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A review of standard calculus textbooks reveals a common approach to showing that
the derivative of the sine function is the cosine function. This approach is to first

derive the limit lim
x→0

sinx

x
= 1 and obtain the corollary lim

x→0

cosx− 1

x
= 0 and then use

both in the limit definition of derivative, after applying a trigonometric identity for
the sine of a sum. While there is some variation in the texts as to how the first limit is
obtained using geometry, the final steps using a trigonometric identity and applying
both limits is common.

Our goal here is to present an alternative approach for the derivative of sine with the
idea that it may provide good motivation for the derivative as a rate of change. In
addition we reduce the use of trigonometric identities so that the limit we compute
is exactly that for the rate of change in the definition of the derivative. While this
approach must be known somewhere, it seems to be hard to track down. The idea
here is to advertise it as an approach that provides good motivation to students to
view the derivative as a rate of change and to have a simple figure that suggests why
the derivative of sine is cosine.

We will observe that the geometry is not much different than approaches used for

lim
h→0

sinh

h
= 1, which directly shows that the derivative of sine at 0 is 1 (equal to

cos 0). By shifting this along the unit circle we get a simple figure that at least
informally motivates the idea that we ought to expect (sinx)′ = cosx.

Overview

We will proceed as follows with five short sections:

1. Translate the slope of a secant line on y = sinx to a ratio in a unit circle
diagram.
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2. Show directly from geometry on the unit circle the right side limit for angles in
the first quadrant.

3. Fill in two easy arc inequalities used in step 2.

4. Discuss how a similar computation yields the left side limit in the first quadrant.

5. Discuss informally how the rate of change ideas extend the derivative to all
angles how symmetric arguments would show these formally.

Rate of change of height along the unit circle

Recalling that the derivative is a rate of change and that values of the sine function
are ‘heights’ (y coordinates) on the unit circle we see that the derivative of sine tells
us ‘how fast’ the ‘height’ changes as we ‘walk’ at unit speed along the unit circle.

We start with a look at the translation to the unit circle of a secant line on the graph

of y = sinx. Using common calculus notation we consider slope =
rise

run
for ‘inputs’

x and x+ h where for now we assume h is positive and x is between 0 and π
2
.

h

D

A

C

x

h

Figure 1

The slope of the secant on the graph y = sinx is
sin(x+ h)− sinx

h
. Translated to



the unit circle this is the ratio of the change in height to the length of the arc. That
is, |AC|

h
in figure 1. Here we get our first hint that the derivative should be cosine. If

we believe that as h gets small the arc AD in the region ACD ‘approaches’ a straight
line so the region ‘approaches’ a triangle with the angle between the vertical segment
and hypotenuse x+ h (which approaches x), then immediately |AC|

h
= cosx (i.e., the

ratio we want approaches opposite over hypotenuse which is cosine).

Of course, this intuition does not provide a proof. For this we bound the slope of the
secant using two simple geometric arguments with slightly different triangles.

Secant limit for positive change h in the first quadrant

x + h

A

BC D

x

A

C D

E F

h h

sin(x+ h)

sinx

Figure 2

On the left in figure 2 we zoom to the region along the circle add the tangent to the
circle at A and its intersection B with the horizontal line at height sinx. Accept for
now the intuition that arc AD length h is less than the segment length |AB|. We
will establish this later. Also observe from basic trigonometry that the angle 6 BAC
between the tangent segment AB and the vertical segment AC is x+ h. Then using
h < |AB| and adjacent over hypotenuse in triangle ABC we get

sin(x+ h)− sinx

h
>

sin(x+ h)− sinx

|AB|
=
|AC|
|AB|

= cos(x+ h).



On the right in figure 2 we zoom to the region along the circle add the tangent to
the circle at D and its intersection E with the horizontal line at height sin(x + h).
Accept for now the intuition that arc AD length h is greater than the segment length
|DE|. We will establish this later. Also observe from basic trigonometry that the
angle 6 EDF between the tangent segment DE and the vertical segment DF is x.
Then using h > |DE| and adjacent over hypotenuse in triangle DEF we get

sin(x+ h)− sinx

h
<

sin(x+ h)− sinx

|DE|
=
|DF |
|DE|

= cosx.

Now, for 0 ≤ x < π
2

and small positive h we have that cos(x + h) < sin(x+h)−sinx
h

<
cosx. By the squeeze theorem we get

lim
h→0+

sin(x+ h)− sinx

h
= cosx

Arc inequalities

We establish the arc bounds as follows.
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Figure 3

On the left in figure 3, since right triangle OAB contains sector OAD and recalling



|OA| = 1 on the unit circle, we get

h

2
=

h

2π
·π ·12 = area of sector OAD < area of triangle OAB =

1

2
·1 · |AB| = |AB|

2

establishing the first arc inequality h < |AB|.

On the right in figure 3, as angle ADF is greater than angle EDF , using cosines
|DF |
|DA| <

|DF |
|DE| from the corresponding cosines. Hence |DA| > |DE|. Then since the

arc AD length h is greater than the segment length |DA| we get h > |DA| > |DE|
establishing the second arc inequality h > |DE|.

Secant limit for negative change h

For the left limit consider h < 0. The figures are nearly the same as those above
for h > 0 and are omitted. For the new versions, the top height is sin x, the angle
6 CAB is x, the bottom height is sin(x + h) and angle 6 FDE is x + h. In addi-

tion the arc length is now −h as h < 0. The secant slope is
sinx− sin(x+ h)

(−h)
=

sin(x+ h)− sinx

h
. From the switching of the angles as described above we end up

with cos x < sin(x+h)−sinx
h

< cos(x + h) when h < 0. Then from the squeeze theorem

we get lim
h→0−

sin(x+ h)− sinx

h
= cosx as needed.

Extending to all inputs

To extend to angles beyond beyond the first quadrant on the unit circle we can easily
draw appropriate figures symmetric to those above, make appropriate changes in
values and get the limit as cosx. We omit the straightforward details for this.

An alternative informal explanation (not proof) is to note that we have shown that
moving along the unit circle at unit speed in the first quadrant the rate of increase
of height is the horizontal distance from the vertical axis. In the fourth quadrant we
get the same rate of increase and the same horizontal distance cosx. In the 2nd and
3th quadrants, the ‘speed’ of the rates are the same but the height is decreasing as
the distance along the circle increases. Hence the rate of change is the negative of
the horizontal distance, which is the y coordinate cos x as needed.

Note that this informal idea of rate of change of height as we walk with unit speed
along the unit circle translates by symmetry to a hint that (cosx)′ = − sinx.


