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We describe a method which is theoretically faster for computing the product of two square ma-
trices than a direct computation using the definition of matrix multiplication. We will also show,
somewhat surprisingly, that one can also compute the inverse of a matrix with a number of compu-
tations that is not markedly different from the time for matrix multiplication (what this means will
be made clear). These methods are of interest theoretically but the overhead involved usually does
not make them useful in applications. Although some methods like these have been used efficiently
for extremely large matrices.

If A is m×n and B is n× p then the product has size m× p (i.e., it has mp entries) and each entry
is given by the formula for matrix multiplication

(AB)ij =
n∑

k=1

aikbkj.

Determining this sum requires n multiplications and n − 1 additions. Thus overall we get the
product AB with mnp multiplications and m(n− 1)p additions. Note also that adding two n×m
matrices requires nm additions, one for each of the nm position.

In particular, multiplying two n×n matrices requires at least n3 operations using the ‘usual’ method
from the definition.

It seems like it should not be possible to do better than this, but V. Strassen in 1967 described a
recursive procedure which does. (There are now even faster algorithms, which we not discuss here.)

The key is to note that multiplying two 2 × 2 matrices ordinarily requires 8 multiplications. By
finding a way to do this with only 7 multiplications and applying this recursively to blocks we can
get a faster (at least in theory) algorithm. For 2× 2 matrices this procedure requires 18 additions
as compared to 4 for usual approach but because of the way the cost of addition appears in the
recursion this additional cost does not create a problem. If

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)

define
p1 = (a11 + a22)(b11 + b22) p5 = (a11 + a12)b22

p2 = (a21 + a22)b11 p6 = (a21 − a11)(b11 + b12)
p3 = a11(b12 − b22) p7 = (a12 − a22)(b21 + b22)
p4 = a22(b21 − b11)

Then

AB =

(
p1 + p4 − p5 + p7 p3 + p5

p2 + p4 p1 + p3 − p2 + p6

)

We have now found AB with 7 multiplications and 18 additions instead of the usual 8 multiplications
and 4 additions.

Let us begin by assuming that we wish to multiply two n× n matrices with n = 2k, a power of 2.
Partition the matrices into 4 blocks of size 2k−1 × 2k−1. So in the formula above the aij and bij are



now 2k−1× 2k−1 matrices. The matrix multiplications in the formula can be carried out recursively,
applying the same procedure to the smaller matrices.

Let T (2k) denote the number of operations (both multiplication and addition) required to multiply
using this procedure. Then the procedure uses 7 block multiplications and 7 block additions of
2k−1 × 2k−1 matrices. Each of the 7 multiplications requires T (2k−1) operations. Each of the 18
additions requires 2k−12k−1 = 4k−1 operations (all of which happen to be additions). This gives the
following recursive formula

T (2k) = 7T (2k−1) + 18(4k−1)

with the initial condition that T (21) = 12 obtained by using the usual procedure for multiplying
two 2 × 2 matrices. (Note, for the procedure we use the ‘new’ multiplication for blocks but when
we reduce down to the 2× 2 case we revert to usual matrix multiplication.)

By repeated substitution one can determine that
T (2k) = (36/7)7k − 6(4k) = 36(7k−1)− 6(4k). Once we discover this, it is straightforward to prove
it is correct using induction. The basis is 12 = T (21) = 36(70) − 6(41) = 36 − 24. Now, for k ≥ 2
assume that T (2k−1) = 36(7k−2)− 6(4k−1) (the formula holds for k − 1) and use this to show that
T (2k) = 36(7k−1)− 6(4k) (the formula holds for k). Using the recursion formula we have

T (2k) = 7T (2k−1) + 18(4k−1)

= 7[36(7k−2)− 6(4k−1)] + 18(4k−1)

= 36(7k−1)− (−42 + 18)(4k−1)

= 36(7k−1)− 6(4k)

and by induction the formula is proved.

In order to translate this into terms of n, we use a basic fact from logarithms, alogc b = blogc a. With
n = 2k, that is, k = log2 n we get

T (n) =
36

7
7k − 6(4k) ≤ 36

7
7log2 n =

36

7
nlog2 7.

With log2 7 approximately 2.807, the running time is bounded by a multiple of n2.81 which for
large enough n is less than the n3 needed for ordinary matrix multiplication. In practice the extra
implementation costs do not make this a practical algorithm except for some very large instances.

We have not said what to do if the matrix sizes are not a power of 2. Simply add enough rows and
columns of zeroes at the end of the matrices. This at most doubles the size and thus the running
time is at most (36/7)(2n)log2 7 which is still bounded by a multiple of n2.81.

Inversion and matrix multiplication

In order to talk more easily about running times of algorithms we need to introduce the big oh
notation.

Given two real non-negative functions f(n) and g(n) we say that f(n) is O(g(n)) (read as f is oh of
g) if there exist non-negative constants C, M such that for n ≥ M we have f(n) ≤ Cg(n). Roughly
speaking, for large enough n f is bounded by a multiple of g.



For algorithms if f(n) and g(n), as function of the input size n are such that f(n) is O(g(n)) then
in some sense then running time for f is not much worse than that for g. It is longer by at most a
constant multiple independent of the input size.

As noted before, we can compute the inverse (if it exists) of matrix A by solving Ax = ei for
i = 1, 2, . . . n. This can be done in O(n3) steps using Gaussian elimination. Our aim here is to show
that we can compute inverses ‘as quickly’ as we can multiply two matrices (in the sense of big oh)
and (less surprisingly) conversely.

If we can invert an n×n matrix in time I(n) then we can multiply two n×n matrices in time O(I(n)).
If we can multiply two n×n matrices in time M(n) then we can invert an n×n matrix in time O(M(n)).

Assume that we can invert an n×n matrix in I(n) steps. We will show that we can multiply two n×n
matrices in O(I(n)) steps. Informally what we are showing is that if we have a subroutine to invert
matrices we can use it to multiply two matrices (so without doing ordinary matrix multiplication).
Imagine being stuck in a reality TV show for which you must multiply two matrices but the only
‘tool’ you have is something to invert a matrix.

Let A and B be two n × n matrices for which we wish to find the product AB. Let D be the
following block matrix (with 0 indicating n× n matrices of 0’s):

D =




In A 0
0 In B
0 0 In


 .

A straightforward block multiplication shows that

D−1 =




In −A AB
0 In −B
0 0 In


 .

Thus, finding D−1 allows us to determine AB without explicitly carrying out a matrix multiplication
(i.e., using inversion instead).

Now, assume that we can multiply two n×n matrices with an algorithm having running time M(n).
We will show that we can find the inverse of an n × n matrix with an algorithm having running
time O(M(n)). For what follows to work we must assume that for for some constant C, we have
Cn3 ≥ M(n) ≥ n2. Since it takes n2 steps just to write down the answer the lower bound is a
reasonable assumption. As we will later see a direct O(n3) algorithm for matrix inversion (using
Gaussian elimination) the upper bound covers values of interest.

We will assume that n is a power of 2. If it was not, let 2k be the smallest power of 2 greater than
n and let h = 2k − n. Note that h ≤ n. It is easy to check that

(
A 0
0 Ih

)−1

=

(
A−1 0
0 Ih

)
.

If the running time is O(M(n)) for n a power of 2, it is at most C1M(n) for n ≥ M (for some
C1,M). Then for other n ≥ M we have running time at most C1M(n+h) ≤ C1M(2n) ≤ 8C1M(n)
and thus we still have O(M(n)) (we have just changed the constant in the big Oh definition). Here



we have assumed that the running time is non-decreasing in n and used M(2n) ≤ 23M(n) from the
assumption that M(n) ≤ n3.

We also make several other assumptions that are less obvious. A square matrix B is symmetric if
it is equal to its transpose, BT = B. A symmetric matrix B is positive definite if xT Bx > 0 for
all nonzero vectors x. Observe that the product in the previous sentence is a number. It can be
shown that this is equivalent to B having a Cholesky factorization B = MMT where M is lower
triangular with positive entries on the diagonal.

We assume that the matrix A that we wish to invert is symmetric and positive definite. To see that
we can make this assumption we use the fact that AT A is symmetric and positive definite. The
first statement is an easy exercise and the second follows since xT (AT A)x = (Ax) · (Ax) This is the
square of the length of the vector (Ax) and if A is invertible then (Ax) = 0 only if x = 0 as there
is a unique solution when the inverse exists. So this is positive for all non-zero x and thus AT A is
positive definite. Finally observe that if A−1 exists we have A−1 = (AT A)−1AT (check this by right
multiplying by A). So using two more multiplications we can determine A−1 by first determining
(AT A)−1 which is symmetric and positive definite if A is invertible.

Now partition A as follows, with B, C, D all of size n/2× n/2:

A =

(
B CT

C D

)

(Here we have used the fact that A is symmetric.) Let S = D − CB−1CT (called the Schur
complement). Then by a straightforward (but lengthy) block multiplication we can check that

A−1 =

(
B−1 + B−1CT S−1CB−1 −B−1CT S−1

−S−1CB−1 S−1

)
.

One can also check that the assumption that A is symmetric and positive definite imply that B
and S are also symmetric and positive definite (and thus also, as we will see later, that B−1 and
S−1 exist). So we recursively find B−1 and S−1 (using matrix multiplication). Then, again using
matrix multiplication compute CB−1, then CB−1CT then S−1CB−1 then (CB−1)T (S−1CB−1) =
B−1CT S−1CB−1 (since we have B−1CT = (CB−1)T from the fact that B−1 is symmetric, which
follows from B symmetric). Also, since B−1 and S−1 are symmetric (S−1CB−1)T = B−1CTS−1.
Thus we can determine A−1 using 2 inversions of n/2 × n/2 matrices and 4 multiplications of
n/2× n/2 matrices and O(n2) operations for transposes and an addition. Hence the running time
satisfies

I(n) ≤ 2I(n/2) + 4M(n/2) + O(n2).

If we inductively assume that I(n/2) is O(M(n/2)) then we get (with some computations which we
will not show) that I(n) is O(M(n)).


