Degree Lists for 2 Two
 tree like graph classes

Garth Isaak, Kathleen Ryan
Lehigh University

Recall degree list conditions for trees
A basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even (always assume this)
- Trees are bipartite
\Rightarrow degrees partition into two parts with equal sum
- Trees (on n vertices) have $n-1$ edges
\Rightarrow Degree sum is $2 n-2$

$$
(5,4,3,1,1,1,1,1,1,1,1)
$$

Recall degree list conditions for trees
A basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even (always assume this)
- Trees are bipartite
\Rightarrow degrees partition into two parts with equal sum
- Trees (on n vertices) have $n-1$ edges
\Rightarrow Degree sum is $2 n-2$

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a tree \Leftrightarrow
$\sum d_{i}=2 n-2$

$$
(5,4,3,1,1,1,1,1,1,1,1)
$$

Recall degree list conditions for loopless multigraphs another basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even
- No loops
\Rightarrow edges from max degree vertex go to other vertices
\Rightarrow max degree \leq sum of other degrees

Recall degree list conditions for loopless multigraphs another basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even
- No loops
\Rightarrow edges from max degree vertex go to other vertices
\Rightarrow max degree \leq sum of other degrees

Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

Loopless multitree

Exercise - What are conditions for degree lists of multitrees?

Degree conditions for multitrees?
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a multiforest
\Leftrightarrow degrees partition into two parts with equal sum

- easy exercise(s), induction; switching, ...
- Get $d_{1} \leq \sum_{i=1}^{n} d_{i}$ and even degree sum for free
- Note that partitioning integer lists into equal sum parts is NP-hard
- Need a little more for multitrees

In a multiforest:
If all d_{i} are even then edge multiplicities are all even

- 'Proof': parity argument
- In general edge multiplicities are multiplies of $\operatorname{gcd}\left(d_{1}, \ldots, d_{n}\right)$

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Get multiforest and the use switching to get multitree

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Get multiforest and the use switching to get multitree

It would have been nice to have the multigraph condition instead of the NP-hard partition condition

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ Moreover can be realized with a maximum degree vertex adjacent to a minimum degree vertex

False Proof by example:
Case 1: $d_{1}=d_{2}: 7,7, \ldots, 5,3$
By induction construct multitree 4, 7, .., 5, 3
add 3 edges between first vertex and a new degree 3 vertex

It would have been nice to have the multigraph condition instead of the NP-hard partition condition

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ Moreover can be realized with a maximum degree vertex adjacent to a minimum degree vertex

False Proof by example:
Case 2: $d_{1}>d_{2}: 9,7, \ldots, 5,3$
By induction construct multitree $8,7, \ldots, 5,2$ with edges between degree 8 and degree 2 add a(nother) edge between 8 and 2

It would have been nice to have the multigraph condition instead of the NP-hard partition condition

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ Moreover can be realized with a maximum degree vertex adjacent to a minimum degree vertex

False Proof by example:
Basis?
Case 1 collapses at $n=3$

- multitree degree conditions equivalent to NP-hard problem
- So look at 2-multitrees (each edge multiplicity 1 or 2)
- Should not expect anything nice for k-multitrees as partition is NP-hard

2-multiforest conditions, $d_{1} \geq \ldots, \geq d_{n}$ with even degree sum

- If all d_{i} even \Rightarrow edge multiplicities all $2 \Rightarrow \frac{d_{1}}{2}, \frac{d_{2}}{2}, \ldots, \frac{d_{n}}{2}$ are degrees of a forest
i.e., sum is a multiple of 4 and at most $2(2 n-2)=4 n-4$
- At most 2 edges to each vertex $\Rightarrow d_{1} \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_{i} are 1 or 2
- At most $2(n-1)$ edges \Rightarrow degree sum at most $4 n-4$

2-multiforest conditions, $d_{1} \geq \ldots, \geq d_{n}$ with even degree sum

- If all d_{i} even \Rightarrow edge multiplicities all $2 \Rightarrow \frac{d_{1}}{2}, \frac{d_{2}}{2}, \ldots, \frac{d_{n}}{2}$ are degrees of a forest
i.e., sum is a multiple of 4 and at most $2(2 n-2)=4 n-4$
- At most 2 edges to each vertex $\Rightarrow d_{1} \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_{i} are 1 or 2
- At most $2(n-1)$ edges \Rightarrow degree sum at most $4 n-4$
- Each odd degree vertex adjacent to edge with multiplicity 1
\Rightarrow degree sum $\leq 4 n-4-\#$ odd degrees
- Remove degree 1 vertices
\Rightarrow what is left can't have too large a degree sum
\Rightarrow degree sum $\leq 4 n-4-2 \cdot$ (\#degree 1 vertices)

2-multiforest conditions, $d_{1} \geq \ldots, \geq d_{n}$ with even degree sum

- If all d_{i} even \Rightarrow edge multiplicities all $2 \Rightarrow \frac{d_{1}}{2}, \frac{d_{2}}{2}, \ldots, \frac{d_{n}}{2}$ are degrees of a forest
i.e., sum is a multiple of 4 and at most $2(2 n-2)=4 n-4$
- At most 2 edges to each vertex $\Rightarrow d_{1} \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_{i} are 1 or 2
- At most $2(n-1)$ edges \Rightarrow degree sum at most $4 n-4$
- Each odd degree vertex adjacent to edge with multiplicity 1
\Rightarrow degree sum $\leq 4 n-4-\#$ odd degrees
- Remove degree 1 vertices
\Rightarrow what is left can't have too large a degree sum
\Rightarrow degree sum $\leq 4 n-4-2 \cdot$ (\#degree 1 vertices)

Conditions are also sufficient

2-multiforest conditions, $d_{1} \geq \ldots, \geq d_{n}$ with even degree sum

- If all d_{i} even \Rightarrow edge multiplicities all $2 \Rightarrow \frac{d_{1}}{2}, \frac{d_{2}}{2}, \ldots, \frac{d_{n}}{2}$ are degrees of a forest
i.e., sum is a multiple of 4 and at most $2(2 n-2)=4 n-4$
- At most 2 edges to each vertex $\Rightarrow d_{1} \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_{i} are 1 or 2
- At most $2(n-1)$ edges \Rightarrow degree sum at most $4 n-4$
- Each odd degree vertex adjacent to edge with multiplicity 1
\Rightarrow degree sum $\leq 4 n-4$ - \#odd degrees
- Remove degree 1 vertices
\Rightarrow what is left can't have too large a degree sum
\Rightarrow degree sum $\leq 4 n-4-2 \cdot$ (\#degree 1 vertices)
Conditions are also sufficient
- Connected unless all d_{i} even and $\sum d_{i}<4 n-4$ or some d_{i} odd and $\sum d_{i}<2 n-2$
- Get partition into parts with equal sum for 'free'

2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

2-trees

'Build' by repeatedly attaching a 'pendent' vertex to an edge

2-trees
'Build' by repeatedly attaching a 'pendent' vertex to an edge

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood, Wuher 2008)
Necessary and sufficient for degree lists of 2-trees

Necessary Conditions for degrees of a 2-tree

- degree sum is $4 n-6$
- $n-1 \geq d_{1} \geq \ldots \geq d_{n} \geq 2$
- There are at least two $d_{i}=2$
- list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3}{3}$

Theorem (Bose, Dujmovic, Kriznac, Langerman, Morin, Wood, Wuher 2008)

Necessary and sufficient for degree lists of 2-trees

- If some d_{i} is odd 'almost always' works if degree sum is $4 n-6$
- If all d_{i} even need 'about' $1 / 3$ of the d_{i} to be 2

Partial 2-tree: subgraph of a 2-tree

Partial 2-tree: subgraph of a 2-tree

Partial 2-tree: subgraph of a 2-tree

- K_{4} minor free graphs
- series-parallel graphs construct: add pendent edge; replace edge with a path, add parallel edges

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$
- $\left(\# d_{i}=1\right) \leq g$

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$
- $\left(\# d_{i}=1\right) \leq g$

Theorem

Necessary and sufficient for degree lists of partial 2-trees

Necessary conditions for degrees of a partial 2-tree g is the number of 'missing' edges $\Rightarrow \sum d_{l}=4 n-6-2 g$

- When $g=0$ list is not $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}, 2,2, \ldots, 2\right\rangle$
- $d_{n} \leq n-1$
- There are at least two $d_{i} \in\{1,2\}$
- All d_{i} even $\Rightarrow\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$
- $\left(\# d_{i}=1\right) \leq g$

Theorem

Necessary and sufficient for degree lists of partial 2-trees

- When some d_{i} is odd condition is essentially $\left(\# d_{i}=1\right) \leq g$
- If all d_{i} even $\left(\# d_{i}=2\right) \geq \frac{n+3-2 g}{3}$ holds whenever

$$
\sum d_{i} \leq \frac{18}{5}(n-1)
$$

Degree lists for partial 2-multitrees? (series-parallel multigraphs)

> Degree lists for partial 2-multitrees? (series-parallel multigraphs)

Degrees of a loopless multigraph i.e., $d_{1} \leq \sum_{i=2}^{n} d_{i}$ can be realized as a unicylic multiforest where the cycle is a triangle

Degree lists for partial 2-multitrees? (series-parallel multigraphs)

Degrees of a loopless multigraph i.e., $d_{1} \leq \sum_{i=2}^{n} d_{i}$ can be realized as a unicylic multiforest where the cycle is a triangle

Proof: Earlier false proof with corrected basis

Degree lists for partial 2-multitrees? (series-parallel multigraphs)

Degrees of a loopless multigraph i.e., $d_{1} \leq \sum_{i=2}^{n} d_{i}$ can be realized as a unicylic multiforest where the cycle is a triangle

Proof: Earlier false proof with corrected basis

Degrees of a loopless multigraph can be realized as a unicylclic multitree (unless $\frac{\sum d_{i}}{g c d}$ is too small)

Proof: Adjust 2 of the d_{i} to get partition into equal sums construct a multitree then add multiedges between 2 adjusted vertices

