Interval Orders with Length Bounds

Simona Boyadzhiyska, Berlin Mathematical School
Garth Isaak, Lehigh University Ann Trenk, Wellesley College

48th SEICCGTC at FAU, March 2017

Intervals

Interval Graph

Interval Order??

Interval Order??

NO $2+2$
Theorem (Wiener 1914)
Interval Order \Leftrightarrow NO $2+2$
R. Duncan Luce Example (1956) from Econometrica

- Add one grain of sugar at a time
- Cannot distinguish between consecutive cups
- Can distinguish first and last
- Indifference is not transitive!
- Intervals with unit length (semiorders)

Unit Interval Order??

Unit Interval Order??

NO 2+2
 NO 3+1

Theorem (Scott-Suppes 1956)
Unit Interval Order \Leftrightarrow NO $2+2$ \& NO $3+1$

Does a given order have a representation subject to given length bounds?

- Is there an efficient algorithm?

Certifying algorithm?

- Forbidden suborder characterization?
- Graphs? Comparability invariant if all lower bounds equal

Assume interval order: no $2+2$

Theorem (Fishburn 1983,84)
Lengths between 1 and n (integer)

$$
\begin{gathered}
\Leftrightarrow \\
N O 1+(n+2)
\end{gathered}
$$

e.g., lengths between 1 and $4 \Leftrightarrow$ no $1+6$

Assume interval order: no $2+2$

Theorem (Fishburn 1983,84)

Lengths between a and b (integers)

NO forbidden picycle
e.g., Finite list of forbidden suborders but

For lengths between 2 and 3:
$\mathrm{NO} x \sim^{2} \prec^{4} y$ or $x \sim \prec^{2} \sim^{2} \prec^{3} y$ or $x \sim \prec^{3} \sim^{2} \prec^{2} y$
NO finite list for irrational

Theorem (I 1990)

Lengths between a and b AND integer endpoints

NO nonpositive cycle in related digraph

Finite list of forbidden suborders for lengths 0 to n
Infinite list of forbidden suborders for lengths 1 to n

Model Interval Order using Inequalities

$l_{3} \leq r_{3}$
Rewrite as:

$$
\begin{array}{lllllll}
& \begin{array}{lllllll}
r_{1} & -l_{2} & & & & <0 \\
& r_{1} & & & -l_{3} & & \\
& & & -r_{2} & +l_{3} & & \leq 0 \\
& & I_{2} & & & -r_{3} & \leq 0 \\
I_{1} & -r_{1} & & & & & \\
& & I_{2} & -r_{2} & & & \\
& & & & I_{3} & -r_{3} & \leq 0 \\
& \leq 0
\end{array}
\end{array}
$$

We can represent an an order with intervals
\Leftrightarrow
Particular system of inequalities has a solution
Extends to:

- Constraints on interval length
- Minimize number of distinct endpoints
- Minimize ‘support' length
(if all lengths non-trivial)
- Partial information on ordering

Lemma (Farkas' Lemma 1906)
A system of inequalities has a solution
\Leftrightarrow it is not inconsistent
$A x \leq b$ has a solution
or $y A=0, y \geq 0, y b<0$ has solution
Theorem (LP duality) $\max \{c x \mid A x \leq b\}=\min \{y b \mid y A \geq c, y \geq 0\}$

