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Abstract 

We say any order ~ is a tolerance order on a set of vertices if we may assign to each vertex 
x an interval Ix of real numbers and a real number tx called a tolerance in such a way that x~,y 
if and only if the overlap of Ix and ly is less than the minimum of t~ and ty and the center of I~ is 
less than the center of Iy. An order is a bitolerance order if and only if there are intervals Ix and 
real numbers tl(X) and tr(X) assigned to each vertex x in such a way that x-<y if and only if the 
overlap of lx and ly is less than both tr(X) and q(y) and the center of Ix is less than the center of 
Iy. A tolerance or bitolerance order is said to be bounded if no tolerance is larger than the length 
of the corresponding interval. A bounded tolerance 9raph or bitolerance 9raph (also known as 
a trapezoid 9raph) is the incomparability graph of a bounded tolerance order or bitolerance 
order. Such a graph or order is called proper if it has a representation using intervals no one of 
which is a proper subset of another, and it is called unit if it has a representation using only unit 
intervals. In a recent paper, Bogart, Fishburn, Isaak and Langley (1995) gave an example of 
proper tolerance graphs that are not unit tolerance graphs. In this paper we show that 
a bitolerance graph or order is proper if and only if it is unit. For contrast, we give a new view of 
the construction of Bogart et al. (1995) from an order theoretic point of view, showing how 
linear programming may be used to help construct proper but not unit tolerance orders. 

1. Introduction 

An orde r  <~ on a set X is called an interval order if it is poss ible  to assign to its 

vertices x intervals  Ix of  real numbers  is such a way that  x M y  if and  only if all 

member s  of Ix are less than  all members  of Iy. We will discuss only orders  with I XI 
finite. An o rde r  is a (rain) tolerance (interval) order on a set of vertices if we may  assign 

to each vertex x an interval  Ix of real numbers  and a real number  tx called a to lerance  

in such a way tha t  x -<y  if and  only if the over lap  of Ix and Iy is less than  the m i n i m u m  

of tx and ty and the center  of Ix is less than  the center  of Iy. An o rde r  is a (rain) 
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bitolerance (interval) order if and only if there are intervals Ix and real numbers tl(x) 
and tr(x) assigned to each vertex x in such a way that x ~ y  if and only if the overlap of 
Ix and Iy is less than both t,(x) and t~(y) and the center of Ix is less than the center ofly. 
The assignment of intervals and tolerances is called a representation of the order. 
A tolerance or bitolerance order is called bounded if each tolerance is no more than the 
corresponding interval length. All known examples of tolerance and bitolerance 
orders are bounded. Bounded bitolerance orders turn out to be exactly the orders of 
interval dimension two [3]; the proof of Theorem 1 in this paper suggests why this is 

so. An interval 9raph, bounded (min) tolerance (interval) 9raph, or bounded (min) 
bitolerance (interval) 9raph (also known as a trapezoid graph [5]) is the incomparabil- 
ity graph of an interval order, a bounded tolerance order, or a bounded bitolerance 
order. Such a graph or order is called proper if it has a representation using intervals 
no one of which is a proper subset of another, and it is called unit if it has 
a representation using only unit intervals. (Unit interval orders are also known as 
semiorders [16] and unit interval graphs are also known as indifference 9raphs [18].) 
Tolerance graphs were introduced by Golumbic and Monma [11] (as above, we 
assign intervals and tolerances to vertices and two vertices are adjacent if their 
intervals overlap by at least one of their tolerances) and studied in more detail by 
Golumbic et al. [12]. This paper asks whether a tolerance graph which has an 
orientable complement is necessarily bounded; this question is as yet unanswered. 
Tolerance graphs were put into a more general format by Jacobson et al. [13]. For 
simplicity of language, we henceforth omit the optional min and interval when we 
refer to tolerance or bitolerance graphs or orders. It is straightforward to show that 
a proper tolerance graph (or order) is bounded, so the adjective bounded may be 
omitted when referring to bounded proper tolerance graphs (or orders) or bounded 

unit tolerance graphs or (orders). 
Fishburn [10, 8, 2] showed that an ordering of X is an interval ordering if and only 

if it has no four element restriction isomorphic to the ordering 2 + 2 illustrated by its 
covering diagram in Fig. 1, consisting of vertices a, b, c, and d, with a < b, c < d, and 
no other relations. Scott and Suppes [19] showed that an ordering is a unit interval 
ordering if and only if it has no four element restriction isomorphic to 2 + 2 and no 
four element restriction isomorphic to the ordering 3 + 1, also illustrated by its 
covering diagram in Fig. 1, consisting of four vertices a, b, c, and d, with a < b < c, 
a < c, and d incomparable with all of a, b, and c. A graph is thus an interval graph if 
and only if it is a co-comparability graph (the complement of a transitively orientable 
graph) and has no induced subgraph isomorphic to a four-cycle (the incomparability 
graph of 2 + 2_). The similar characterization of unit interval graphs [18] requires in 
addition that they have no induced subgraph isomorphic to the 'claw' K1. 3, the 
complete bipartite graph with parts of size 1 and 3. There are characterizations of 
interval graphs and unit interval graphs that do not include the hypothesis that the 
graph is a cocomparability graph; see e.g., [21]. 

It is clear that a unit interval order (graph) is proper. Roberts first noted that 
a proper interval graph (order) is unit. Since a proper interval order contains no 
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2 + 2  

C) 

3+1  

Fig. 1. 

restriction isomorphic to 3 + 1, this result is an immediate corollary of the 
Scott-Suppes theorem [19] in the order theoretic context. It is also clear that unit 
(bi)tolerance orders are proper. Thus it is natural to ask whether proper (bi)tolerance 
orders are unit. Perhaps surprisingly, the answer is yes for bitolerance orders and no 
for tolerance orders. 

2. Proper and unit bitolerance orders 

Associated with any bitolerance order on X, there is a natural linear extension of 
that ordering: given a representation (in which we may assume, without loss of 
generality, no two intervals Ix and Iy have the same center), we define the linear 
extension by x <c y if and only if the center o fx  is less than the center ofy. We refer to 
this linear ordering as the central extension of the representation and denote it with 
<c. Our first two lemmas show that the possible central extensions of a proper 

bitolerance order are quite restricted. 

Lemma 1. Let N be a four element restriction of a proper bitolerance ordering to four 
elements a, bl, b2, and d with a>-bl, b lab2,  b2~d and with no other comparabilities 
among a, bl, b2 and d. Then in any central extension of the ordering, either 
bl <c d <¢ b2 or bl <c a <¢ b2 (or both). 

Proof. Suppose there is a central extension in which d <c b~ and a >c b2. Then, as 
illustrated in Fig. 2, 

Ilanldl <<, [Ib2c~Ial < min{tr(d), h(b2)} ~< tr(d) 

since b z ~ d  and 

]I/~Ia[ <~ ]Ib,nI, I < min{tr(bl), tl(a)} -%< tl(a) 

since a)~b~. So d-~a, contrary to hypothesis. [] 
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Fig. 2. The rectangles represent the 
left tolerance of a and the right toler- 
ance of d. 

al 

Fig. 3. The rectangles represent the left tolerance of b2 and the 
right tolerance of a~. 

Lemma 2. Let 2 + 2 be a four element restriction of a proper bitolerance ordering to 
four elements al, a2, bl, and b2 with al ~a2, bl ~b2 and no other comparabilities among 
al, a2, bl, and b2. Then in any central extension of the ordering, either 

aa <c bl <c b2 <c a2 or b~ <~ a~ <c a2 <c b2. 

Proof. We may assume without loss of generality that al <c bl. Then, as in Fig. 3, 

II,,c~lb2l <~ [Ib,C~Ib2l < min{tr(bl), tl(b2)} ~< t](b2), 

since bl-~b2. Then since al~b2,  

II,,C~Ib2l >>- min{tr(al), tl(b2)} 

so that 

[Io,nlb~ >~ tr(al). 

Since al <a2,  

[Ia,~I,2[ < min{tr(al), tl(a2)} <~ tr(al); 

therefore the left endpoint of I,~ must be greater than that of Ibm, and since 
the representation is proper, the centers must be in that order too. Thus 

al <c bl <c b2 <c a2. [] 

Lemma 2 appears in graph theoretic terminology (and slightly less generality) as 
Lemma 5 of [-1]. The required linear extensions of the restrictions in Lemmas 1 and 
2 characterize proper and unit bitolerance graphs in the following sense. 

Theorem 1. For an order -< on a set X the following are equivalent: 
1. (X, ~ )  is a proper bitolerance ordering; 
2. The order -< has a linear extension <L such that 

(a) if a, bl, b2, and d are elements of X with a>bl ,  bl-<b2, b2>-d and no other 
comparabilities among these elements, then in L, either bl <L d <L b2 or 
bl <L a <L b2 (or both), and 
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(b) i f  al ,  a2, bl ,  and b 2 are elements of X with al<a2 and b l a b  2 and no other 
comparabilities amon9 al, a2, bl, and b2, then in L, either al <L bl <L b2 <t, a2 

or bl <L al <L a2 <L b2. 
3. (X,<) is a unit bitolerance orderin9. 

Proof. Statement 3 implies statement 1 just as for interval orderings. Lemmas 1 and 2 
show that  s tatement 1 implies statement 2. Thus we assume that statement 2 holds. 
We introduce a bit more  notat ion to ease the proof  of statement 3. We denote  the left 
endpoint  and right endpoint  of the interval Ix by le(x) and re(x), respectively. We 

define the left tolerant point of Ix by 

It(x) = le(x) + tl(X) 

and the right tolerant point of Ix by 

rt(x) = re(x) - tr(X). 

Then it is immediate  from the definitions that x ~ y  if and only if, 

rt(y) < le(y) and re(x) < lt(y). 

(Note that this shows that  x < y  if and only if all points of the real interval [le(x), rt(x)] 
are to the left of all the points of the real interval [,le(y), rt(y)] and all points of 
[lt(y), re(x)] are to the left of all points of the real interval [-lt(y), re(y)]; those familiar 
with the concept  of interval dimension [,21] will note this implies bounded bitolerance 
orders have interval dimension two; the converse is true as well.) 

Now suppose the linear ordering of s tatement 2 is x~ <L x2 <L"" <L x,. We 
choose real numbers  

le(xa) < le(x2) < -.. < le(x,). 

Next we choose a real number  re(x1) greater than le(x,), and we let u (for unit) equal 
re(x1) - le(Xl). Now we define the remaining right endpoints  by 

re(x/) = le(xi) + u. 

Finally, we define the left and right tolerant points. First, if x ~ x j  for any j, define 

rt(xi) = ½ [le(x,) + re(x1)]. 

Then rt(xi) is in each interval Ix: so xi~x~ in this representat ion f o r j  > i. ( F o r j  < i, 
the center o fx j  is less than the center ofx~ so x i ~ x j  in this representation.) Otherwise, 
let a be the smallest integer such that x~<x, (xa is above x~), 

rt(xi) = ½ [le(x,) + le(x,_ 1)] 

Similarly, if x j>xi  for any i, define 

lt(xj) = ½ [le(x,) + re(x1)]. 



42 K.P. Bogart, G. Isaak/Discrete Mathematics 181 (1998) 37 51 

lt(xj) ] [ 

I rt(xi) 
Case 1 Case 2 

Fig. 4. Fig. 5. 

Otherwise, let b be the largest integer such that xb~,xj (Xb is below x j), and let 

lt(xj) -- ½ [-re(xb) + re(xb+ 1)]. 

By our choices, i f x i~x j ,  then rt(xi) < le(x,) ~< le(xj) and re(x/) ~< re(xb) < lt(xj). So the 
representation is consistent with (X,~) in these cases. 

If xi and xj (with i < j )  are incomparable in (X,~), we will assume that the 
representation gives x/Mxj and reach a contradiction. If the representation gives 
x i ~ x j  then rt(xi) < le(xj) and rl(xi) < lt(xj). Then, with rt(xl) < le(xj) and a as defined 
above, le(xj) > le(xa). Since re(x/) < lt(xj), this means that, with b as defined above, 
re(xi) < re(xb). As the illustration in Fig. 4 shows, this means that x, <L xj and 

Xi ~ L  Xb. 

While we know the relationship between xi and xj in (X,~), we do not know the 
relationships of xa and Xb with xj and xi respectively and with each other in (X,-<). 
However if Xb~Xi, then by transitivity x j~x/ ,  which is false. Further, if xb-~x/, then 
Xb <L X/, contradicting the inequality x /<L Xb above. Thus Xb is incomparable to xi 
and similarly, x~ is incomparable to xj. This leaves us two possible orderings among 
x/, x j, x~, and Xb, as illustrated in Fig. 5. 

In case 1, part (a) of statement 2 of the theorem tells us that either Xb "~L Xj "QL Xa or 

xb <L X~ <L X~, contradicting one of x~ <L Xj and x~ <L Xb above. In case 2, part (b) 
of statement 2 of the theorem tells us that either x~ <LXb <LXj ~LXa or 
Xb <L X~ <L X~ <L X j, again contradicting xa <L xj and xi <L Xb from above. Thus x/ 
and xj must be incomparable in this representation if they are incomparable in P. [] 

3. The Fishburn model 
Peter Fishburn [-9] suggested that the following model of an ordered set would 

prove interesting for study. We choose, for each x in a set X, an interval Ix and a point 
cx in Ix. We define x-<y if and only if all the elements of Ix are less than cy and all 
elements of Iy are greater than cx. Thus our ordering has a tolerance representation in 
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which the sum of the tolerances lt(x) and rt(x) is the interval length [Ix[ for each 
element x. We call such a representation a Fishburn representation. If an order has 
a Fishburn representation, then its incomparability graph is a pseudo-interval graph 
in the sense of [4] and has a natural orientation as an interval catch digraph [17]. Thus 
an alternate name for a Fishburn representation is an interval catch representation. 

Fishburn was interested in Fishburn representations with the additional condition 
that the intervals are all unit intervals; he observed that in this case the orders defined 
here have the fascinating property that they have no restrictions isomorphic to 2 + 3 
or 4 + 1. Our interest is in the more general representation. 

Our next theorem appears in [15] (with a geometric proof) as part of Theorem 2.5. 
Notice that the theorem does not say that a proper or unit bitolerance ordering has 
a Fishburn representation with unit intervals; the interval bitolerance representation 

which is unit need not have the sum of the left and right tolerances equal to the 
interval length. 

Theorem 2. An ordering is a proper (unit) bitolerance ordering if and only if it has 
a Fishburn representation. 

Proof. Suppose we have a unit bitolerance representation of an ordering (X,-<) with 
intervals Ix of length u and left and right tolerance tl(X ) and tr(x). We will change the 
lengths of the intervals to 2u - tl(X) - tr(x). In particular, if Ix -- [le(x), re(x)], then 
we let 

1'x = [le(x) + tl(x) - u/2, re(x) - tr(x) + u/2] = [le'(x), re'(x)], 

and we let 

cx = ½ [le(x) + re(x)]. 

The reason for these choices is that ifcx < cy, then Ix overlaps Iy by at least t~(x) if and 
only if, when we increase the right endpoint of Ix by u/2 and decrease the left endpoint 
by u/2, the new (intermediate) intervals, which we denote by 1" and 1", that we get 
overlap by u + tr(X). However these intermediate intervals overlap by u + t~(x) if and 
only if when we decrease the right endpoint of /*  by tr(X) and increase the left endpoint 
of I* by tl(y), the resulting intervals Ix and I'y overlap by at least u - tl(y). However, 
u -  tl(y) is the distance from le ' (y ) - - l e (y )+  t l ( y ) -  u/2 to ½[le(y)+ re(y)], i.e. the 
distance from le'(y) to cy. Thus Ix and Iy overlap by at least tr(X) if and only if 
I'x contains c r Similarly, Ix and Iy overlap by at least tl(y) if and only if I'y contains cx. 
This gives Fishburn representation of(X,-<). Given a Fishburn representation, we can 
reverse the construction with any sufficiently large u. [] 

As a corollary we obtain a theorem found in [1]. 

Corollary 1. An order is a unit tolerance order if and only if it is a 50% tolerance order, 
i.e. it has a tolerance representation in which the tolerance of  each x is half the length 
of Ix. 
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Proof. If each Ix is a unit interval and tl(X) = t r ( X ) ,  then cx is the center of I'x as well as 

Ix, and thus x < y in the Fishburn representation if and only if Cx < cr and ]I'xc~I'y] is 
less than half of either interval length. [] 

4. Proper and unit tolerance orders 

In contrast to the main theorem of this paper, in [1] there is a family of examples of 
proper tolerance graphs that are not unit tolerance graphs. In this section we briefly 

describe the order-theoretic approach to constructing those examples. The basic 
building block for these orders is the four-element ordered set we refer to as a 'hook',  

shown in Fig. 6 with the vertices numbered in the order of one possible central 

extension of a tolerance representation. 

Lemma 3. In  any  50% tolerance representation o f  the hook in Fig. 6 in which the 

intervals have centers Cl < c2 < c3 < c4, c4 - c3 > c3 - Cl. 

Proof. Since vertices 3 and 1 are incomparable, either cl E 13 or c3 E 11. But c 3 > c 2 

and c2 is greater than all members of 11, so cl 6 13. Thus c3 - Cl is less than the 
half-length c3 - le(3) of I3. Since c4 is greater than all members of I3, c4 - c3 is greater 
than this half-length, and the conclusion follows. [] 

Now suppose that, as in Fig. 7, we have additional vertices 5-8 such that 3-6  form 
a hook and 5-8 form a hook. Note that we do not require that our ordered set be 
isomorphic to that of Fig. 7, for example vertex 5 could be over vertex 1 without 
violating the restrictions that the three sets of vertices given are hooks. 
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Then 

c 8 - -  c 5 = c 8 - -  c 7 + c 7  - -  c 5 

> c 7 - - c  5 + c 6 - - c  5 

> e 6 - -  c 5 + c 6  - -  c 5 

> c 5 - - c  3 + c 5 - - c  3 

C 5 - -  C 3 -1- C 4  - -  C 3 

C 5 - -  C 3 ~-  C 3 - -  C 1 = C 5 - -  C 1 

This is gives us 

Lem ma  4. Suppose that cl  < c2 < c3 < c4 < c5 < c6 < c7 < cs is a central  extension 

o f  a 50% tolerance representat ion o f  an order on {1, 2, 3,4, 5, 6, 7, 8} in which 

{1, 2, 3, 4}, {3, 4, 5, 6} and {5, 6, 7, 8} f o r m  hooks. T h e n  Cs - cs > c5 - c'v 

Now suppose we add one more  vertex x above vertex 1 as in Fig. 7(b) and seek 
a 50% tolerance representat ion in which cx < c5. Then the half length of Ix is less than 
c5 - cl, and therefore the right endpoint  o f x  is less than Cs, so that x-<8. This proves 
the following lemma 

Lemm a  5. A n  order on {1, 2, 3, 4, 5, 6, 7, 8, x} in which 

• {1, 2, 3, 4}, {3, 4, 5, 6) and {5, 6, 7, 8} are hooks, 

• x ~ l ,  and 

• xq~8 

has no 50% tolerance representation in which ca < c2 < c3 < c4 < cs < c6 < c7 < c8 

and cx < cs. 

Of course it is not  yet clear whether  there is a proper  representat ion of an ordered 
set with a proper  tolerance representat ion as described in Lemma 5. However  it is 
possible to reduce this question to a straightforward mat ter  of linear programming.  
Note  that vertex 2 cannot  be greater than vertex 3 because of the order  of their centers. 
If vertex 3 is incomparable  with vertex 1, then it cannot  be over vertex 2 either. Thus, if 
we can make vertices 1 and 3 incomparable,  make vertex 1 less than vertex 2, and 
make vertices 2 and 3 less than vertex 4, we have all the comparabili t ies of the hook. 
The statement that vertex i is over vertex j can be described by inequalities by 

le(i) > re(j) - t(j) and re(j) < le(i) + t(i). 

By scaling we may assume that each strict inequality must be strict by at least one 
unit. So these become 

l e ( i ) ~ > r e ( j ) - t ( j ) +  1 and r e ( j ) ~ < l e ( i ) + t ( i ) - l .  
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The fact that the representation is proper and the statement that c(i) > c(j) may be 
expressed in inequalities by 

re(i) ~> re(j) + 1, le(i)/> le0') + 1. 

When the center of i is above the center of j, the statement that i and j are 
incomparable may be expressed as one of the two inequalities 

re(j) - le(i) f> t(i) or re(j) - le(i)/> t(j) 

Note that in the hook on { 1, 2,. 3, 4}, the incomparability of vertices 1 and 3 may 
only be expressed by the inequality 

re(l) - le(3)/> t(3), 

because if the overlap of vertices 1 and 3 were greater than t(1), so would be the 
overlap of vertices 1 and 2, and this is impossible since 1-<2 in the hook. This means 
that the only inequality we may use the express the incomparability of the first and 
third elements in a hook is re(i) - le(j) ~> t(j) (with j = i + 2). Thus all the required 
relationships among the vertices in {1, 2, 3, 4, 5, 6, 7, 8} may be expressed as a system 
of linear inequalities. The only other relationships specified in Lemma 5 were that 
x>-l ,  cx < c5, and x is incomparable to vertex 8 (since cx < c5, x-K8 is equivalent to 
x and 8 being incomparable). The first two relationships may be expressed as 
inequalities as above. Since cx < c5, the overlap of ls and Ix must be less than that of 
18 and 15, so the overlap of Is and Ix cannot be more than t8 because then vertex 
5 would not be less than vertex 8. Thus there is only one inequality that expresses the 
fact that vertices x and 8 are incomparable. Therefore there is no system of linear 
equalities which captures all the required relationships among the vertices 

{1, 2, . . . ,  8, x}. Using Lindo, we minimized the difference re(8) - le(1) subject to the 
inequalities that describe the conditions in Lemma 5, and we obtained the following 
intervals and tolerances: 

I1 = [0, 11], tl = 11, 12 = [1, 12], t2 = 11, 13 = [2, 19], t3 = 9, 

I4 = [11, 20], t4 = 9, 15 = [13, 22], ts = 6, I6 = [17, 23], t6 = 6, 

I 7 = [ 1 8 , 2 4 ] ,  t 7 = 4 ,  1 8 = [ 2 1 , 2 5 ] ,  t 8 = 4 ,  l x = [ 1 2 , 2 1 ] ,  t x = 0 .  

This gives us the ordered set shown in Fig. 8(a). This does not complete the proof 
that our example is proper but not unit, because there could be (and is) a unit 
representation of this order in which the centers of the intervals do not lie in the 
specified order. Thus we ask, in light of Lemmas 1 and 2 if it is possible to add vertices 
to Fig. 8 in such a way that in any proper tolerance representation, the centers for the 
intervals must occur in the order we specified. The answer is that adding the two 
vertices y and z shown in Fig. 8(b) is sufficient. To prove this we need one more lemma, 
analogous to Lemmas 1 and 2, but valid only for tolerance orders. 
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Lemm a  6. In any proper tolerance representation of  the four element set {a, bt, b2, d} 
with a ~ b l ,  barb2 ,  b2)~d, and no other comparabilities, cd < ca. 

Proof.  If we assume the contrary,  then as illustrated in Fig. 9, we have that 
Cbl < Ca < Ca < Cb2. NOW since a ~ b l  we have ]Iac~Ihl[ < ta. Now a and bE are incom- 
parable, but  the overlap of I ,  and Ib2 is less than that of ld and Ib2, so ]I,c~Ib~] cannot  
be greater than tb2. Thus ta < ]I, nIb2]. Using once again that the overlap of Io and 

Ib~ is less than that  of Id and Ib2, gives us 

By symmetry we have 

[ldC~Ib:l < ta < IlblC~Iul < [Iac~Ib,], 

and by transitivity, I IJ~Ib, [ < [I~c~Ib, I, a contradiction.  Thus Cd must be less than c~ 

after all. [ ]  
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Theorem 3. There is no unit tolerance representation of the order shown in 

Fi 9. 8(b). 

Proof. We show that in any central extension of a proper representation of the order, 
ci < ci+l for i between 1 and 7, and cx < c5. First we apply the Lemma 6 to the 

ordered set {x, z, 2, 5} to obtain cx < c5. Now we apply Lemma 2 to the ordered set 
{x, y, 7, 8} to obtain that cy > c8. Next we apply Lemma 1 three times in succession to 

the ordered sets {6, 7, 8, y}, {4, 5, 6, 7), and {2, 3, 4, 5} to obtain that c6 < cv < c8, 
then c4 < c5 < c6, and finally c2 < c3 < c4. This completes the proof. []  

Finally there is the question of whether adding y and z to the ordered set in Fig. 8(a) 
results in an ordered set with a proper tolerance representation. 

Theorem 4. There is a proper tolerance representation of the order shown in Fig. 8(b). 

Proof. To the interval representation obtained for the order of Fig. 8(a), add the 
interval [24, 25] for y and [22, 25] for z and give each of y and z tolerance 0. [] 

We would like to thank Lecretia Wilson for setting up and solving the linear 

programming problem described above. 

5. Graph theoretic interpretation 

There is a natural interpretation of Theorem 1 in terms of ordered subgraphs of 
ordered graphs. We adapt the definitions of ordered graphs in [6, 7, 14] as follows: An 
ordered 9raph G = (V, E, L) is a graph (V, E) and a linear ordering L of the vertices of 
G. An ordered induced subgraph of G is an (induced) subgraph of (V, E) together with 
its inherited ordering. Two ordered graphs are isomorphic if there is a bijection 
09 between the vertex sets such that 09 and ~o-1 are order preserving functions that 
preserve adjacency as well. 

As an example (already observed in [6, 7, 14]) of how this concept may be used, 
saying that G = (V, E) is the incomparability graph of an ordered set with linear 
extension L is the same as saying that the ordered graph G' = (V, E, L) has no induced 
3-element ordered subgraph isomorphic to the ordered graph shown in Fig. 10. (Note 
that for the graph in Fig. 10 to be the complement of the comparability graph of an 
order with linear extension 1 < 2 < 3, the order would have to have 1 ~2 ,  2~3 ,  and 
l-K3, an impossibility.) 

How do we express the conditions of Theorem 1 in this language? Note, for 
example, that the conclusion of condition 2(a) of Theorem 1 can be rewritten to say 
that L is not the ordering a <L bl <L b2 <L d. Thus the condition forbids a certain 
linear extension of the vertex set of the incomparability graph of the ordered set in 
Fig. 2. This leads us to the following theorem in which we use the notation L : a, b, c, d 
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Fig. 11. The ordered graphs of Theorem 5. 

to mean that L is a linearly ordered set in which a precedes b, which precedes c, which 
precedes d. (We suggest reading the colon as 'is given by'.) 

Theorem 5. The following statements about a graph G = (X, E) are equivalent. 
1. G is a proper bitolerance graph 

2. There is a linear ordering L : Xl, x2, x3, x4 of the vertices of G such that the ordered 
graph G = (X, E, L) has no ordered subgraph isomorphic to any of the four ordered 
graphs H = (V, F, M) described below and shown in Fig. l l .  
(a) V = {1, 2, 3}, F = {(1, 3)}, M: 1,2,3; 
(h) V = {1, 2, 3, 4}, F = {(1, 2), (3, 4), (1, 4)}, M: 1, 2, 3, 4; 
(c) V = { l, 2, 3, 4}, F = .I(1, 2), (2, 3), (3, 4), (1, 4)}, M: l, 2, 3, 4; 
(d) V = {1, 2, 3, 4}, F -- {(1, 3), (2, 3) (2, 4), (1, 4)}, M: 1, 2, 3, 4. 

3. G is a unit bitolerance graph. 

Proofi We use the nota t ion 'condit ion a.b' to stand for condit ion b of Theorem a, and 
the nota t ion 'condit ion a.b.c' to stand for condit ion c of part  b of Theorem a. We 
already know that  G satisfies condit ion 5.1 (5.3) if and only if there is an orientat ion of 
the complement  G that satisfies condit ion 1.1 (1.3). Thus it suffices to show that 
a graph G satisifies condit ion 5.2 if and only if its complement  has an orientat ion 
which is an ordering satisfying condit ion 1.2. 

We noted above that there is a linear ordering of the vertices of G satisfying 
condit ion 5.2.a if and only if G has an orientat ion which is an ordering of X with the 
given linear ordering as a linear extension. We now show that G and a linear ordering 
of its vertices satisfying condit ion 5.2.a also satisfy condit ion 5.2.b if and only if 
a corresponding orientat ion of G as an ordering satisfies condit ion 1.2.a, and that 
G and a linear ordering of its vertices satisfying condit ion 5.2.a also satisfy condit ion 
5.2.c and 5.2.d if and only if a corresponding orientat ion of G satisfies condit ion 1.2.b. 

Suppose now that G and a linear ordering of its vertices satisfy condit ion 
5.2.a and that  the ordering P is an orientat ion of G. (Equivalently, we could assume 
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that P is an ordering of X with linear extension L, and that G is its incomparability 
graph.) 

Now suppose further that P satisfies condition 1.2.a. As noted above, this means 
that the restriction of the ordering L and V = {a, bl, b2, d} is not the ordering 
M:a, bl, b2, d. But the edge set of the induced subgraph of G on V is F = {(a, b z), (b, d), 
(a, d)}. Thus condition 1.2.a implies that the ordered graph G = (X, E, L) does not 
have the ordered subgraph H = (V, F,M). Further, any ordered subgraph of 
G isomorphic to F will have only orientations isomorphic to the restriction of P to 
V or its dual (all order relations reversed). Since H is isomorphic to the graph of 
condition 5.2.b, this proves that G satisfies condition 5.2.b. The converse may be 
proved by reversing the argument. 

Now suppose instead that P satisfies condition 1.2.b. This implies that the restric- 

tion of L to the set V = {al, a2, bl, b2} is not M:al ,  bl, a2, b2, M:ba, al, b2, a2, 
M:ax,  a2, bl, b2, or M:bl ,  b2, al, az. But the edge set of the induced ordered subgraph 

of G on the set V = {al, a2, bl, b2} is F = {(al, bl), (bl, a2), (a2, b2), (al, bz)}. The 
ordered graphs with M:al ,  bl, az, b2 and M:b~,al ,  bz, a2 are isomorphic to the 
ordered graph of condition 5.2.c, and the ordered graphs with M : al, a2, hi, b2 and 
M : bl, b2, al, az are isomorphic to the ordered graph of condition 5.2.d. Further, any 
orientation of the complement of H = (V, F, M) is P or an order obtained by reversing 
one or both of the order relations of P (which yields an ordering isomorphic to P). 
Again, the four forbidden linear extensions will yield ordered graphs isomorphic to 
those of conditions 5.2.c or 5.2.d. Thus G satisfies conditions 5.2.c and 5.2.d. The 
converse may be proved by reversing the argument. [] 

This theorem does not simplify the recognition problem for proper or unit 
bitolerance graphs, because as shown in [7], given an ordered graph H the decision 
problem of whether there is an ordering of the vertex set of a graph G = (V, E) so 
that the resulting ordered graph does not contain H as an ordered subgraph is 
NP-complete for a wide variety of graphs H, including that of part 2(d) of Theorem 5. 
However this does not mean that the recognition problem for proper bitolerance 
graphs in NP-complete, because it involves recognizing graphs that exclude all 
the ordered graphs of Theorem 5 as ordered subgraphs. This levels us with a tantaliz- 
ing problem; what is the complexity status of recognizing proper bitolerance 
graphs? 

The recognition problem is especially interesting in light of the recent result of Shull 
and Trenk [20] that the directed graph concepts of proper bitolerance digraphs, unit 
bitolerance digraphs, and interval catch digraphs are all equivalent. Interval catch 
digraphs are recognizable in polynomial time [17], so this solves the directed version 
of the recognition problem. While a representation of a bitolerance graph yields 
a bitolerance digraph in a natural way, without a representation, we have as yet no 
way to associate with a possible bitolerance graph a digraph to test to see if it is an 
interval catch digraph. Thus we cannot take advantage of Shull and Trenk's result to 
aid in the recognition of proper bitolerance graphs. 
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