations (Fritschy et al., 1999).

MATERIALS AND METHODS

Tissue preparation

This report is based on tissue from 24 embryonic and 20 posthatch inbred White Leghorn chickens. All animal care and euthanasia procedures conformed to protocols approved by the University of Washington Institutional Animal Care and Use Committee and to NIH guidelines. Embryonic tissue was harvested by partial extraction of the brainstem. For cryostat sections, brains were first cryoprotected in 30% sucrose in PBS overnight, then blocked and embedded in Tissue Tek OCT (Sakura Finetek, Albertville, MN). Cryostat sections were mounted on gelatin-coated slides for immunohistochemistry (IHC). Vibratome sections were collected into vials containing PBS for IHC and then mounted. All chemicals were purchased from Sigma Chemical (St. Louis, MO) unless otherwise stated.

Western blotting

For Western blotting, we performed a method adapted from Benke et al. (1996). P4 chicken (n = 4) and P42 (n = 5) mouse brains were dissected and immediately frozen to −80°C. In chickens, tissue was derived from dissection of the region of NM and NL or from the cerebellum. A membrane preparation was prepared as follows: Tissue was homogenized (Polytron PT1200, Kinematica, Switzerland) for 3 × 5 minutes on ice in Extraction Buffer (10 mM Tris–HCl pH 7.4, 320 mM sucrose, 5 mM EDTA pH 8.0, 100 μM PMSE, and Complete Protease Inhibitor [Roche, Basel Switzerland]). Solubilized tissue was then centrifuged for 20 minutes at 4°C, 16,000 g, and the resulting pellet was resuspended in an equal volume of extraction buffer and spun as before (3 ×). The pellet was resuspended in extraction buffer and protein content of the crude membrane suspension was quantified (BCA kit, Pierce, Rockford, IL). An equal volume of Sample Buffer (125 mM Tris–HCl, pH 8.0, 20% glycerol, 0.0002% bromophenol blue, 10% 2-mercaptoethanol, 4% SDS) was added to each sample and samples were heated to 95°C for 5 minutes. Comparable amounts of protein (~60
GABA_B RECEPTOR EXPRESSION

![Figure 1](image)

RESULTS

In order to thoroughly characterize the localization and expression of GABA_BRs, we analyzed chicken brainstem nuclei under several conditions. We first illustrate the mature expression pattern and then compare the mature pattern to that observed during development. In order to assess the presence of GABA_BRs on postsynaptic or inhibitory elements, we then describe expression in NM following nVIII deafferentation and degeneration. Finally, we confirm postsynaptic expression at the ultrastructural level, where expression was observed on several synaptic elements in NM and NL.

Expression in the mature system

GABA_BR immunoreactivity (GABA_BR-I) was observed in all four brainstem auditory nuclei in 11 animals between ages E21–P4 (E21, n = 4; P1, n = 3; P4, n = 4), an

...stained with uranyl acetate and lead citrate. Pioliform (Ted Pella, Redding, CA) coated slot grids and 200-mesh uncoated grids were used. A Philips CM 10 electron microscope was used to view the sections and for electron photomicroscopy.

Deafferentation

Unilateral basilar papilla removal was performed on nine P5 chickens as previously described (Born and Rubel, 1985). The cochlear ganglion was also removed by aspiration through the oval window. Following surgery, normal saline-treated gel foam was inserted into the cochlear duct and middle ear while the outer ear was closed with cyanoacrylate. The animals survived for 2 (n = 6) or 4 (n = 3) weeks before perfusion and immunohistochemistry. The 4-week survival animals were also used for quantitative analysis of GABA_BR expression between the deafferented and contralateral side of the brainstem. For this analysis, NM neurons were randomly selected by the following criteria: 1) they were completely contained within the section; 2) not adjacent to the border of NM; and 3) the whole cell and nucleus could be observed using Nomarski optics. High-power images of selected neurons were acquired in the plane of focus where the nucleus appeared widest. Using Object Image 2.11 (NIH) software, the plasma membrane and nuclear borders of individual cells were circumscribed and the nuclear area was excluded from analysis. Average pixel intensity was measured for the remaining cytosolic region. Images from all NM neurons meeting the above criteria in a given section were acquired with identical optical settings. Average pixel intensity scores for a sample of cells (range = 14–23) from control and deafferented sides of single sections from each animal (n = 3) were then compared. Mean control and deafferented scores for each animal were compared using unpaired t-tests.

Imaging

Photomicrographs were acquired using brightfield on a Zeiss Axiosplan microscope using a Photometrics CoolSnap camera (Roper Scientific, Tucson, AZ) with Slidebook acquisition software (Intelligent Imaging Innovations, Denver, CO). Occasionally, blue filters were used to enhance contrast. For some images, pixel value histograms were stretched to maximize dynamic range for ease of comparison and quality of appearance.

Electron microscopic immunocytochemistry

Two P3 chickens were perfused and postfixed with cold 4% paraformaldehyde and 0.1% glutaraldehyde in PBS. Coronal sections were cut at 100 μm on a vibratome. All incubations were at 4°C and for 48 hours. The secondary antibody was conjugated to 1 nm colloidal gold (Nano-probes, Yaphank, NY) and diluted to 1:5,000. Antibodies were visualized by ECL (Amerham, Buckinghamshire, UK). The results shown in Figure 1C illustrate nearly identical band recognition between chicken and mouse. The two bands in each lane correspond to GABAB_{R1a} and GABAB_{R1b} splice variants. Scale bar = 20 μm in A; 100 μm in B.

μg per lane) were then separated by PAGE on a 12% Tris-HCl acrylamide gel (BioRad, Hercules, CA). Proteins were transferred by electrophoresis to PVDF membrane (BioRad). Subsequent immunodetection was performed according to the manufacturer’s instructions, using anti-GABAB_{R1} at a concentration of 1:500. A secondary HRP-conjugated rabbit anti-guinea pig antibody (Zymed, San Francisco, CA) was used at a concentration of 1:3,900. Proteins were visualized by ECL. Molecular weight standards (left) were used to determine relative sizes of labeled protein. Chicken reactivity is nearly identical to that in the mouse with respect to the molecular weights of the two visible bands corresponding to GABAB_{R1a} and GABAB_{R1b} splice variants. Scale bar = 20 μm in A; 100 μm in B.

High-magnification photomicrograph of a 50 μm section through the cerebellum where strong labeling of Purkinje cells is clearly visible. B: Very little nonspecific background staining in an alternate section at lower magnification prepared with no primary antibody. C: The results of a Western blot assay that included tissue from chicken cerebellum (Lane 1), mouse cerebellum (Lane 2), and chicken NM/NL (Lane 3). Molecular weight standards (left) were used to determine relative sizes of labeled protein. Chicken reactivity is nearly identical band recognition between chicken and hamshire, UK). The results shown in Figure 1C illustrate nearly identical band recognition between chicken and mouse.
Expression in the developing system

Metabotropic GABA\(_B\)Rs are known to influence development and maintenance of central synapses (Owens and Kriegstein, 2002). Here we characterized the expression pattern of GABA\(_B\)Rs through the developmental ages associated with synaptogenesis of both glutamatergic and GABAergic inputs to the brainstem auditory nuclei. The early developmental expression pattern was similar for all four nuclei (NM, NL, NA, and SON), with the notable exception of a decrease in GABA\(_B\)-R-I in the SON at late stages. We processed tissue at the following ages: E8 –9; E10 (n = 9); E11 (n = 3); E12 (n = 3); E14, (n = 5); E18 (n = 2); E21 (n = 4); P1 (n = 3); and P4 (n = 4). We present data in Figures 3–7 for NM, NL, NA, and SON, respectively, at E10, E14, and E21, ages that illustrate the major developmental changes we observed.

E8–11. At this early developmental phase the best evidence available suggests innervation and synaptogenesis of inhibitory terminals in NA, NM, and NL has not occurred (Code et al., 1989; and unpubl. obs.). Synaptogenesis of excitatory nVIII input to NM and of NM input to NL appears to occur during this period (Jhaveri and Trussell, 1996; Brenowitz et al., 1998; Brenowitz and Trussell, 2001; Lu et al., 2004). Since nVIII fibers are likely to be a major source of GABA\(_B\)-R-I, we investigated whether GABA\(_B\)-R expression changes following removal of the excitatory input to NM. We unilaterally removed the basilar papilla and cochlear ganglion in nine animals at P5. After survival times of 14 (n = 6) or 28 (n = 3) days, in Nissl-stained sections, we observed features typical of deafferented NM including eccentric nuclei, reduced neuron size, and an apparent reduction in neuron number (Born and Rubel, 1985). Surprisingly, loss of nVIII fibers resulted in only a small difference in the density of GABA\(_B\)-R-I puncta in NM between control and deafferented sides of the brain; one representative case is shown in Figure 8. Panel A shows GABA\(_B\)-R-I on the control side, while Panel B shows the contralateral deafferented NM. Measurements of average pixel intensity from random samples of NM somas from three brains revealed that while NM soma area was reduced on average by 27.7%, as expected (Fig. 8D), the average pixel intensity was only slightly reduced (Fig. 8C). In each of the three brains analyzed, average pixel intensity was consistently but only slightly reduced on the deafferented side compared to that on the control side. Unpaired t-tests from each brain confirmed the small changes were statistically significant in two of the three cases (\(P = 0.01, 0.04\) and

Expression along the tonotopic axis

The frequency range of the auditory system of chickens spans about 10–5,000 Hz (Rubel and Parks, 1975; War chol and Dallos, 1990). Neurons in NM and NL express several features that vary systematically along the tonotopic axis (Rubel and Parks, 1988; Fukui and Ohmori, 2004) across the roughly caudal to rostral tonotopic gradient, including density of inhibitory terminals (Code et al., 1989). From observations of coronal serial sections, we did not detect any gradient of immunoreactivity for GABA\(_B\)-Rs along the main (caudal to rostremedial; Rubel and Parks, 1975) tonotopic axis of NM and NL. To verify this finding we sectioned two P1 brains parallel to the tonotopic axis through NM and NL. In all sections, high and low best frequency neurons were similar in terms of GABA\(_B\)-R1 expression. Figure 7 shows a low-magnification para-tonotopic section through NL in 7A, along with corresponding high-power photomicrographs of high, middle, and low-frequency NL neurons in Figure 7B–D, respectively. Dense punctate label is observed uniformly across the tonotopic axis in both NM and NL.

Influence of afferent deprivation

It is known that GABA\(_B\)-R expression in NM is located on both the terminals of nVIII and GABAergic fibers (Otis and Trussell, 1996; Brenowitz et al., 1998; Brenowitz and Trussell, 2001; Lu et al., 2004). Since nVIII fibers are
Fig. 2. GABA_B in the mature chick auditory brainstem.

A,B: Low-power photomicrographs of Nissl (A) and GABA_B-R-I (B) stained adjacent vibratome sections through NM and NL of a P4 chicken. GABA_B-R-I is abundant in both nuclei but staining is relatively absent in the glia enriched neuropil zones surrounding each nucleus.

C–E: High-power images of NM (C), NL (D), and NA (E) neurons. GABA_B-R-I has a dense granular appearance that appears largely restricted to the plasma membrane over the somatic area of the neurons. On NL neurons staining often appears to extend onto the dendrites (arrow in D).

F: High-power image of staining in SON. In contrast to the other brainstem auditory nuclei, the staining in SON is markedly sparse. A few granules of immunoreactivity are present on most neurons (arrows). Scale bars = 100 μm in A (applies to A,B); 20 μm in F (applies to C–F).
Fig. 3. Developmental pattern of GABA\(_2\)R-I expression in NM. A: At early ages GABA\(_2\)R-I staining is dominated by diffuse labeling in NM somas and few puncta are observable. B: By E14 punctate staining is dense, but diffuse cytosolic staining remains high. C: By E18, when most features of NM are mature, GABA\(_2\)R-I staining has a predominantly strong punctate granular appearance. The diffuse cytosolic staining that was observed at earlier ages is largely absent. Scale bar = 10 \(\mu\)m in C (applies to A–C).

Fig. 4. Development of GABA\(_2\)R-I in NL. Details are the same as those for NM in Figure 3. Scale bar = 10 \(\mu\)m in C (applies to A–C).
Fig. 5. Development of GABA_BR-I in NA. Details are the same as those for NM in Figure 3. Scale bar = 10 μm in C (applies to A–C).

Fig. 6. GABA_BR expression peaks around E14 in the SON. Development of GABA_BR-I staining proceeds similarly to that observed in other brainstem nuclei at E10 (A) and E14 (B). However, by E18 (C) the staining is markedly reduced and remains so into maturity. Scale bar = 10 μm in C (applies to A–C).
not significant in the other ($P = 0.54$). These data suggest that the GABA B1 expression in NM is independent of excitatory input and that the majority of GABA B1Rs expressed in NM reside on either GABAergic terminals or on NM cell membranes.

Preembedding immunocytochemical electron microscopy

The high expression of GABA B1R-I remaining 4 weeks after deafferentation suggested that postsynaptic expression in NM was a likely source of immunoreactivity. We sought to confirm this possible expression in NM using preembedded immunogold transmission electron microscopy preparations from two animals. We observed postsynaptic labeling that was clearly associated with NM membranes in the vicinity of Type II synaptic contacts with presynaptic pleomorphic vesicles (Fig. 9A). Figure 9B,C shows gold particle labeling was also observed proximal to apparent postsynaptic specializations of increased density and cleft space at putative excitatory terminals. Although these are preliminary electron microscopic observations, they confirm the presence of GABA B1Rs on NM neurons at both putative excitatory and inhibitory loci.

DISCUSSION

The data reported here support three main conclusions regarding the expression of GABA B1Rs in the avian auditory system. First, GABA B1R subunits are highly expressed in the mature NM, NA, and NL, and only weakly in the SON. This expression appears uniform along the tonotopic axes in NM and NL. Second, expression of GABA B1R1 is detectable at developmental stages that precede functional innervation by GABAergic inputs. Third, a high level of expression following deafferentation as well as our ultrastructural observations strongly suggest that GABA B1R1 receptor expression is present on postsynaptic NM neurons, in addition to the known GABA B1R expression on nVIII terminals and GABAergic fibers that have been previously identified in physiological studies. In the following sections.

Fig. 7. GABA B-R-I does not vary with tonotopic position. A: A para-tonotopic section through NL and three highlighted frequency zones boxes. B–D: At high magnification the strong labeling apparent on NL cells regardless of position. Titles indicate relative tonotopic position. Scale bars = 100 μm in A; 20 μm in D (applies to B–D).
we expand on each of these findings and discuss the possible functional consequences of GABA_BRs in development and maintenance of auditory brainstem function.

Mature expression pattern

GABA_BR1 expression appears as dense punctate label in mature NM, NA, and NL, but not the SON, where the label density is low. High expression in these areas suggests GABA_BRs are likely to confer robust physiological functions in each of the targets of the GABAergic SON neurons, but perhaps not in the SON itself. Several anatomical and physiological studies have demonstrated the potent and robust GABAergic projections from SON to all of the brainstem auditory nuclei (Carr et al., 1989; Lachica et al., 1994; Yang et al., 1999, Burger et al., 2005). Two previous studies elegantly describe the role of GABA_BRs in presynaptic modulation of glutamatergic nVIII input to NM (Brenowitz et al., 1998; Brenowitz and Trussell, 2001). Activation of these receptors appears important for preserving reliable synaptic transmission during high-frequency firing at this synapse.

The autoreceptor role of GABA_BRs on GABAergic terminals is a common role of GABA_BRs in the vertebrate nervous system (Misgeld et al., 1995). Our own recent study suggests a similar presynaptic function for GABA_BRs on the GABAergic terminals in NM (Lu et al., 2004). Additionally, we recently demonstrated that individual SON neurons innervate multiple target nuclei among NM, NA, and NL (Burger et al., 2005). These results, taken together with the strong labeling observed in NA and NL in addition to NM, suggest that GABA_BRs are also likely to presynaptically modulate GABAergic input to both NA and NL. We speculate that one function of GABA_B autoregulation in NM is to preserve the phase-locking required for low-frequency binaural processing (Lu et al., 2004). The relative lack of GABA_BR labeling in SON may be a further indication that the separate commissural inhibitory pathway between the two SONs does not utilize and maintain

Fig. 8. GABA_B-1 decreases slightly following deafferentation. **A,B:** High-power images of NM in an animal that survived 4 weeks following basilar papilla and ganglion cell removal. NM cells exhibit several hallmarks of deafferentation, including reduced soma size and eccentrically positioned nuclei. **C:** The mean ± SD pixel intensity from neurons on the control (black bar) and deafferented (white bar) sides. The small difference in pixel intensity between the control and deafferented sides was not significant in this case (P = 0.05). **D:** The reduction in cell area is observed on the deafferented side (white bar), compared to control (black bars), the difference is highly significant (P = 0.01). Scale bars = 10 μm in A,B.
the density of kinetically slow GABABRs does not vary
terminals (Lu and Trussell, 2000; Monsivais et al., 2000; responses.
rather than cycle-by-cycle modulation of phase-locked re-
and NL is related to the general process of system gain
notion that the time scale for GABAergic signaling in NM
along the tonotopic axis. These observations reinforce the
est in the low-frequency region of NM and systematically
depth and the observation of innervation by glutamic acid decarboxylase or GABA
munoreactive fibers (Code et al., 1989; Code and
Churchill, 1991). The diffuse somatic staining present before
before E8–11 transitioned to punctate label at later ages. By
E14, when GABAergic terminals are evident by GABA
munoreactivity, labeling for GABA_B2R was dense in all
four nuclei examined. The immunoreactivity remained
high into maturity in all nuclei except the SON.
The diffuse somatic staining observed at early ages might reflect expression prior to functional recruitment to
the membrane. Previous studies have shown functional
GABA_B2Rs are composed of a heterodimer of both a GABA-
A2R1 and a GABA_B2R subunit (Jones et al., 1998; Kaum-
mann et al., 1998; White et al., 1998). Furthermore, GABA-
B2R2 subunit expression is required to recruit GABA_B2Rs
to the membrane (Couve et al., 1998; Kuner et al., 1999;
Margeta-Mitrovic et al., 2000). Thus, an appealing hy-
thesis is that a pool of GABA_B2R subunits is generated
prior to GABAergic innervation and is then recruited to
the membrane as inhibitory synapses are forming. Addi-
tionally, the presence of GABA_B1 expression prior to
innervation suggests that the GABA_B2Rs are well situated
to provide a regulatory role in synaptogenesis. Recent
studies in the superior olive of mammals demonstrate
developmentally restricted synaptic plasticity of inhibi-
tory inputs that is GABA_B-dependent (Chang et al.,
2003; Kotak and Sanes, 2003). The GABAergic innerva-
tion to the SON has not been well characterized. However,
transient high expression of GABA_B2Rs in the SON during
the period of GABAergic innervation of the other brain-
stem nuclei suggests that GABA_B2Rs may also develop-
mentally regulate the reciprocal innervation of the SONs.

Deafferentation

In animals that underwent deafferentation by basilar
papilla and ganglion cell removal, a slight decrease in
munoreactivity was observed in NM, but overall, robust
GABA_B2R labeling remained. The small change associated
with deprivation suggests that the overall contribution of
the afferent nVIII terminals to the GABA_B1 is relatively
small despite the strong modulatory effect of GABA_B2Rs on
vesicle release from these terminals (Brenowitz et al.,
1998; Brenowitz and Trussell, 2001). Thus, it appears that
a sizeable portion of the remaining GABA_B2Rs is expressed
postsynaptically in addition to those expressed on inhibi-
tory terminals. We confirmed postsynaptic expression by
EM analysis of immunogold-reacted tissue.
The postsynaptic expression of GABA_B1 is associated
with both putative excitatory and inhibitory synaptic pro-
files, consistent with other studies (Kulik et al., 2003;
Lujan et al., 2004). The consequences of this expression at
both glutamatergic and GABAergic synapses are not en-
tirely clear at present. Typically, postsynaptic GABA_B2Rs
are positively coupled to G-protein–coupled inwardly rec-
tifying K+ channels and reduce the excitability of cells
(Kerr and Ong, 1995; Misgeld et al., 1995; Calver et al.,
2002). Previous studies have shown that GABA_B2Rs inter-
act with metabotropic glutamate receptor signaling path-
ways in both hippocampal and Purkinje neurons (Hirono
et al., 2001; Patenaude et al., 2003). Indeed, this labora-
tory has recently demonstrated a robust function in Ca++
homeostasis regulation by metabotropic glutamate recep-
tors in NM that appears to interact with GABA_B2 signaling
pathways (Lu and Rubel, 2004; and unpubl. obs.). Thus,

Development

We observed GABA_B2R expression at very early devel-
montal ages. GABA_B2R immunoreactivity was appar-
et by E10. Expression at these ages precedes the expres-
sion of GABA_A receptors and the observation of
innervation by glutamic acid decarboxylase or GABA im-
munoreactive fibers (Code et al., 1989; Code and
Churchill, 1991). The diffuse somatic staining present before
before E8–11 transitioned to punctate label at later ages. By
E14, when GABAergic terminals are evident by GABA
munoreactivity, labeling for GABA_B2R was dense in all
four nuclei examined. The immunoreactivity remained
high into maturity in all nuclei except the SON.
The diffuse somatic staining observed at early ages might reflect expression prior to functional recruitment to
the membrane. Previous studies have shown functional
GABA_B2Rs are composed of a heterodimer of both a GABA-
A2R1 and a GABA_B2R subunit (Jones et al., 1998; Kaum-
mann et al., 1998; White et al., 1998). Furthermore, GABA-
B2R2 subunit expression is required to recruit GABA_B2Rs
to the membrane (Couve et al., 1998; Kuner et al., 1999;
Margeta-Mitrovic et al., 2000). Thus, an appealing hy-
thesis is that a pool of GABA_B2R subunits is generated
prior to GABAergic innervation and is then recruited to
the membrane as inhibitory synapses are forming. Addi-
tionally, the presence of GABA_B1 expression prior to
innervation suggests that the GABA_B2Rs are well situated
to provide a regulatory role in synaptogenesis. Recent
studies in the superior olive of mammals demonstrate
developmentally restricted synaptic plasticity of inhibi-
tory inputs that is GABA_B-dependent (Chang et al.,
2003; Kotak and Sanes, 2003). The GABAergic innerva-
tion to the SON has not been well characterized. However,
transient high expression of GABA_B2Rs in the SON during
the period of GABAergic innervation of the other brain-
stem nuclei suggests that GABA_B2Rs may also develop-
mentally regulate the reciprocal innervation of the SONs.

Deafferentation

In animals that underwent deafferentation by basilar
papilla and ganglion cell removal, a slight decrease in
munoreactivity was observed in NM, but overall, robust
GABA_B2R labeling remained. The small change associated
with deprivation suggests that the overall contribution of
the afferent nVIII terminals to the GABA_B1 is relatively
small despite the strong modulatory effect of GABA_B2Rs on
vesicle release from these terminals (Brenowitz et al.,
1998; Brenowitz and Trussell, 2001). Thus, it appears that
a sizeable portion of the remaining GABA_B2Rs is expressed
postsynaptically in addition to those expressed on inhibi-
tory terminals. We confirmed postsynaptic expression by
EM analysis of immunogold-reacted tissue.
The postsynaptic expression of GABA_B1 is associated
with both putative excitatory and inhibitory synaptic pro-
files, consistent with other studies (Kulik et al., 2003;
Lujan et al., 2004). The consequences of this expression at
both glutamatergic and GABAergic synapses are not en-
tirely clear at present. Typically, postsynaptic GABA_B2Rs
are positively coupled to G-protein–coupled inwardly rec-
tifying K+ channels and reduce the excitability of cells
(Kerr and Ong, 1995; Misgeld et al., 1995; Calver et al.,
2002). Previous studies have shown that GABA_B2Rs inter-
act with metabotropic glutamate receptor signaling path-
ways in both hippocampal and Purkinje neurons (Hirono
et al., 2001; Patenaude et al., 2003). Indeed, this labora-
tory has recently demonstrated a robust function in Ca++
homeostasis regulation by metabotropic glutamate recep-
tors in NM that appears to interact with GABA_B signaling
pathways (Lu and Rubel, 2004; and unpubl. obs.). Thus,
further physiological investigation of the function of postsynaptic GABA_BRs is necessary to test their involvement in regulating excitability or Ca²⁺ currents in NM neurons.

CONCLUDING REMARKS

This study is the first, to our knowledge, to anatomically demonstrate and characterize the prevalent expression of GABA_BRs in the avian auditory brainstem. The pervasive expression in the mature system, with the notable exception of the SON, and the variation in expression through development suggest that GABA_BRs may serve multiple functions in the developing and mature system. It is our hope that these findings will stimulate further investigation into GABA_B receptor function during development and in the mature auditory system.

ACKNOWLEDGMENTS

The authors thank Dale Cunningham for assistance with processing tissue for EM and for his ongoing dedication to this research program. We thank Glen MacDonal for expert assistance with microscopy in our center.

LITERATURE CITED

Rubel EW, Parks TN. 1975. Organization and development of brain stem

