1: [8] Let \(\mathbf{v} \) and \(\mathbf{w} \) be elements of an inner product space. Prove that \(\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 \) if and only if \(\mathbf{v} \) and \(\mathbf{w} \) are orthogonal.

2: [7] Prove that the transpose of an orthogonal matrix is orthogonal.

3: [17] Let \(P = A(A^T A)^{-1} A^T \) be the projection matrix onto the column space of \(A \).
 (a) Prove that \(P^2 = P \).
 (b) Prove that \(\text{Range}(P) = \text{Range}(A) \).

4: [11] Prove that if \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \) are nonzero mutually orthogonal vectors in a vector space then they are linearly independent.

5: [22] Let \(K \) be a symmetric matrix and \(\mathbf{x}^* \) a solution to \(K \mathbf{x} = \mathbf{f} \).
 Show/explain each of the following:
 (a) The quadratic form \(p(\mathbf{x}) = \mathbf{x}^T K \mathbf{x} - 2 \mathbf{x}^T \mathbf{f} + c \) is equal to \((\mathbf{x} - \mathbf{x}^*)^T K (\mathbf{x} - \mathbf{x}^*) + [c - (\mathbf{x}^*)^T K \mathbf{x}^*] \).
 (b) If \(K \) is positive definite then \(\mathbf{x}^* \) exists and is the unique minimizer to \(p(\mathbf{x}) \).
 (c) If \(K \) is positive semidefinite and \(\mathbf{x}^* \) exists (i.e., \(\mathbf{f} \) is in the range of \(K \)) then \(\mathbf{x} \) such that \(K \mathbf{x} = \mathbf{f} \) minimize \(p(\mathbf{x}) \) and the minimizer is not unique.
 (d) If \(K \) is positive semidefinite and \(K \mathbf{x} = \mathbf{f} \) has no solution (i.e., \(\mathbf{f} \) is not in the range of \(K \)) then \(p(\mathbf{x}) \) has no global minimum.
 (e) If \(K \) is not positive semidefinite then \(p(\mathbf{x}) \) has no global minimum.

6: [11] Derive the normal equations for the least squares solution to the system \(A \mathbf{x} = \mathbf{b} \).
 A least squares solution minimizes \(\|A \mathbf{x} - \mathbf{b}\| \) and the orthogonal projection is the vector \(\mathbf{w} \in W \) such that \(\mathbf{z} = \mathbf{v} - \mathbf{w} \) is orthogonal to every vector in \(W \). You may assume the geometry that the closest point \(\mathbf{b} \) in a subspace \(W \) to \(\mathbf{v} \) is the orthogonal projection of \(\mathbf{b} \) onto \(W \).

7: [24] (a) Find the projection of \((15, -5, 0)^T \) onto \((3/5, 4/5, 0)^T \).
 (b) Find the projection of \((5, -10, 2)^T \) onto the plane spanned by \((3/5, 4/5, 0)^T \) and \((4/5, -3/5, 0)^T \).
 (c) Find a \(QR \) factorization of \[
 \begin{pmatrix}
 6 & 15 & 5 \\
 8 & -5 & -10 \\
 0 & 0 & 2
 \end{pmatrix}
 \].