Hamiltonian Path Variants in Structured Graph Families

Garth Isaak, Lehigh University
SIAM DM June 2018

Stanley Florkowski, USMA
Breeanne Baker Swart, The Citadel
Caitlin Owens, Rowan University Jen Scancella Gorman, Southern Nevada
Ayden Gerek,

Highly Structured Families

Tree

Block Graph

Threshold Graph

General strategy:

- NP hard problem
- Polynomial on structured families

For our families sometimes trivially polynomial

- Find certifying algorithm/ structure theorem

Explanation of result notation:

- Fact - well known = old, probably wrong if attempt attribution
- Fact - exercise $=$ possibly new, undergraduate homework level
- Proposition = possibly new and requires some work

Note - no attempt to survey

Hamiltonian Path $=$ spanning path

Does T have a Hamiltonian Path?

Hamiltonian Path $=$ spanning path

Does T have a Hamiltonian Path?

Well NO

Hamiltonian Path $=$ spanning path

Does T have a Hamiltonian Path?

Well NO WHY?

Hamiltonian Path $=$ spanning path

Does T have a Hamiltonian Path?

Well NO WHY?

- Each leaf must be an end
- cut vertex splits graph into >2 components

How close to Hamiltonian is T?

Hamiltonian Path $=$ Spanning Path

- Spanning PathS - minimum number
- Spanning Walk - minimum ?

Minimum Number of Paths needed to span vertices?

Disjoint (vertex and edge) $=$ Path Partition - PP(G) often called path cover

Edge Disjoint Cover (vertices may repeat)

Path Cover (vertices and edges may repeat) $=P C(G)$
For today skip Edge (but not vertex) disjoint

Different values for different path cover versions

Minimum Spanning Walk?

Minimize length $=M L S W(G)$

Minimize maximum vertex repeat $=\operatorname{MRSW}(G)$

All min repeat spanning walks are 'long' and
All min length spanning walks, vertex with 'many' repeats

Reminder of basic bound for path partition - Scattering Number

Fact (Well known)
Min Path Partition $\geq \operatorname{Max} C(G-U)-|U|$

Equality for trees, threshold graphs, co-comparability graphs,...
Goal - get nice minimax thms for Hamiltonian variants on structured classes

TREES

Well Known: Min Path Partition $=\operatorname{Max} C(G-U)-|U|$

TREES

Exercise: Min Path Cover $=\left\lceil\frac{\# \text { leaves }}{2}\right\rceil$
Hararay and Schwenk (1972): can cover edges with same number

TREES

Well Known: Tree on n vertices

Min length spanning walk $=2(n-1)-\operatorname{diameter}(T)$

TREES

Fact: Tree maximum degree Δ has Min repeats in spanning walk $=\Delta$ or $\Delta-1$

$\operatorname{MRSW}(T)=\Delta-1$ if some path contains all degree Δ vertices $\operatorname{MRSW}(T)=\Delta$ otherwise

TREES

Fact

If T is a tree

- $P P(T)=\max C(G-U)-|U|$ (scattering number)
- $P C(T)=\left\lceil\frac{\# \text { leaves }}{2}\right\rceil$
- $\operatorname{MLSW}(T)=2(n-1)-\operatorname{diameter}(T)$
- $\operatorname{MRSW}(T)=\Delta-1$ or $\Delta \ldots$

BLOCK GRAPHS

Fact

If G is a block graph with blocks B_{i} and
Δ_{B} the maximum number of blocks containing a cut vertex

- $P P(G)$ is NOT the scattering number.
- $P C(T)=\left\lceil\frac{\# \text { endblocks }}{2}\right\rceil$
- $\operatorname{MLSW}(T)=\sum\left|B_{i}\right|-\operatorname{diameter}(G)$
- $\operatorname{MRSW}(T)=\Delta_{B}-1$ or $\Delta_{B} \ldots$

Path Partition in Block Graphs

Decompose on certain cut vertices count end blocks and ...

THRESHOLD GRAPHS

Well known: Min Path Partition $=\operatorname{Max} C(G-U)-|U|$

THRESHOLD GRAPHS

Fact: $L B \leq$ Min Path Cover $\leq U B$

THRESHOLD GRAPHS

Fact: $L B \leq$ Min Path Cover $\leq U B$

$$
\begin{array}{ll}
L B & U B \\
\frac{8}{4}=2 & \frac{7}{3}=3 \\
\frac{18}{5}=4 & \frac{17}{4}=5 \\
\frac{19}{11}=2 & \frac{19}{10}=2
\end{array}
$$

- $4 \leq P C(G) \leq 5$
- Bottom greedy algorithm yields optimal cover

THRESHOLD GRAPHS

Fact: $L B \leq$ Min Path Cover $\leq U B$

$$
\begin{array}{ll}
L B & U B \\
\frac{8}{4}=2 & \frac{7}{3}=3 \\
\frac{18}{5}=4 & \frac{17}{4}=5 \\
\frac{19}{11}=2 & \frac{19}{10}=2
\end{array}
$$

- $L B, U B$ gap can be arbitrarily large
- If $L B \geq G a p^{2}$ then full spectrum of values

Threshold graph path cover algorithm:

THRESHOLD GRAPHS

Fact: Min repeats in spanning walk $=\max \left\lceil\frac{C(G-S)-1}{|S|}\right\rceil$

$\operatorname{MRSW}(G)=5$

THRESHOLD GRAPHS

Fact: Min length spanning walk $=n-2+P P(G)$
True in general for diameter 2 graphs

THRESHOLD GRAPHS

Fact

If G is a threshold graph

- $P P(T)=\max C(G-U)-|U|$ (scattering number)
- $L B \leq P C(T) \leq U B \ldots$
- $\operatorname{MLSW}(T)=n-2+P P(G)$
- $\operatorname{MRSW}(T)=\max \left\lceil\frac{C(G-U)-1}{|U|}\right\rceil$

