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Chordal Graph
‘=’ Triangulated
‘=’ Every cycle has a chord

Not Chordal Chordal
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Simplicial vertex - Neighborhood is a clique
Chordal graphs have them
Hamiltonian chordal graph
‘Peel off’ simplicial vertices to get cycles of all sizes.
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Simplicial vertex - Neighborhood is a clique
Chordal graphs have them
Hamiltonian chordal graph
‘Peel off’ simplicial vertices to get cycles of all sizes.

Hendry (1990) conjecture - This process can be reversed in
Hamiltonian Chordal Graphs starting with any cycle (sort of)
‘Exact’ reverse would imply polynomial algorithm for
Hamiltonian cycles in chordal graphs but its NP-hard even on
chordal graphs.
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‘Exact’ reverse fails
Instead C extends if

G - Hamiltonian and Chordal
C - cycle in G
For some x there is some cycle on V (C) + x
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Conjecture (Hendry 1990)
Cycles in Hamiltonian chordal graphs can be extended

Shown for several subclasses

T. Jiang (2002) Planar Chordal
Chen, Faudree, Gould, Jacobson (2006) interval graphs
Abeuida and Sritharan (2006) interval graphs plus ...

Our Result
Conjecture holds for Ptolemaic graphs
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G is Ptolemaic
m

Ptolemaic inequality holds
m

G is distance hereditary and chordal
m
...
m

For all distinct nondisjoint maximal cliques
M1 ∩M2 separates M1 −M2 from M2 −M1
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G Ptolemaic:
For all distinct nondisjoint maximal cliques
M1 ∩M2 separates M1 −M2 from M2 −M1
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Useful fact
G Hamiltonian, v simplicial then G − v is Hamiltonian

Proof idea

1 If Cycle C avoids simplical vertex v
Extend C in G − v by induction

2 If Cycle C contains all simplicial vertices:

Proposition
Every vertex not on C is adjacent to an edge of C

‘Reverse’ peeling off process
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Proposition
G Ptolemaic
Cycle C contains all simplicial vertices
Every vertex not on C is adjacent to an edge of C
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Useful fact
G Ptolemaic
M, M1, M2 maximal cliques
Si = M ∩Mi
m
S1 ∩ S2 = ∅ or S1 ⊆ S2 or S2 ⊆ S1
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in part from result of Uehara and Uno 2005:

Proposition
M a maximal clique in Ptolemaic G partitions into
separators Si as . . .
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Proposition
G Ptolemaic
Cycle C contains all simplicial vertices
Every vertex not on C is adjacent to an edge of C

Proof idea: Take maximal clique M containing v
C must contain and edge of M to get to simplicial vertices
at ‘ends’ of ‘pieces’

Aydin Gerek, Garth Isaak, Cycle Extendability in Ptolemaic Graphs


	
	
	

