Degree lists for
 multforests and near multiforests

Garth Isaak
Lehigh University

Recall degree list conditions for trees
A basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even (always assume this)
- Trees (on n vertices) have $n-1$ edges
\Rightarrow Degree sum is $2 n-2$

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a tree \Leftrightarrow
$\sum d_{i}=2 n-2$

$$
(5,4,3,1,1,1,1,1,1,1,1)
$$

(One) proof of
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a tree \Leftrightarrow $\sum d_{i}=2 n-2$

- $d_{1} \geq \cdots \geq d_{n-1} \geq d_{n}$ with $\sum d_{i}=2 n-2$
$\Rightarrow d_{n}=1$ and $d_{1} \geq 2$
- By induction, tree with $d_{1}-1, d_{2}, \ldots, d_{n-1}$
- Add edge $v_{1} v_{n}$

$$
(4,3,1,1,1,1,1) \Rightarrow \quad(3,3,1,1,1,1, \quad) \Rightarrow \quad(4,3,1,1,1,1,1)
$$

Recall degree list conditions for loopless multigraphs another basic exercise in a first graph theory course

- Degrees are positive integers and degree sum is even
- No loops
\Rightarrow edges from max degree vertex go to other vertices
\Rightarrow max degree \leq sum of other degrees

Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$
(one) proof of
Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

- $d_{1} \leq d_{2}+\cdots+d_{n} \Rightarrow d_{1}-d_{n} \leq d_{2}+\cdots+d_{n-1}$
- $d_{2} \leq d_{1}$ and $d_{n} \leq d_{n-1} \Rightarrow d_{2} \leq\left(d_{1}-d_{n}\right)+d_{3}+\cdots+d_{n-1}$
- By induction multigraph with $d_{1}-d_{n}, d_{2}, \ldots, d_{n-1}$
- Add edges $v_{1} v_{n}$

$(6,5,3,2) \Rightarrow$
$(4,5,3, \quad) \Rightarrow$
$(6,5,3,2)$

Both proofs added a 'leaf' \Rightarrow no cycles created

So: Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

$(5,4,4,3,2)$

(5, 4, 4, 3, 2)

Both proofs added a 'leaf' \Rightarrow no cycles created

So: Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

Both proofs added a 'leaf' \Rightarrow no cycles created

So: Have we just proved?

Non-Theorem: Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multitree $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$ i.e. Multigraph \Rightarrow Multitree with same degrees

- $(2,2,2,2)$? not connected, so forest not tree

Both proofs added a 'leaf' \Rightarrow no cycles created

So: Have we just proved?

```
Non-Theorem: Positive integers \(d_{1} \geq d_{2} \geq \cdots \geq d_{n}\) with even degree sum, are degrees of a loopless multitree \(\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}\) i.e. Multigraph \(\Rightarrow\) Multitree with same degrees
```

- $(2,2,2,2)$? not connected, so forest not tree
- Forests are bipartite so $d_{1} \leq d_{2}+\cdots d_{n} \Rightarrow$ can partition d_{i} into two parts with equal sum

Both proofs added a 'leaf' \Rightarrow no cycles created

So: Have we just proved?

```
Non-Theorem: Positive integers \(d_{1} \geq d_{2} \geq \cdots \geq d_{n}\) with even degree sum, are degrees of a loopless multitree \(\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}\) i.e. Multigraph \(\Rightarrow\) Multitree with same degrees
```

- $(2,2,2,2)$? not connected, so forest not tree
- Forests are bipartite so $d_{1} \leq d_{2}+\cdots d_{n} \Rightarrow$ can partition d_{i} into two parts with equal sum
- Above fails for $(3,4,5)$
- Test if given integer list partitions into 2 equal sum parts? NP-hard problem so something is wrong

What went wrong with multgraph proof?
Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

- $d_{1} \leq d_{2}+\cdots+d_{n} \Rightarrow d_{1}-d_{n} \leq d_{2}+\cdots+d_{n-1}$
- $d_{2} \leq d_{1}$ and $d_{n} \leq d_{n-1} \Rightarrow d_{2} \leq\left(d_{1}-d_{n}\right)+d_{3}+\cdots+d_{n-1}$
- By induction multigraph with $d_{1}-d_{n}, d_{2}, \ldots, d_{n-1}$
- Add edges $v_{1} v_{n}$

$(6,5,3,2) \Rightarrow \quad(4,5,3, \quad) \Rightarrow \quad(6,5,3,2)$

What went wrong with multgraph proof?
Positive integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ with even degree sum, are degrees of a loopless multigraph $\Leftrightarrow d_{1} \leq \sum_{i=2}^{n} d_{i}$

- $d_{1} \leq d_{2}+\cdots+d_{n} \Rightarrow d_{1}-d_{n} \leq d_{2}+\cdots+d_{n-1}$
- $d_{2} \leq d_{1}$ and $d_{n} \leq d_{n-1} \Rightarrow d_{2} \leq\left(d_{1}-d_{n}\right)+d_{3}+\cdots+d_{n-1}$

IF $n \geq 4$

- By induction multigraph with $d_{1}-d_{n}, d_{2}, \ldots, d_{n-1}$
- Add edges $v_{1} v_{n}$

$(6,5,3,2) \Rightarrow$
$(4,5,3, \quad) \Rightarrow$
$(6,5,3,2)$

With correct basis for $n=3$ we get

> Degrees of a multigraph $d_{1} \leq d_{2}+\cdots+d_{n}$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

With correct basis for $n=3$ we get

> Degrees of a multigraph $d_{1} \leq d_{2}+\cdots+d_{n}$ have a realization with underlying graph a forest or a graph with exactly one cycle (which is a triangle)

Note that partitioning integer lists into equal sum parts is NP-hard. So might not detect forest realization if there is one.

Good example why need basis for induction

- What are conditions for a multiforest?
- What if we want connected? i.e., multitree?

Loopless multitree

Degree conditions for multitrees?
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ are degrees of a multiforest \Leftrightarrow degrees partition into two parts with equal sum

- easy exercise(s), induction; switching, ...
- Get $d_{1} \leq \sum_{i=1}^{n} d_{i}$ and even degree sum for free
- Need a little more for (connected) multitrees

In a multiforest:
If all d_{i} are even then edge multiplicities are all even

- 'Proof': parity argument
- In general edge multiplicities are multiples of $\operatorname{gcd}\left(d_{1}, \ldots, d_{n}\right)$

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Get multiforest and the use switching to get multitree

Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ that partition into two parts with equal sum realize a multitree if $\frac{\sum d_{i}}{g c d} \geq 2 n-2$

Get multiforest and the use switching to get multitree

\Downarrow

- multitree degree conditions equivalent to NP-hard problem
- So look at 2-multitrees (each edge multiplicity 1 or 2)
- Should not expect anything nice for k-multitrees as partition is NP-hard
2-multitree

2-multiforest conditions, $d_{1} \geq \ldots, \geq d_{n}$ with even degree sum

- If all d_{i} even \Rightarrow edge multiplicities all $2 \Rightarrow \frac{d_{1}}{2}, \frac{d_{2}}{2}, \ldots, \frac{d_{n}}{2}$ are degrees of a forest
i.e., sum is a multiple of 4 and at most $2(2 n-2)=4 n-4$
- At most 2 edges to each vertex $\Rightarrow d_{1} \leq 2(n-1)$
- At least 2 'leaves' \Rightarrow at least two d_{i} are 1 or 2
- At most $2(n-1)$ edges \Rightarrow degree sum at most $4 n-4$

Last 3 will be implied by further conditions

More 2-multiforest conditions

- Each odd degree vertex adjacent to edge with multiplicity 1 \Rightarrow degree sum $\leq 4 n-4$ - \#odd degrees
- Remove degree 1 vertices \Rightarrow what is left can't have too large a degree sum \Rightarrow degree sum $\leq 4 n-4-2 \cdot$ (\#degree 1 vertices)
Conditions are also sufficient
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ with even degree sum are degrees of a 2-multiforest \Leftrightarrow
- When all d_{i} even: $\sum d_{i} \leq 4 n-4$ and a multiple of 4
- Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\}$

More 2-multiforest conditions

- Each odd degree vertex adjacent to edge with multiplicity 1 \Rightarrow degree sum $\leq 4 n-4-\#$ odd degrees
- Remove degree 1 vertices \Rightarrow what is left can't have too large a degree sum \Rightarrow degree sum $\leq 4 n-4-2 \cdot$ (\#degree 1 vertices)
Conditions are also sufficient
Positive integers $d_{1}, d_{2}, \ldots, d_{n}$ with even degree sum are degrees of a 2-multiforest \Leftrightarrow
- When all d_{i} even: $\sum d_{i} \leq 4 n-4$ and a multiple of 4
- Some d_{i} odd: $\sum d_{i} \leq 4 n-4-\max \left\{n_{\text {odd }}, 2 n_{1}\right\}$

Proof: exercise
All proofs in this talk (probably) could be assigned as exercises in a beginning undergraduate discrete math or graph theory course

