
Notes on two person zero sum games
Consider a game where each player chooses one of three options with the outcome

represented by the following matrix:




(+1,−1) (−1, +1) (−2, +2)
(−1, +1) (+1,−1) (+1,−1)
(+2,−2) (−1, +1) (−1, +1)


. We interpret

this as follows: the choice of player A is indicated by the rows and the choice of player
B is indicated by columns. The corresponding entry has the first coordinate equal to
player A’s ‘winnings’ and the second that of player B. For example, if A chooses row
2 and B chooses column 3 the entry is (+1,−1) so A ‘wins’ 1 and B ‘wins -1. (Think
of this as B pays A 1 dollar.) If A chooses row 1 and B chooses column 3 the entry is
(−2, +2) so A ‘wins’ -2 and B ‘wins’ +2. (Think of this as A pays B 2 dollars.) This is
a zero sum game because the winnings for each entry sum to 0. Informally whatever A
wins B losses and vice versa.

We consider a situation in which A and B repeatedly play this game. Is it fair in the sense
that each player’s can in the long term expect to break even? What kind of strategies
might be used? It turns out that the best each player can do is play randomly. However
there probabilities for each of the choices need not be equal. There is not better strategy.
Determining the probabilities and showing that the best expected values for the players
follows from work done by John Von Neumann in the 1920’s. These ideas are a precurser
to linear programming duality.

Since the game is zero sum we can use only the first entry in each pair which gives
the ‘payoff’ to player A. Player A wants to maximize this payoff and player B wants
to minimize it (since it is the payoff to A). Play A considers the sequence of plays and
breaks them up based on which column B plays. If for example A chooses row 1 with
probability .2, row 2 with probability .3 and row 3 with probability .5 then when B
chooses column 1, A wins ‘on average’ (the expected value of A’s winnings), +1 with
probability .2, -1 with probability .3 and +2 with probability .5 for expected winnings
of (+1).2 + (−1).3 + (+2).5 = .9. Similarly with these probabilities A expects -.4 when
B plays column 2 and -.6 when B plays column 3. So if B ‘figures out’ what A is doing B
will play column 3 and A will lose. On the other hand, if A plays row 1 with probability
0 (i.e., never plays this row), row 2 with probability .6 and row 3 with probability .4
then the expected winnings .2 for each column. No matter what B does, A wins on
average at least .2. So this particular game is not fair. It turns out that this is the best
that A can do and that B has a random strategy that guarantees that A does not do
better than .2.

Player A determines a random strategy that will maximize the minimum expected win-
nings over all choices that B can make. Then A will on average win this amount no
matter what strategy B uses. This is called a maximin strategy. Use variables x1, x2, x3

to represent the probabilities for A for rows 1,2,3. The expected values for columns
1,2,3 are respectively x1 − x2 + 2x3 and −x1 + x2 − x3 and −2x1 + x2 − x3. The co-
efficients are from the columns of the matrix (the first entries). We introduce a new
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variable x0 and make each of these at least x0. Then maximizing x0 will maximize the
minimum expected winnings. So we want to maximize x0 subject to the constraints
x1−x2 +2x3 ≥ x0 and −x1 +x2−x3 ≥ x0 and −2x1 +x2−x3 ≥ x0. In addition we need
x1, x2, x3 to represent probabilities. So we need them to be nonnegative and to sum to
1. Rearranging these we get the following linear program. The values of x1, x2, x3 are
probabilities for playing the rows for A and the value of x0 is the expected amount A is

guaranteed to win. We have

max x0 + 0x1 + 0x2 + 0x3

s.t. x1 + x2 − 2x3 = 1
x0 − x1 + x2 − 2x3 ≤ 0
x0 + x1 − x2 + x3 ≤ 0
x0 + 2x1 − x2 + x3 ≤ 0

x1 x2 x3 ≥ 0

In a similar manner player B sets up a linear program with variables y1, y2, y3 represented
probabilities for the column plays and y0 representing player A’s maximum expected
winnings. Player B minimizes this to get a minimax strategy.

We have

min y0 + 0y1 + 0y2 + 0y3

s.t. y1 + y2 + 2y3 = 1
y0 − y1 + y2 + 2y3 ≥ 0
y0 + y1 − y2 − y3 ≥ 0
y0 − 2y1 + y2 + y3 ≥ 0

y1 y2 y3 ≥ 0

Note that the coefficients in the program for A are the negatives of the columns of
the payoff matrix and the coefficients in the program for B are the negatives of the
rows of the payoff matrix. The optimal solutions are (x0, x1, x2, x3) = (.2, 0, .6, .4) and
(y0, y1, y2, y3) = (.2, .4, .6, 0). If A plays row 1 with probability 0, row 2 with probability
.6 and row 3 with probability .4 they are guaranteed an average payoff of at least .2. If
B plays row 1 with probability .4, row 2 with probability .6 and row 3 with probability
0 they guarantee that A has an average payoff of at most .2.

These are linear programming duals of each other. Both a feasible. For player A take
arbitrary any probabilities for x1, x2, x3 and take x0 to have a large negative value and
for player B take y1, y2, y3 to be any probabilities and take y0 large. So both a feasible
and by strong duality for linear programming we conclude that players A and B each
have optimal strategies which give the same expected value for A. That is, player A
has a random strategy that guarantees on average a payoff of at least some value v (no
matter what strategy B uses) and player B has a random strategy that guarantees on
average that the payoff to A is at most v (no matter what strategy A uses). So these
strategies are best possible for both players.
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For the general case we consider only the first entries (payoffs to A) in the matrix. The
payoffs to B are the negatives of these values. Note that the number of choices for A
and B do not need to be the same. Let m be the number of rows in the payoff matrix
and n the number of columns. Denote the entries by pij. That is, if A plays row i and
B plays column j then A ‘wins’ pij.

The general version of the examples above yields the following linear programs whose
solutions give the optimal strategies for A and B. The linear program for B is the dual
of that for A. For A we have

max x0

s.t.
∑m

i=1 xi = 1
x0 +

∑m
i=1−pijxi ≤ 0 for j = 1, 2, . . . , n

xi ≥ 0 for i = 1, 2, . . . , m

For B we have

min y0

s.t.
∑n

j=1 yi = 1

y0 +
∑n

j=1−pijxj ≥ 0 for i = 1, 2, . . . , m

yj ≥ 0 for j = 1, 2, . . . , n

3


