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Abstract. An (R, S; m, n)k-de Bruijn torus is a k-ary R × S toroidal array with the property
that every k-ary m × n matrix appears exactly once contiguously on the torus. The torus is a
generalization of de Bruijn cycles and has been extended to higher dimensions by many authors.
The central question, asked by Chung, Diaconis, and Graham, is for which R, S, m, n, and k such
tori exist. In this note we develop a notion of equivalence class de Bruijn cycles and we extend a
technique of Iványi and Tóth. Combining these ideas we are able to construct the first examples
in which R and S are not powers of k. We prove for all natural numbers s and t there is a
(4st2, 4s3t2; 2, 2)2st-de Bruijn torus.

1. Introduction

All variables in this paper are assumed to be natural numbers (with k > 1).

An (R, n)k-de Bruijn cycle is a cyclic k-ary sequence of length R with the property that every k-ary
n-tuple appears exactly once contiguously on the cycle (of course, R = kn). First invented in 1894 by Flye St.
Marie [6], they were rediscovered in 1946 by de Bruijn [1] and Good [8]. An excellent survey by Fredericksen
[7] introduces the reader to a vast literature on the topic.

An (R, S; m, n)k-de Bruijn torus is a toroidal k-ary R × S array with the property that every k-ary
m× n matrix appears exactly once contiguously on the torus (of course, RS = kmn). The simplest example
of such a torus is the (4, 4; 2, 2)2-de Bruijn torus in Figure 1. (In addition to RS = kmn it is also necessary
that R > m and S > n—if R = m, say, then the all-0’s matrix is found m times.)

0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1

Figure 1. A (4, 4; 2, 2)2-de Bruijn torus.

In 1984, Ma [12] proved the binary case of the following 1988 theorem of J. C. Cock [3] (see also [4]).

Theorem 1.1. For all m, n, and k (except n = 2 if k is even) there is a (kr, ks; m, n)k-de Bruijn torus with

r = m and s = m(n − 1).

Cock’s technique easily generalizes to higher dimensions, but unfortunately, each new dimension has
size exponential in the previous. In particular, we can make the obvious definition of an ( ~R;~n)k-de Bruijn

d-torus in d dimensions, with vectors ~R = 〈r1, . . . , rd〉 and ~n = 〈n1, . . . , nd〉 satisfying Πri = kΠni and ri > ni

for all i. One then has the following theorem, mentioned in [3] and proved in [10].

Theorem 1.1′. For all ~n, d and k (except n2 = 2 if k is even) there is an ( ~R;~n)k-de Bruijn d-torus with

r1 = kn1 and rj = (
∏j−1

i=1 ri)
nj−1 = k(nj−1)

∏

j−1

i=1
ni for j > 1.

* Department of Mathematics, Arizona State University, Tempe, AZ 85287–1804.
E-mail: hurlbert@calvin.la.asu.edu. Partially supported by NSF Grant DMS-9201467.

† Department of Mathematics, Lehigh University, Bethlehem, PA 18015.
E-mail: gi02@lehigh.edu. Partially supported by a grant from the Reidler Foundation.

1



This prompted Chung, Diaconis, and Graham [2] to ask whether it could be true that, in two dimensions,
R = S and m = n (the so-called “square” tori). The binary case was resolved with the following theorem of
Fan, Fan, Ma, and Sin [5].

Theorem 1.2. There is a (2n2/2, 2n2/2; n, n)2-de Bruijn torus if and only if n is even.

Since an (R, R; n, n)k-de Bruijn torus has R = kn2/2, we must have n even or k a perfect square. In [9]
we settled the question for general k with the following

Theorem 1.3. Except in the case that k is an even square and n = 3, 5, 7, or 9, there is an (R, R; n, n)k-de

Bruijn torus if and only if n is even or k is a perfect square.

Higher dimensional versions of Theorem 1.3 remain open. For the remainder of this paper we will
concentrate on two dimensions only, seeking to make progress on the following conjecture found in [9].

Conjecture 1.4. If R, S, m, n, and k satisfy R > m, S > n, and RS = kmn then there is an (R, S; m, n)k-de

Bruijn torus.

Until now, every result has had R and S, both powers of the base k. In this paper we prove the following
theorem. Because of the nature of the techniques we use in proving Theorems 1.3 and 1.6 below, we expect
this theorem will help extend those results.

Theorem 1.5. For all s and t there is a (4st2, 4s3t2; 2, 2)2st-de Bruijn torus.

Outside of Theorems 1.3 and 1.5, the most progress toward conjecture 1.4 is found in [10], namely

Theorem 1.6. Let k have prime factorization Πpαi

i and let q = kΠp
blogpi

mc

i . Then for all m, n there is a

(q, kmn/q; m, n)k-de Bruijn torus.

In section 2 we describe the “meshing” method of Iványi and Tóth [11] on which Theorem 1.5 rests.
Since their paper uses significantly different notation, and since we generalize their method, we sketch their
proof of the following result.

Theorem 1.7. For all k there is a (k2, k2; 2, 2)k-de Bruijn torus.

In section 3 we include a discussion of what we call equivalence-class de Bruijn cycles and present results
about them which we use in section 4 to prove Theorem 1.5. For convenience, we let dBk(kn; n) be the set
of all k-ary de Bruijn cycles of order n, and dBk(R, S; m, n) be the set of all (R, S; m, n)k-de Bruijn tori.

2. Meshing Method

Given two sequences ~a = a0a1 . . . at−1 and ~b = b0b1 . . . bt−1 of equal length we define the t × t matrix

Mesh (~a,~b) = [cij ] by letting cij = bj when i + j is even, ai when i + j is odd. For example, if ~a =
0011021220313233, then Mesh (~a,~a) is as in Figure 2. Note that ~a ∈ dB4(16; 2), but that Mesh (~a,~a) /∈
dB4(16, 16; 2, 2). This is because ~a is not what we call an even de Bruijn sequence. For k even, we call
~a ∈ dBk(kn; k) even if for all α, β ∈ {0, 1, . . . , k−1} we have that (i−j) mod kn is even whenever the sequence
αβ = aiai+1 and the sequence βα = ajaj+1. Now choose an even ~a = 0011021331203223 ∈ dB4(16; 2) and
notice that Mesh (~a,~a) ∈ dB4(16, 16; 2, 2), as in Figure 3. The sequence ~a in Figure 2 fails because for

2



αβ = 13 we have odd i − j = 1.

~a = 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3

0 0 0 1 0 0 0 1 0 2 0 3 0 3 0 3 0
0 0 0 0 1 0 2 0 2 0 0 0 1 0 2 0 3
1 0 1 1 1 0 1 1 1 2 1 3 1 3 1 3 1
1 1 0 1 1 1 2 1 2 1 0 1 1 1 2 1 3
0 0 0 1 0 0 0 1 0 2 0 3 0 3 0 3 0
2 2 0 2 1 2 2 2 2 2 0 2 1 2 2 2 3
1 0 1 1 1 0 1 1 1 2 1 3 1 3 1 3 1
2 2 0 2 1 2 2 2 2 2 0 2 1 2 2 2 3
2 0 2 1 2 0 2 1 2 2 2 3 2 3 2 3 2
0 0 0 0 1 0 2 0 2 0 0 0 1 0 2 0 3
3 0 3 1 3 0 3 1 3 2 3 3 3 3 3 3 3
1 1 0 1 1 1 2 1 2 1 0 1 1 1 2 1 3
3 0 3 1 3 0 3 1 3 2 3 3 3 3 3 3 3
2 2 0 2 1 2 2 2 2 2 0 2 1 2 2 2 3
3 0 3 1 3 0 3 1 3 2 3 3 3 3 3 3 3
3 3 0 3 1 3 2 3 2 3 0 3 1 3 2 3 3

Figure 2. ~a not even, Mesh (~a,~a) /∈ dB4(16, 16; 2, 2)

~a = 0 0 1 1 0 2 1 3 3 1 2 0 3 2 2 3

0 0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0
0 0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3
1 0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1
1 1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3
0 0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0
2 2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3
1 0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1
3 3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3
3 0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3
1 1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3
2 0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2
0 0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3
3 0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3
2 2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3
2 0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2
3 3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3

Figure 3. ~a even, Mesh (~a,~a) ∈ dB4(16, 16; 2, 2)

Proof of Theorem 1.7. The case when k is odd involves the same method as found in Cock’s construction
in Theorem 1.1, so we will not concern ourselves with this case. It is when k is even that the mesh is used,
and this case is handled with the following two claims.
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Claim 2.1. For each even k there is an even ~a ∈ dBk(k2; 2).

Proof. We use induction, increasing k by 2 at each step. The sequence ~a = 0011 works for k = 2 (in fact

Mesh (~a,~a) is figure 1 in this case). Now let ~a satisfy the case for k, and for the sequence ~b = b0b1 · · · bt

denote its reverse sequence by ~b−1 = bt · · · b2b1. We now adjoin the two new letters α and β.
Now let ~b = 0α1β2α3β · · ·β(k − 2)α(k − 1)β and assume that ~a begins with a 0. Then the sequence

~a~b~b−1βααβ satisfies the case for k + 2.
Claim 2.2. If ~a ∈ dBk(k2; 2) is even then Mesh (~a,~a) ∈ dBk(k2, k2; 2, 2).

Proof. Suppose not. Let

Ai,j =

(

ci,j ci,j+1

ci+1,j ci+1,j+1

)

(subscripts mod k2) and suppose that Ai,j = Ax,y with (i, j) 6= (x, y). If i + j is even then (ci,j , ci+1,j+1) =
(aj , aj+1), and if also x+y is even then (aj , aj+1) = (ay, ay+1) and so y = j. But then (ai, ai+1) = (ax, ax+1)
and so i = x, a contradiction. Hence, x+y must be odd. By a similar argument, i+j odd implies x+y even,
and so we will assume that i + j is even and x + y is odd. This implies that (ax, ax+1) = (cx,y, cx+1,y+1) =
(ci,j , ci+1,j+1) = (aj , aj+1), and so x = j. Then also, (ay, ay+1) = (cx+1,y, cx,y+1) = (ci+1,j , ci,j+1) =

(ai+1, ai), and so y = i + 1. But this contradicts the fact that ~a is even since y − i = 1.

With these two claims, the proof of Theorem 1.7 is complete.

3. Equivalence-class de Bruijn cycles

If ~Jx is the all 1’s sequence of length x, we say that the length x k-ary sequences ~a and ~b are equivalent

if ~b − ~a is a multiple of ~Jx. We then say that the cyclic sequence ~a is a k-ary equivalence-class de Bruijn

cycle of order n and length x if its equivalence class [~α] = {~a,~a + ~Jx, . . . ,~a + (m − 1) ~Jx} (m|k, x = kn/m)
has the property that each k-ary m-tuple appears exactly once as a contiguous n-tuple in precisely one of
the ~a + i ~Jx, and we denote the set of all such cycles ECk(x, n). These cycles were used very successfully in
[9] to help prove Theorem 1.3, and they are easily constructed as follows.

0 0 1 5 2 4 3 3 4 2 5 1
1 1 2 0 3 5 4 4 5 1 0 2
2 2 3 1 4 0 5 5 0 2 1 3

Figure 4. An equivalence class of rows from EC6(12, 2) generated by 014325 ∈ dB6(6; 1).
Let ~c = c1 . . . ckm−1 ∈ dBk(km−1; m − 1) and define, for any a1 ∈ {0, 1, . . . , k − 1}, the sequence

~a = a1 . . . akm−1 by the relations aj+1 = aj + cj (1 ≤ j < km−1), addition being performed modulo

k. Of course, a1 = akm + ckm since
∑km−1

i=1 ci ≡ 0 mod k, unless k is even and m = 2. In this case,
∑km−1

i=1 ci ≡
(

k
2

)

mod k and so the sequence ~a generated by ~c has length 2k rather than k. Figure 4 shows

the three cycles generated by ~c = 014325 with k = 6. Notice that each row ~a of figure 4 satisfies ~a = ~a+3 ~J12,
with equality allowing for cyclic shifts (of 6 digits, in particular). This is why we have m|k and x = kn/m in
the definition. See [10] for further generalizations and uses of this idea. We will use the following proposition
in the next section.

Proposition 3.1. If k is even and ~a ∈ ECk(2k; 2) is generated by ~c = (1,−2, 3,−4, . . . , k−1, 0) ∈ dBk(k; 1),
where the digits are written modk, then ~a is even.

Proof. Follows from the fact that ~a = ~b~b−1 + m ~J2k for ~b = (0, 1,−1, 2,−2, . . . , k
2 ) and some constant m.

We will use various cyclic permutations of ~c = (0.1. − 2, 3,−4, . . . , k − 1) in generating two families of
equivalence-class cycles which will be meshed in Section 4, so we define, for a sequence ~u = u1u2 . . . ux, its
cyclic shift by i digits, ~u(i) = ui+1ui+2 · · ·uxu1 · · ·ui. For 0 ≤ i ≤ (k − 2)/2, k even, let ~αi begin with (2i)
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and be generated by ~c(2i), and for 0 ≤ j ≤ (k− 2)/2 let ~βj begin with 0 and be generated by ~c(−2j). Notice

that ~αi(2) = ~β−1
i . Now we are ready to prove our main result.

4. dB2st(4st2, 4s3t2; 2, 2)

Proof of Theorem 1.5. Let k = 2st and for each 0 ≤ i < st and 0 ≤ j < st define the matrix
Mi,j = Mesh (~αi, ~βj), where ~αi and ~βj are as above. We will use these s2t2 (4st)× (4st) matrices as building
blocks to construct the necessary de Bruijn torus.

Claim 4.1. When viewed as a torus, each Mi,j covers a set of distinct 2 × 2 k-ary matrices.

Proof. Since ~αi and ~βj are both even we can easily mimic the proof of Claim 2.2 to show no two 2 × 2

matrices in Mi,j are identical.

Claim 4.2. The matrices Mi,j cover mutually disjoint sets of 2 × 2 k-ary matrices.

Proof. Let M = Mi,j have entries mx,y, M ′ = Mi′,j′ have entries m′
x′,y′ , and suppose

D =

(

d11 d12

d21 d22

)

is found in both M and M ′. Then there are x, y, x′, and y′ so that

M(x, y) =

(

mx,y mx,y+1

mx+1,y mx+1,y+1

)

= D =

(

m′
x′,y′ m′

x′,y′+1

m′
x′+1,y′ m′

x′+1,y′+1

)

= M ′(x′, y′).

If x + y and x′ + y′ are both even then (d11, d22) = (by, by+1) and (d11, d22) = (b′y′ , b′y′+1), where ~βj =

b0b1 · · · b4st and ~βj′ = b′0b
′
1 · · · b

′
4st. But because the sequences ~βj cover mutually disjoint sets of pairs, this

implies that j′ = j and y′ = y. Likewise, we surmise i′ = i and x′ = x from (ax, ax+1) = (d12, d21) =
(a′

x′ , a′
x′+1), where ~αi = a0a1 · · · a4st and ~αi′ = a′

0a
′
1 · · · a

′
4st. A similar argument works when x + y and

x′ + y′ are both odd.
Now suppose, without loss of generality, that x+y is even and x′ +y′ is odd. Then we have the equality

(

by ax

ax+1 by+1

)

=

(

a′
x′ b′y′+1

b′y′ a′
x′+1

)

.

Thus (by, by+1) = (a′
x′ , a′

x′+1), and since ~βj covers the same pairs as ~αj only, we must have i′ = j. Likewise
(b′y′ , b′y′+1) = (ax+1, ax) implies j′ = i, and so M = Mi,j and M ′ = Mj,i. Thus we may write

M ′(x′, y′) = Mesh (~αi′ , ~βj′)(x
′, y′) =

(

a′
x′ b′y′+1

b′y′ a′
x′+1

)

as

Mesh (~αj , ~βi)(x
′, y′) =

(

ax′ by′+1

by′ ax′+1

)

.

The next thing to notice about ~αj and ~βj is that if (ax′ , ax′+1) = (by, by+1) then x′ and y have the same

parity. This follows from the relation ~αj(2) = ~β−1
j and the fact that both ~αj and ~βj are even. Similarly, in

~αi and ~βi, (ax+1, ax) = (by′ , by′+1) implies that x and y′ have the same parity. But then x + y and x′ + y′

have the same parity, contadicting the fact that the former is even and the latter is odd. Hence the claim is
proven.
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Claim 4.3. If Mi,j covers a set S of 2 × 2 matrices and if Mi′,j′ covers a set S′ of 2 × 2 matrices, and

if their first columns are identical, then their horizontal juxtaposition Mi,jMi′,j′ covers S ∪ S′. Likewise, if

their last rows are identical, then their vertical juxtaposition (MT
i,jM

T
i′,j′)

T covers S ∪ S′.

Proof. Only those matrices on the boundary of the fundamental region can be affected, but since we are
covering only 2 × 2 matrices, these are unaffected if the first columns (last rows) match.

We are now in the position of knowing that if S is the set of all k-ary 2 × 2 matrices and Sij are those
covered by Mi,j , then S is the disjoint union of the Si,j (since (s2t2)(4st)2 = k4), and if the columns and/or
rows of the Mi,j match up properly, we can juxtapose them carefully to form the necessary torus.

Claim 4.4. The first column of every Mi,j is identical.

Proof. It is a matter of verification that each ~αi = 0 (k−1) · · · 3 2 1, where only the blank spaces vary.

Since the first digit of ~βj is always 0, this yields a first column of (000(k − 1) · · · 030201)T .
Thus we never need to worry about horizontal juxtaposition. Our only care is vertically, as follows.

Claim 4.5. For fixed j, the last row of each Mi,j is identical.

Proof. The last digit of each ~αi is a 1.

The proof of Theorem 1.5 is complete with only a little notation. For 0 ≤ r < s we let Γr,j be the
vertical juxtaposition [(MT

tr,j)(M
T
tr+1,j) · · · (M

T
tr+t−1,j)]

T , Qj the horizontal juxtaposition Γ0,jΓ1,j · · ·Γs−1,j ,

and finally Q = Q0Q1 · · ·Qst−1 ∈ dB2st(4st2, 4s3t2; 2, 2).
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