Math 242 Exam 3 $\,$

This is closed book, closed notes etc. Points for each problem are indicated as $[\cdot]$.

Lehigh University 11-24-2008 You have 50 minutes to take this exam.

1: [8] Let \boldsymbol{v} and \boldsymbol{w} be elements of an inner product space. Prove that $\|\boldsymbol{v}+\boldsymbol{w}\|^2 = \|\boldsymbol{v}\|^2 + \|\boldsymbol{w}\|^2$

1: [8] Let v and w be elements of an inner product space. Prove that $||v+w||^2 = ||v||^2 + ||w||^2$ if and only if v and w are orthogonal.

2: [7] Prove that the transpose of an orthogonal matrix is orthogonal.

3: [17] Let $P = A(A^T A)^{-1} A^T$ be the projection matrix onto the column space of A. (a) Prove that $P^2 = P$.

(b) Prove that Range(P) = Range(A).

4: [11] Prove that if v_1, v_2, \ldots, v_k are nonzero mutually orthogonal vectors in a vector space then they are linearly independent.

5: [22] Let K be a symmetric matrix and x^* a solution to Kx = f. Show/explain each of the following:

(a) The quadratic form $p(\boldsymbol{x}) = \boldsymbol{x}^T K \boldsymbol{x} - 2\boldsymbol{x}^T \boldsymbol{f} + c$ is equal to $(\boldsymbol{x} - \boldsymbol{x}^*)^T K (\boldsymbol{x} - \boldsymbol{x}^*) + [c - (\boldsymbol{x}^*)^T K \boldsymbol{x}^*].$

(b) If K is positive definite then \boldsymbol{x}^* exists and is the unique minimizer to $p(\boldsymbol{x})$.

(c) If K is positive semidefinite and \boldsymbol{x}^* exists (i.e., \boldsymbol{f} is in the range of K) then \boldsymbol{x} such that $K\boldsymbol{x} = \boldsymbol{f}$ minimize $p(\boldsymbol{x})$ and the minimizer is not unique.

(d) If K is positive semidefinite and $K\mathbf{x} = \mathbf{f}$ has no solution (i.e., \mathbf{f} is not in the range of K) then $p(\mathbf{x})$ has no global minimum.

(e) If K is not positive semidefinite then $p(\mathbf{x})$ has no global minimum.

6: [11] Derive the normal equations for the least squares solution to the system $A\mathbf{x} = \mathbf{b}$. A least squares solution minimizes $||A\mathbf{x} - \mathbf{b}||$ and the orthogonal projection is the vector $\mathbf{w} \in W$ such that $\mathbf{z} = \mathbf{v} - \mathbf{w}$ is orthogonal to every vector in W. You may assume the geometry that the closest point \mathbf{b} in a subspace W to \mathbf{v} is the orthogonal projection of \mathbf{b} onto W.

7: [24] (a) Find the projection of $(15, -5, 0)^T$ onto $(3/5, 4/5, 0)^T$.

(b) Find the projection of $(5, -10, 2)^T$ onto the plane spanned by $(3/5, 4/5, 0)^T$ and $(4/5, -3/5, 0)^T$.

(c) Find a QR factorization of $\begin{pmatrix} 6 & 15 & 5 \\ 8 & -5 & -10 \\ 0 & 0 & 2 \end{pmatrix}$.