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Abstract: We give a simple proof that the obvious necessary conditions for a
graph to contain the kth power of a Hamiltonian path are sufficient for the class of
interval graphs. The proof is based on showing that a greedy algorithm tests for
the existence of Hamiltonian path powers in interval graphs. We will also discuss
covers by powers of paths and analogues of the Hamiltonian completion number.
c© 1998 John Wiley & Sons, Inc. J Graph Theory 27: 31–38, 1998

Keywords: toughness, Hamiltonian, linear arrangement

1. INTRODUCTION

The kth power of a graph G = (V,E) is the graph Gk with the same vertex set
and {x, y} ∈ E(Gk) if and only if the distance between x and y in G is at most
k. We will say that G = (V,E) contains the kth power of a Hamiltonian path if
|V | = n and if G has a subgraph isomorphic to P kn where Pn is the path on n
vertices. Similarly, G contains the kth power of a Hamiltonian cycle if it has a
subgraph isomorphic to Ckn where Cn is the cycle on n vertices. We will say that
G contains an HCk and HP k in these cases.
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Determining the largest k such that a graph G contains an HP k can be viewed
as a labeling problem which is ‘‘dual’’ to the bandwidth problem. For bandwidth
we seek a labeling of the vertices which minimizes the maximum distance between
adjacent vertices. To find the largest k such that G contains an HP k we seek a la-
beling of the vertices which maximizes the minimum distance between nonadjacent
vertices. This is equivalent to finding the separation number in the complement
of G.

Let c(S) denote the number of components in the subgraph of G induced by
V − S.

Definition 1. G is t-tough if

for all S ⊂ V either c(S) = 1 or |S| ≥ tc(S). (1)

Definition 2. G is t-path tough if

for all S ⊂ V |S| ≥ t(c(S)− 1). (2)

Toughness was introduced by Chvatal [5]. It is well known that 1-toughness is
a necessary condition for G to contain a Hamiltonian cycle and 1-path toughness
is a necessary condition for G to contain a Hamiltonian path. It is easy to see that
similar conditions hold for powers of Hamiltonian paths and cycles. For future
reference we will write this as a lemma.

Lemma 1. (i) If G contains the kth power of a Hamiltonian cycle then G is
k-tough.

(ii) If G contains the kth power of a Hamiltonian path then G is k-path tough.

In general these conditions are not sufficient. Indeed, there exist triangle-free
graphs with arbitrarily large toughness (and hence also large path toughness) [2].
So, in contrast to Chvatal's conjecture for Hamiltonian cycles, for k ≥ 2, there is
no t such that t-tough implies the existence of the kth power of a Hamiltonian cycle
(and similarly for paths).

A (finite) interval graph is a graph that can be represented as the intersection
graph of a set of real intervals. That is, there exist intervals Ix = [lx, rx] such that
{x, y} ∈ E(G) if and only if Ix ∩ Iy /= ∅. (See for example Golumbic [10] for
more about these graphs.) We will prove that for the class of interval graphs the
path conditions are sufficient.

Theorem 1. Let G be an interval graph. If G is k-path tough then G contains
the kth power of a Hamiltonian path.

In fact, what we will show is that a greedy algorithm based on constructing a
power of a path using vertices whose intervals have smallest endpoints ‘‘first’’ will
correctly test for the power of a Hamiltonian path or produce a set S violating the
necessary toughness conditions.

Hamiltonian paths and cycles (k = 1) in interval graphs have been examined
in [3], [11], [12], [13], [1], [6], and [4] among others. Only in [13] and [4] is
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the toughness condition discussed and used in proofs. Our algorithm will be a
generalized version of those presented in [1] and [12] (see also [13]) but we have
shorter proofs.

For Hamiltonian cycles in interval graphs, there is also a greedy algorithm based
on endpoints of an interval representation [4], [12]. We can show that extending
this algorithm in the ‘‘most obvious’’ manner to test for powers of Hamiltonian
cycles fails to produce an algorithm that correctly tests for powers of Hamiltonian
cycles. It is possible that algorithms based on clique representations [11], [6] will
extend to the powers cases. There are also algorithms for Hamiltonian paths and
cycles in the broader class of co-comparability graphs (see [7–9]).

We will assume that interval graphG has a representation with intervals denoted
by Ix = [lx, rx] and that the vertices are labeled such that r0 < r1 < · · · < rn−1.
So we will say x < y when rx < ry. We can assume that the endpoints of the
intervals are distinct (see for example Golumbic [10]) and that 0 < ε < 1 is a
number less than the smallest gap between any pair of endpoints. We will denote
the neighborhood of a vertex x byN(x). There are efficient algorithms to construct
interval representations of interval graphs.

2. THE ALGORITHM

Our aim is to show that the following simple greedy algorithm works to test for
powers of Hamiltonian paths in interval graphs. We assume that we are given
an interval graph G with a fixed interval representation. The vertices are labeled
0, 1, 2, 3, . . . , n− 1 so that r0 < r1 < · · · < rn−1.

GREEDY ALGORITHM FOR HPK:

— Start with x0 = 0
— If the path power P k = 0, x1, x2, . . . , xi is currently constructed and every

vertex is in P k, then P k is Hamiltonian.
— If some vertex is not in P k, let xi+1 be the vertex not already in P k with

smallest label (right endpoint in the interval representation) that is adjacent
to the last k vertices {xi−k+1, xi−k+2, . . . , xi} (or {x1, . . . , xi} if i − k +
1 < 1). If there is no such vertex then there is no HP k.

From properties of the interval representation, when selecting xi+1 we only
need to check adjacency with the minimum entry in {xi−k+1, xi−k+2, . . . , xi} (or
{x1, . . . , xi}), which would allow for a more efficient implementation.

The idea of the proof is to delete 0 from G, appropriately modify the intervals
for the remaining vertices to get a new graph G′ for which the greedy algorithm
produces the same order on G′ as it does for these vertices in G, then show that
an HP kn−1 in G′ extends to HP kn in G or if G′ is not k-path tough then G is not
k-path tough.
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Theorem 2. Either the greedy algorithm detects a kth power of a Hamiltonian
path or G is not k-path tough.

Proof. If |V | ≤ k+1 then it is easy to check that eitherG is the complete graph
and the algorithm succeeds (andHP kn is complete in this case) or the algorithm fails
and that S = V − {x, y} for {x, y} /∈ E violates (2). So assume |V | > k+ 1. We
can also assume that G is connected or else S = ∅ violates (2).

If |N(0)| < k then vertex 0 is isolated inG(V −N(0)). So this graph has at least
two components and |N(0)| < k ≤ k(2− 1) ≤ k(c(N(0)− 1)). This violates (2).
Similarly if |N(x1)| < k then {0, x1} is a component ofG(V −N(x1)) and again
(2) is violated. So assume that at least k+ 2 vertices are selected by the algorithm.

Let 0, x1, x2, . . . , xk, xk+1 be the first k + 2 vertices selected by the algorithm.
Then x1 < x2 < · · · < xk and all these are adjacent to 0. Also, x1 is adja-
cent to xk+1. Let xj , xj+1, . . . , xk be those vertices (if any) among {x1, . . . , xk}
which have larger right endpoint than xk+1. Let R denote the right endpoint of
interval xk+1. Construct G′ by deleting 0 and setting r′xj = R − ε, r′xj+ 1

=
R− ε2, . . . , r′xk = R− εj−k+1. That is, we shift the right endpoints of xj , . . . , xk
to be just smaller than the right endpoint of xk+1 while maintaining their same
relative order. Note that G′ /= G − {0} since some of the adjacencies may have
changed. However, all adjacencies to xk+1 have not been changed.

Let y /= 0 have the second smallest label inG. If y is adjacent to 0 then y = x1. If
y is not adjacent to 0, then Iy ⊂ Ix1 and so y is adjacent to x1. In this case y = xk+1
and by construction x1 has smallest label in G′. So in either case x1 has smallest
label inG′. Again by the construction and the choice of xk+1;x2, x3, . . . , xk+1 are
selected (in order) after x1 by the algorithm applied to G′.

When selecting xk+i for i = 2, 3, . . . , k, xk+i must be adjacent to xk+i−k, . . . ,
xk+i−1. It is straightforward to check that xk+i has all these adjacencies in G′ if
and only if it has them inG. Hence, except for the initial vertex 0 inG the algorithm
selects vertices in the same order for both G′ and G.

If x1, x2, . . . , xn−1 is an HP kn−1 detected in G′ by the algorithm then 0, x1, . . . ,

xn−1 is an HP kn in G since 0 is adjacent to x1, . . . , xk.
Otherwise, by induction there is an S′ violating (2) in G′. That is, such that

|S′| < k(cG′(S′)− 1).
If {xj , . . . , xk} ⊆ S′ then all modified intervals are deleted. Then since

NG(0) ⊆ NG(y) for {0, y} ∈ E, cG′(S′) ≤ cG(S′) and S′ violates (2) in G.
Note that this includes the case that no intervals are modified (i.e., xk+1 > xk).
So we may assume that xk+1 < xk and that some vertex in {xj , . . . , xk} is in
V (G′)− S′.

If there exists a vertex y ∈ V (G′)−S′−{x1, x2, . . . , xk} adjacent to 0 thenxy >
xk and NG′(y) ∪ {0} = NG(y) ⊇ NG(xi) ⊇ NG′(xi) ∪ {0} for i = 1, 2, . . . , k.
Also, NG(y) ⊇ NG(0). Hence cG′(S′) ≤ cG(S′) and S′ violates (2) in G.

Assume y ∈ V (G′) − S′ − {x1, x2, . . . , xk} implies {y, 0} /∈ E(G) and that
{x1, . . . , xk} ∩ (V ′ − S′) form a component C of G′(V (G′) − S′). Some vertex
x ∈ {xj , xj+1, . . . , xk} is in V (G′)−S′. Then Ixk+ 1 ⊂ Ix and so there is no vertex
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in V (G′) − S′ − {x1, x2, . . . , xk} adjacent to xk+1 since such a vertex would be
in C. Let S = (S′ − xk+1) ∪ {x1, . . . , xk}. Then, in G(V − S), 0 and xk+1 are
isolated, C no longer appears and the remaining components are the same as in
G′(V ′−S′). So cG′(S′) + 1 = cG(S) and |S| < |S′|+ k < k(cG′(S′)− 1) + k =
kcG′(S′) = k(cG(S)− 1) violating (2).

Finally, assume y ∈ V (G′) − S′ − {x1, x2, . . . , xk} implies {y, 0} /∈ E(G)
and that {x1, . . . , xk} ∩ (V ′ − S′) is properly contained in a component C of
G′(V ′ − S′). Let S = S′ ∪ {x1, . . . , xk}. Then 0 is isolated in G(V − S), C
breaks into at least one component in G(V − S) and the remaining components
are the same in G(V − S). So cG′(S′) ≤ cG(S) − 1 and |S| ≤ |S′| + k <
k(cG′(S′)− 1) + k = kcG′(S′) ≤ k(cG(S)− 1) violating (2).

Note that running the algorithm recursively, as described in the proof, will allow
construction of S violating (2).

3. HAMILTONIAN COMPLETION PROBLEMS

We will conclude by briefly discussing some related problems related to the kth

power version of Hamiltonian completion.
For general graphs G, the path partition number is the minimum number of

paths needed to cover the vertices and the Hamiltonian (path) completion number
is the minimum number of edges needed to add to make G have a Hamiltonian
path. Denoting these by pp(G) and hc(G) it is easy to see (and well known) that
pp(G) − 1 = hc(G). The same is not true for the kth power analogues. That is,
ppk(G) is not necessary equal to hck(G). We will examine a third version of these
parameters which has a natural extension in the kth power case.

Let the join of two graphsG∨H on disjoint vertex sets have V = V (G)∪ V (H)
and E = E(G) ∪ E(H) ∪ {xy|x ∈ V (G), y ∈ V (H)}. Define the Hamiltonian
vertex completion number vc(G) to be the minimum t such that G∨Kt contains a
Hamiltonian path (whereKt is the complete graph on t vertices). For Hamiltonian
paths it is easy to see that vertex completion and (edge) completion are the same,
i.e., vc(G) = hc(G). As above the same is not true for the kth power analogues,
vck(G) and hck(G).

If there is an efficient algorithm for detecting an HP k, then there is one for
determining vck(G) for a class closed under adding vertices adjacent to all vertices
(such as co-comparability graphs). Simply add vertices one at a time. For interval
graphs this can be done more efficiently. Given G, run the algorithm on G ∨Kt

where t ≥ k|V (G)|. Observe that G ∨ Kt contains an HP k. Use an interval
representation for G along with intervals for Kt all of which contain every V (G)
interval (and hence have larger right endpoints than any vertex of G). Then simply
count the number of Kt vertices added to the Hamiltonian path power before the
last vertex of V (G). This is vck(G). (Of course the extra vertices do not need to
be ‘added' until they are needed.)
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The following elementary result also indicates that vck(G) is a natural version
of completion/path packing to examine. It would also be used in a more formal
proof that the interval graph algorithm of the previous paragraph works.

Theorem 3. Let C be a class of graphs satisfying the following

(i) If G ∈ C then G ∨Kt ∈ C. (C is closed under adding a new vertex adjacent
to all current vertices.)

(ii) For G ∈ C, G contains an HP k if and only if G is k-path tough.

Then for G ∈ C,
vck(G) = max

S⊆V
{k(c(S)− 1)− |S|}.

Proof. We first show that for general graphs vck(G) ≥ maxS⊆V {k(c(S) −
1) − |S|}. G′ = G ∨ Kvck has an HP k by the definition of vck(G) and thus
G′ is k-path tough. Consider S ⊆ V (G). Let S′ = S ∪ V (Kvck). Note that
cG(S) = cG′(S′). By the k-path toughness of G′, |S| + vck = |S′| ≥ k(cG′(S′)
− 1) = k(cG(S) − 1).

Conversely, let t = maxS⊆V (G){k(c(S) − 1) − |S|}. If G′ = G ∨ Kt does
not contain an HP k then by (i) and (ii), G′ is not k-path tough. So there exists
S′ ⊆ V (G′) violating (2). As above, S′ = S∪V (Kt) and cG′(S′) = cG(S). Then
|S|+ t = |S′| < k(cG′(S′)− 1) = k(cG(S)− 1) contradicting the choice of t.

Observe that a similar proof easily shows that for a class of graphs satisfying
condition (i) of Theorem 3 if k-toughness is sufficient for G to contain the kth

power of a Hamiltonian cycle then k-path toughness is sufficient for G to contain
the kth power of a Hamiltonian path.

There are a number of bounds on the parameters ppk, hck and vck. We will
briefly mention some of these and indicate intuition behind them. More formal
proofs are easily obtained.

As in Theorem 3 we have

vck(G) ≥ max
S⊆V
{k(c(S)− 1)− |S|}.

This bound is not tight. The triangle free graphs with arbitrarily large toughness
constructed in [2] have the max equal to 0 and vck ≥ |V |/2− 1 and ppk ≥ |V |/2
since at most two vertices can be in each part of a path partition.

If G(V − S) has c(S) components, then ‘‘connecting’’ two in a path power
requires at least k vertices from S. So

ppk(G) ≥ max
S⊆V

{
c(S)−

⌊ |S|
k

⌋}
.

This bound is not tight even for interval graphs. Consider for example the path
power P k−1

kn+1, which has ppk = n + 1 and the maximum in the equation equal to
(n+ 1)− bn(k − 1)/kc. So the gap can be arbitrarily large.
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‘‘Connecting’’ two parts of a minimum size path power partition into a single
path power requires at least one extra vertex and at most k extra vertices. Then

k(ppk(G)− 1) ≥ vck(G) ≥ ppk(G)− 1.

‘‘Connecting’’ two parts of a minimum size path power partition into a single
path power requires at least one new edge and at most k(k+1)/2 new edges. Then

k(k + 1)
2

(ppk(G)− 1) ≥ hck(G) ≥ ppk(G)− 1.

Each of the possible values for vck and hck in the previous two inequalities
can be obtained. Start with a graph consisting of the disjoint union of ppk kth

powers of paths each with length j ≥ 2k. Say the vertices of the ith path power
(i = 1, 2, . . . , ppk) are xi1, xi2, . . . , xij with xij adjacent to xij′ if and only if
|j − j′| ≤ k.

For the vertex inequalities add new vertices y such that for some i, y is adjacent
to xi(j−k+1), xi(j−k+2), . . . , xij and to x(i+1)1, x(i+1)2, . . . , x(i+1)k taking care to
add at most k − 1 such y's ‘‘connecting’’ the ith and (i+ 1)st parts.

For the edge inequalities, add an appropriate subset of edges of the formxipx(i+1)q
where j − p+ q ≤ k omitting the edge xijx(i+1)1 for each i. Note that if only the
ppk − 1 edges xijx(i+1)1 are omitted then the resulting graph has hck = ppk − 1
and vck = k(ppk − 1).

Although each of the possible values for vck and hck can be obtained as above,
there is some relation between these parameters. Given an HP k in G ∨ Kvck
deleting the new vertices yields a path power partition with q ≥ ppk(G) parts. Let
zi denote the number of new vertices ‘‘connecting’’ the ith and (i+1)st parts in the
partition. Each of these connections could also be made using at most zi(zi + 1)/2
new edges. Hence hck(G) ≤∑q

i=1 zi(zi + 1)/2.
It is not clear if it is possible to use a variant on the greedy algorithm to determine

ppk or hck in interval graphs. The ‘‘obvious’’ approach for determining ppk by
running the algorithm until it fails, then starting over with the remaining vertices
fails. Consider the graph represented by I1 = I2 = [0, 1], I3 = I4 = [0, 6], I5 =
[2, 3], I6 = [4, 5]. If we try to modify the algorithm to ‘‘reuse’’ end vertices so that
the algorithm works for the previous graph, then difficulties are encountered with
the algorithm on simple paths.
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