Star Avoiding Ramsey Numbers

Jonelle Hook, Garth Isaak

Department of Mathematics
Lehigh University

MCCCC Rochester October 3, 2009
Midwest Conference on Combinatorics, Computing and Cryptography
Graph Ramsey Numbers

Example

\[R(\mathcal{C}_5, \mathcal{K}_4) = 13 \]

- There exists a 2-coloring of \(K_{12} \) with no red \(\mathcal{C}_5 \) and no blue \(\mathcal{K}_4 \).
- Every 2-coloring of \(K_{13} \) has a red \(\mathcal{C}_5 \) or a blue \(\mathcal{K}_4 \).
Graph Ramsey Numbers

Example

\[R(C_5, K_4) = 13 \]

- There exists a 2-coloring of \(K_{12} \) with no red \(C_5 \) and no blue \(K_4 \).
Graph Ramsey Numbers

Example

\[R(C_5, K_4) = 13 \]

- There exists a 2-coloring of \(K_{12} \) with no red \(C_5 \) and no blue \(K_4 \).
- Every 2-coloring of \(K_{13} \) has a red \(C_5 \) or a blue \(K_4 \).
Example

‘Proof’ that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
Example

‘Proof’ that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4
Example

‘Proof’ that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4

Can color 9 edges but 10th forces red C_5 or K_4
Example

‘Proof’ that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4

Can color 9 edges but 10th forces red C_5 or K_4

NOT a proof
‘Proof’ that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4

Can color 9 edges but 10th forces red C_5 or K_4

NOT a proof

Would be a proof if this is only good coloring of K_{12}
Example

‘Proof’ that $R(C_5, K_4) = 13$

- 2 red edges to one part \Rightarrow red C_5
- blue edge to each part \Rightarrow blue K_4

Can color 9 edges but 10th forces red C_5 or K_4

NOT a proof

Would be a proof if this is only good coloring of K_{12}

There are 6 critical colorings (later)
Questions

- When can we classify all sharpness examples for $R(G, H) = r$?
- What are all good colorings of K_{r-1} (critical colorings)?
Questions

- When can we classify all sharpness examples for $R(G, H) = r$?
 - What are all good colorings of K_{r-1} (critical colorings)
- How many edges to the r^{th} vertex must be colored before a red G or blue H is forced?
A second look at our problem:

- **Graph Ramsey**: smallest r with no good coloring
 \[\ldots \quad K_{r-1}, \quad K_r, \quad K_{r+1}, \quad \ldots \]
A second look at our problem:

- **Graph Ramsey**: smallest r with no good coloring

 \[\ldots \quad K_{r-1}, \quad K_r, \quad K_{r+1}, \quad \ldots \]

- **Size Ramsey**: smallest s with no good coloring for *some* F

 \[\ldots \quad |E(F)| = s - 1, \quad |E(F)| = s, \quad |E(F)| = s + 1, \quad \ldots \]
A second look at our problem:

- **Graph Ramsey**: smallest r with no good coloring

 \[\ldots, \; K_{r-1}, \; K_r, \; K_{r+1}, \; \ldots \]

- **Size Ramsey**: smallest s with no good coloring for some F

 \[\ldots, \; |E(F)| = s - 1, \; |E(F)| = s, \; |E(F)| = s + 1, \; \ldots \]

- **Upper and lower Ramsey for $R(G, H) = r$**:

 - **Lower**: smallest s with no good coloring for some F

 - **Upper**: smallest s with no good coloring for every F

 \[\ldots, \; |E(F)| = s - 1, \; |E(F)| = s, \; |E(F)| = s + 1, \; \ldots \]

 Restrict to $|V(F)| = r$
A second look at our problem:

- **Graph Ramsey**: smallest r with no good coloring

 ... K_{r-1}, K_r, K_{r+1}, ...

- **Size Ramsey**: smallest s with no good coloring for some F

 ... $|E(F)| = s - 1$, $|E(F)| = s$, $|E(F)| = s + 1$, ...

- **Upper and lower Ramsey for $R(G, H) = r$**:
 Lower: smallest s with no good coloring for some F
 Upper: smallest s with no good coloring for every F

 ... $|E(F)| = s - 1$, $|E(F)| = s$, $|E(F)| = s + 1$, ...

 Restrict to $|V(F)| = r$

- **Star avoiding Ramsey for $R(G, H) = r$**:
 smallest $r - 1 - t$ with no good coloring

 ... $K_{r-1} \setminus S(1, t - 1)$, $K_{r-1} \setminus S(1, t)$, $K_{r-1} \setminus S(1, t + 1)$, ...

Jonelle Hook, Garth Isaak
Star Avoiding Ramsey Numbers
Star avoiding Ramsey:

\[R(G, H) = r \] add/color edges to \(K_{r-1} \) one at a time:

When is a red \(G \) or blue \(H \) forced?

\[K_{r-1} \]
Star avoiding Ramsey:
\[R(G, H) = r \] add/color edges to \(K_{r-1} \) one at a time:
When is a red \(G \) or blue \(H \) forced?
Star avoiding Ramsey:
\[R(G, H) = r \] add/color edges to \(K_{r-1} \) one at a time:
When is a red \(G \) or blue \(H \) forced?
Star avoiding Ramsey:
\[R(G, H) = r \text{ add/color edges to } K_{r-1} \text{ one at a time:} \]
When is a red \(G \) or blue \(H \) forced?

\[K_{r-1} \]
Star avoiding Ramsey:

\[R(G, H) = r \] add/color edges to \(K_{r-1} \) one at a time:
When is a red \(G \) or blue \(H \) forced?
Star avoiding Ramsey:

$R(G, H) = r$ add/color edges to K_{r-1} one at a time:

When is a red G or blue H forced?
Star avoiding Ramsey:
\[R(G, H) = r \text{ add/color edges to } K_{r-1} \text{ one at a time:} \]
When is a red \(G \) or blue \(H \) forced?

Proofs: First classify sharpness examples
- Good colorings of \(K_{r-1} \)
- Examples with ‘few’ extra edges needed and with ‘many’ extra edges needed
Example

- $R(K_m, K_n) = r$: must add all $r - 1$ edges (Chvatal 1974) even though we do not know what r is
Example

- $R(K_m, K_n) = r$: must add all $r - 1$ edges (Chvatal 1974) even though we do not know what r is.
- make a copy of a vertex.
Example

- $R(K_m, K_n) = r$: must add all $r - 1$ edges (Chvatal 1974) even though we do not know what r is
- make a copy of a vertex
- similar for $R(mK_3, mK_3) = 5m$
Example \(R(P_n, P_3) = n\) (Gerencser and Gyrafas 1967)

- \(R(P_n, P_3) = n\)

- \(K_{n-1} \setminus tK_2\)
Example \(R(P_n, P_3) = n \) (Gerencser and Gyrafas 1967)

- \(R(P_n, P_3) = n \)
- Sharpness examples: Blue graph is a matching plus isolated vertices

\[K_{n-1} \setminus tK_2 \]
Example \(R(P_n, P_3) = n \) (Gerencser and Gyrafas 1967)

- \(R(P_n, P_3) = n \)
- Sharpness examples: Blue graph is a matching plus isolated vertices

\[K_{n-1} \setminus tK_2 \]

- Red edge \(\Rightarrow \) red \(P_n \)
Example \((R(P_n, P_3) = n \text{ (Gerencser and Gyrafas 1967)})\)

- \(R(P_n, P_3) = n\)
- Sharpness examples: Blue graph is a matching plus isolated vertices
- Can only add one edge to \(K_{n-1}\) before a red \(P_n\) or blue \(P_3\) is forced.

![Graph](image)

- Red edge \(\Rightarrow\) red \(P_n\)
- Two Blue edges \(\Rightarrow\) blue \(P_3\)
Example ($R(P_n, P_m)$ (Gerencser and Gyrafas 1967))

- $R(P_n, P_m) = n + \lfloor \frac{m}{2} \rfloor - 1$ for $n \geq m \geq 4$
- Sharpness examples for $n \geq m + 2$. Black graph is arbitrary. Red clique can have one blue edge for odd m
- 3 other families when $n = m$ or $n = m + 1$
Example \((R(P_n, P_m) \text{ (Gerencser and Gyrafas 1967) })\)

- \(R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1 \) for \(n \geq m \geq 4\)
- Sharpness examples for \(n \geq m + 2\). Black graph is arbitrary. Red clique can have one blue edge for odd \(m\)
- 3 other families when \(n = m\) or \(n = m + 1\)

- Red or Blue edge to red \(K_{n-1}\) forces red \(P_n\) or blue \(P_m\)
Example \((R(P_n, P_m))\) (Gerencser and Gyrafas 1967))

- \(R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1\) for \(n \geq m \geq 4\)

- Sharpness examples for \(n \geq m + 2\). Black graph is arbitrary. Red clique can have one blue edge for odd \(m\)

- 3 other families when \(n = m\) or \(n = m + 1\)

- (only) add all red edges to \(A_{\left\lfloor \frac{m}{2} \right\rfloor - 1}\)
Example \(R(T_n, K_m) = (n - 1)(m - 2) + 1 \) (Chvatal 1977)

- Unique sharpness example:
 - Red graph is \((m - 1)K_{n-1}\)
 - Blue graph is \(K_{n-1,n-1,...,n-1}\)
Example \(R(T_n, K_m) = (n - 1)(m - 2) + 1 \) (Chvatal 1977)

- Unique sharpness example:
 - Red graph is \((m - 1)K_{n-1}\)
 - Blue graph is \(K_{n-1,n-1,...,n-1}\)

- Red edge \(\Rightarrow\) red \(T_n\)
Example \((R(T_n, K_m) = (n - 1)(m - 2) + 1 \text{ (Chvatal 1977)})\)

- Unique sharpness example:
 - Red graph is \((m - 1)K_{n-1}\)
 - Blue graph is \(K_{n-1,n-1,...,n-1}\)

- Blue edges to all parts \(\Rightarrow\) blue \(K_m\)
Example \(R(T_n, K_m) = (n - 1)(m - 2) + 1 \) (Chvatal 1977)

- Unique sharpness example:
 - Red graph is \((m - 1)K_{n-1}\)
 - Blue graph is \(K_{n-1,n-1,\ldots,n-1}\)
- (only) add all \((n - 1)(m - 2)\) blue edges avoiding one part
Example ($R(C_5, K_4) = 13$)

- Exactly 6 good colorings of K_{12} (Jayawardene and Rousseau 2000)
- Ends must be different (or same) for 3 extra red edges
- Extends to $R(C_n, K_4) = 3n - 2$ (but not $n = 4$)
Example \((R(C_5, K_4) = 13) \)

- Exactly 6 good colorings of \(K_{12} \) (Jayawardene and Rousseau 2000)
- Ends must be the same for 3 extra red edges for \(n \geq 6 \)
- Extends to \(R(C_n, K_4) = 3n - 2 \)
Summary of Results

<table>
<thead>
<tr>
<th>Ramsey number</th>
<th>Minimum Number of edges to force bad coloring</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(mK_2, mK_2) = 3m - 1$ [L 1984]</td>
<td>m</td>
</tr>
<tr>
<td>$R(mK_3, mK_3) = 5m$ [BES 1975]</td>
<td>$5m$</td>
</tr>
<tr>
<td>$R(T_n, K_m) = (n - 1)(m - 1) + 1$ [C 1977]</td>
<td>$(n - 1)(m - 2) + 1$</td>
</tr>
<tr>
<td>$R(C_n, K_3) = 2n - 1$ [FS 1974]</td>
<td>$n + 1$</td>
</tr>
<tr>
<td>$R(C_n, K_4) = 3n - 2$ [SRM 1999]</td>
<td>$2n$</td>
</tr>
<tr>
<td>$R(P_n, P_3) = n$ [GG 1967]</td>
<td>2</td>
</tr>
<tr>
<td>$R(P_n, P_4) = n + 1$ [GG 1967]</td>
<td>2</td>
</tr>
<tr>
<td>$R(P_n, P_5) = n + 1$ [GG 1967]</td>
<td>3</td>
</tr>
<tr>
<td>$R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1$ [GG 1967]</td>
<td>$\frac{m}{2}$</td>
</tr>
</tbody>
</table>

for all $n \geq m \geq 2$