Structure of Bipartite Probe Interval Graphs

David E. Brown Utah State University
Arthur H. Busch University of Dayton
Garth Isaak Lehigh University
Outline

- (Bipartite) Probe Interval graphs
- Some context and related problems
- Structure of bipartite probe interval graphs
Probe Interval Graphs

Intersection Graph of a set of Intervals

Record edges if at least one vertex is a probe

Introduced for an application in DNA sequencing - Zhang (1994)
Probe Interval Graphs

Intersection Graph of a set of Intervals
Record edges if at least one vertex is a probe
Probe Interval Graphs

Intersection Graph of a set of Intervals
Record edges if at least one vertex is a probe

Introduced for an application in DNA sequencing - Zhang (1994)
Does a given graph have a probe interval representation?

If Probes and non-probes identified - $O(n + e \log n)$ recognition algorithm (Johnson and Spinrad (2001), McConnell and Spinrad (2002))

If Probes and non-probes not identified - Polynomial recognition algorithm by Chang, Kloks, Liu, Peng (2005) - complexity?
Does a given graph have a probe interval representation?

- If Probes and non-probes identified - $O(n + e \log n)$ recognition algorithm (Johnson and Spinrad (2001), McConnell and Spinrad (2002))
Does a given graph have a probe interval representation?

- If Probes and non-probes identified - $O(n + e \log n)$ recognition algorithm (Johnson and Spinrad (2001), McConnell and Spinrad (2002))
- If Probes and non-probes not identified - Polynomial recognition algorithm by Chang, Kloks, Liu, Peng (2005) - complexity?
Recognizing Probe Interval Graphs

Find a certifying Algorithm -

If ‘yes’ algorithm produces a representation

If ‘no’ algorithm produces an independent certificate that there is no probe representation
Recognizing Probe Interval Graphs

Find a certifying Algorithm -
 If ‘yes’ algorithm produces a representation
 If ‘no’ algorithm produces an independent certificate that there is no probe representation

Need a characterization theorem

We will do this for bipartite graphs
Sheng (1999) A tree is a probe interval graph if and only if it does not contain
(finite) Interval graphs - intersection graphs of intervals
(finite) Interval graphs - intersection graphs of intervals

Probe interval graphs with all probes are interval graphs
Interval Graphs are cocomparability

Complement has a transitive orientation

use ‘to the right of’

Ordered version

Weiner (1914) - time intervals

Fishburn (1970) - preference
Interval graphs

- Hajos (1957)
- Benzer (1957) Gene arrangement on chromosomes
- Gilmore and Hoffman (1964) G is interval graph if and only if it has no induced 4-cycle and is cocomparability
- Lekkerkerker and Boland (1962) G is an interval graph if and only if G is triangulated and asteroidal triple free.
Gilmore and Hoffman (1964)
G is interval graph if and only if it has no induced 4-cycle and is cocomparability
Lekkerkerker and Boland (1962)
G is an interval graph if and only if G is triangulated and asteroidal triple free.
Lekkerkerker and Boland (1962) G is an interval graph if and only if G there is a consecutive ordering of the maximal cliques - each vertex appears consecutively in this order.

Ordering corresponds to right endpoints ... Basis of a fast recognition algorithm by Booth and Leuker (1976) using PQ-trees.
Tolerance interval graphs
(one of many generalizations - other intersection models other versions of tolerance ...)
Intersection of intervals - record an edge only if intersection is ‘big enough’ (bigger than tolerance of at least one of the intervals) \(xy \in E \Leftrightarrow |I_x \cap I_y| \geq \min\{t_x, t_y\} \)
Tolerance graphs are intersection graphs of parallelograms
Bounded Tolerance graphs are intersection graphs of parallelograms

- Bounded - tolerances are finite
Bounded Tolerance graphs are intersection graphs of parallelograms

- Bounded - tolerances are finite
Open question from Golumbic, Monma, Trotter
- If G is cocomparability and tolerance is it bounded tolerance?
(Unbounded) Tolerance graphs

Probe interval graphs are tolerance graph where every tolerance is 0 or ∞.

Characterization, recognition complexity etc for tolerance graphs are open.
Recognition and structure for bipartite tolerance graphs

Busch (2006) - G is a bipartite tolerance graph if and only if there is a consecutive star partition of the edges - ordered sequence of stars partitioning edges such that each vertex appears consecutively.

ideas similar to consecutive clique ordering for interval graphs
Recognition and structure for bipartite tolerance graphs

Busch and Isaak (2007) - Consecutive star partition ideas lead to linear recognition and certifying algorithm and structure theorem.

‘Theorem’ - each 2-connected component (plus ...) is asteroidal triple free in at least one of the parts and no T_3.
Recognition and structure for bipartite probe interval graphs

Brown (2006) G is a bipartite probe interval graph if and only if it has a consecutive U-star partition -

ordered sequence of stars partitioning edges such that each vertex appears consecutively (and star center switch parts on a star that is a single edge)

Brown, Busch and Isaak (2009) - Consecutive U star partition ideas lead to linear recognition and certifying algorithm and structure theorem for bipartite probe interval graphs

Each 2-edge connected component (plus ...) is asteroidal triple free in at least one of the parts and
Basic structure of bipartite probe interval graphs

Two-edge connected components have a linear arrangement

Two-edge connected components (plus some dangling edges) are asteroidal triple free in at least one part

AND ... (something about cut edges ...)
Basic structure of bipartite probe interval graphs

Two-edge connected components have a linear arrangement
Two-edge connected components (plus some dangling edges) are asteroidal triple free in at least one part
AND ... (something about cut edges ...)
Non bipartite probe example

bad because
blue asteroidal triple at left end
red asteroidal triple at right end
and all cut edges have blue on left