Min-max Theorems for the k-Path Partition Problem

Breeanne Baker The Citidel
Garth Isaak Lehigh University

Cumberland Conference May 2014

Hamiltonian Path

Hamiltonian Path

1-HP (Hamiltonian Path) problem:

 Hamiltonian path with a specified end?

Hamiltonian path

No 1-Hamiltonian path
k-PP (Path Partition/Path Cover) problem: Minimum path partition with k specified ends

3 paths to partition with specified ends

1 path to partition with specified ends

2 paths to partition with specified ends

3 paths to partition with specified ends

(Regular) Path Partition

- Efficient algorithms and min-max theorems for Co-comparability graphs (threshold, cographs, interval, ...)
- Efficient algorithms but no nice min-max theorem for block graphs (Hamiltonian path even for distance hereditary)

(with specified ends) k-Path Partition

- Efficient algorithms for
- Our goal
min-max theorems/certificate/certifying algorithm
for 'nice' classes

(Regular) Path Partition

- Efficient algorithms and min-max theorems for Co-comparability graphs (threshold, cographs, interval, ...)
- Efficient algorithms but no nice min-max theorem for block graphs (Hamiltonian path even for distance hereditary)

(with specified ends) k-Path Partition

- Efficient algorithms for
- Unit interval (Asdre, Nikopoulos 2009; Mertzios, Unger 2010)
- Cographs (includes threshold) (Hung; Asdre, Nikopoulos 2006)
- Block graphs (from regular partition)
- Interval (1-HP only) (Asdre, Nikopoulos 2009)
- Distance hereditary (2-HP only, from regular partition)
min-max theorems/certificate/certifying algorithm

(Regular) Path Partition

- Efficient algorithms and min-max theorems for Co-comparability graphs (threshold, cographs, interval, ...)
- Efficient algorithms but no nice min-max theorem for block graphs (Hamiltonian path even for distance hereditary)

(with specified ends) k-Path Partition

- Efficient algorithms for
- Unit interval (Asdre, Nikopoulos 2009; Mertzios, Unger 2010)
- Cographs (includes threshold) (Hung; Asdre, Nikopoulos 2006)
- Block graphs (from regular partition)
- Interval (1-HP only) (Asdre, Nikopoulos 2009)
- Distance hereditary (2-HP only, from regular partition)
- Our goal -
min-max theorems/certificate/certifying algorithm for 'nice' classes

k-Path Partition ${ }^{\prime}={ }^{\prime}$ (regular) PP with pendants

2-HP
Regular HP
So just add pendants and translate known results:

- works for trees
- Fails for block graphs - no certificate for regular PP
- Fails for other classes - Adding pendant \Rightarrow out of class

k-Path Partition ${ }^{\prime}={ }^{\prime}$ (regular) PP with pendants

2-HP
Regular HP
So just add pendants and translate known results:

- works for trees
- Fails for block graphs - no certificate for regular PP
- Fails for other classes - Adding pendant \Rightarrow out of class

k-Path Partition ${ }^{\prime}={ }^{\prime}$ (regular) PP with pendants

2-HP

Regular HP
So just add pendants and translate known results:

- works for trees
- Fails for block graphs - no certificate for regular PP
- Fails for other classes - Adding pendant \Rightarrow out of class

Certificate for (Regular) Path Partition

Theorem

If G is (interval graph, threshold graph,) then Min Path Partition $=\operatorname{Max} C(G-U)-|U|$

Would like something similar for k-Path Partition

Certificate (gen 1) for Path Partition with terminals T

Theorem

If G is a tree with terminals T then
Min $|T|$-Path Partition $=\operatorname{Max} C(G-U)-|U-T|$
prove directly via induction or
use pendant construction and certificate for regular partitions

Trivial Certificate for Path Partition with terminals T

$$
\text { need } \geq\left\lceil\frac{5}{2}\right\rceil=3 \text { paths }
$$

Theorem

If G is 2 -connected unit interval graph with terminals T then $\operatorname{Min}|T|$-Path Partition $=\left\lceil\frac{|T|}{2}\right\rceil$ or +1 when
$k=2$ case Mertzios and Unger 2010
Note: 2-connected unit interval \Rightarrow Hamiltonian cycle; connected unit interval \Rightarrow Hamiltonian path

Theorem

If G is 2-connected unit interval graph with terminals T then $\operatorname{Min}|T|$-Path Partition $=\left\lceil\frac{|T|}{2}\right\rceil$ or +1 when (see below)

Unit interval $=$ intersection graph of unit intervals

Certificate (gen 2) for Path Partition with terminals T

Theorem

If G is a threshold graph with terminals T then
$\operatorname{Min}|T|$-Path Partition $=\operatorname{Max}\left(\sum\left\lceil\frac{\left|T_{i}\right|}{2}\right\rceil\right)+|R|-|U-T|$ or +1 when

Theorem

If G is a threshold graph with terminals T then
$\operatorname{Min}|T|$-Path Partition $=\operatorname{Max}\left(\sum\left\lceil\frac{\left|T_{i}\right|}{2}\right\rceil\right)+|R|-|U-T|$ or +1 when

Trees with terminals T :
$\operatorname{Min}|T|$-Path Partition $=\operatorname{Max} C(G-U)-|U-T|$

2-connected unit interval graphs with terminals T :
$\operatorname{Min}|T|$-Path Partition $=\left\lceil\frac{|T|}{2}\right\rceil$
or +1 when

Threshold graphs with terminals T :
$\operatorname{Min}|T|$-Path Partition $=\operatorname{Max}\left(\sum\left\lceil\frac{\left|T_{i}\right|}{2}\right\rceil\right)+|R|-|U-T|$ or +1 when

Block graphs, unit interval graphs with cut vertices, terminals T : complicated $\min =\max \ldots$.

Linear Block Graphs (and unit interval with cut vertices)

Impose left right ordering and use 'forced ends'
Decompose along carefully selected cut vertices
i.e., those vertices do not pass through in left/right algorithm

Count the number of 'right' ends in each part
General block graphs: Similar idea with 'tops of paths' and parity of components 'below' special cut vertices

Block Graphs

Decompose on certain cut vertices count using 'forced ends' and ...

Trees with terminals T :
$\operatorname{Min}|T|$-Path Partition $=\operatorname{Max} C(G-U)-|U-T|$

2-connected unit interval graphs with terminals T :
$\operatorname{Min}|T|$-Path Partition $=\left\lceil\frac{|T|}{2}\right\rceil$
or +1 when

Threshold graphs with terminals T :
$\operatorname{Min}|T|$-Path Partition $=\operatorname{Max}\left(\sum\left\lceil\frac{\left|T_{i}\right|}{2}\right\rceil\right)+|R|-|U-T|$ or +1 when

Block graphs, unit interval graphs with cut vertices, terminals T : complicated $\min =\max \ldots$.

