Forbidden SEO-Induced Subgraphs

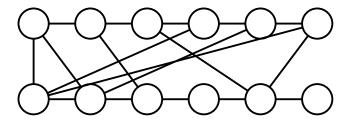
Garth Isaak Lehigh University Caitlin Owens Rowan University

AMS Southeastern Section Meeting Robert E. Jamison Special Session

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From 2014 talk:

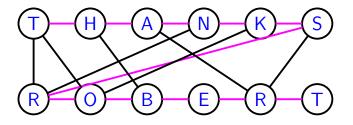
Hamiltonian Path



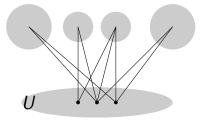
From 2014 Talk

Hamiltonian Path

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



Reminder of basic necessary condition for Hamiltonian Cycle



Fact (Well known)

G Hamiltonian \Rightarrow $C(G - U) \ge |U|$ all non-empty *U* i.e. *G* 1-Tough is necessary condition

for trees, interval graphs, co-comparability graphs,...
Nice certificate if NO Hamiltonian cycle in these classes

Reminder of basic sufficient condition for Hamiltonian Cycle

Theorem (Duffus, Gould, Jacobson 1981) G Hamiltonian \leftarrow G is {K_{1,3}, Net}-free (and 2-connected)

> Goal - Nice certificate if NO Hamiltonian cycle Problem - Add universal vertices

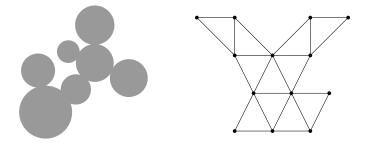
> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(Could we get something like?....)

If G is a Jamison graph then G is Hamiltonian \Leftrightarrow G is {K_{1,3}, Net}-free

- Problem: G not Hamiltonian, has an induced K_{1,3} or Net G ∨ K_t is Hamiltonian and still has induced K_{1,3} or Net
- 'Jamison' can't be closed under adding universal vertices
- Problem: Cycles are Hamiltonian but no induced subraph is

two of the simplest graph classes beyond trees:

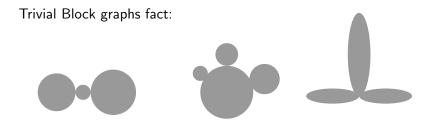


Block Graph

2-Tree

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Easy to find efficient algorithm for Hamiltonian cycle, Hamiltonian path, path partition on these classes



Fact

If G is a block graph

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- G is Hamiltonian \Leftrightarrow G is complete
- \Leftrightarrow G is 1-tough
- \Leftrightarrow G is P₃-free



Fact (Special case of Broersma, Xiong, Yoshimoto 2007)

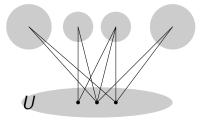
If G is a 2-tree

(日) (四) (日) (日) (日)

- G is Hamiltonian \Leftrightarrow G is 1-tough
- \Leftrightarrow every edge is is in 1 or 2 triangles
- \Leftrightarrow *G* is $K_2 \lor 3K_1$ -free

Unique Hamiltonian cycle on 1-edges

Reminder of basic necessary condition for Hamiltonian Path

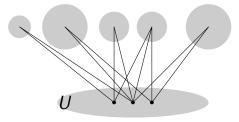


Fact (Well known)

G Hamiltonian \Rightarrow $C(G - U) \ge |U| + 1$ all *U i.e.* Scattering number 1 is necessary for traceable

⇔ for trees, interval graphs, co-comparability graphs,... Nice certificate if NO Hamiltonian path in these classes

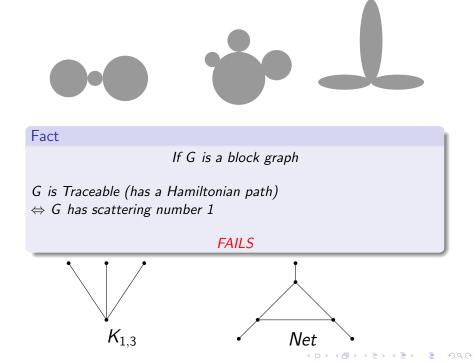
Reminder of basic necessary condition for Hamiltonian Path



Fact (Well known)

G Hamiltonian \Rightarrow $C(G - U) \ge |U| + 1$ all *U i.e.* Scattering number 1 is necessary for traceable

⇔ for trees, interval graphs, co-comparability graphs,... Nice certificate if NO Hamiltonian path in these classes

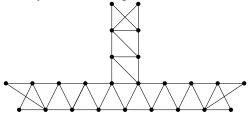


Fact

If G is a (connected) block graph G is Traceable (has a Hamiltonian path) \Leftrightarrow G is {K_{1,3}, Net}-free *i.e.*, Duffus, Gould, Jacobson 1981 sufficient condition for traceability is necessary in block graphs

イロト イボト イヨト イヨト 三日

Finally to something that is not elementary



A 2-tree with scattering number 1 that is not traceable

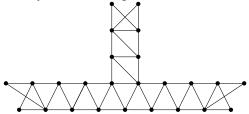
• Find 'nice' \Leftrightarrow conditions for Hamiltonian Paths in 2-trees?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Possibly forbidden subgraphs?

•

Finally to something that is not elementary



A 2-tree with scattering number 1 that is not traceable

• Find 'nice' \Leftrightarrow conditions for Hamiltonian Paths in 2-trees?

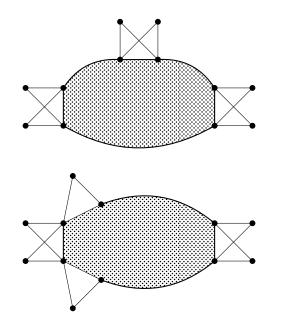
- Possibly forbidden subgraphs?
- Yes but a long list

Theorem

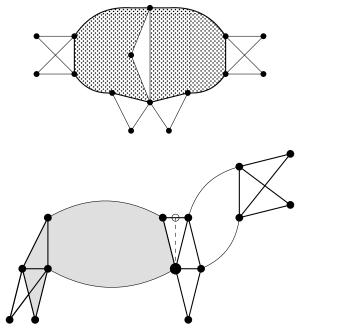
If G is a 2-tree then G has a Hamiltonian Path \Leftrightarrow

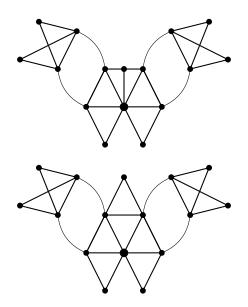
- G has scattering number 1 and
- G has no induced (sub 2-tree) H_a, H_b,..., H_g (7 infinite families)
- Proof uses related results for 2-HP (Hamiltonian path is fixed endpoints)
- If traceable there can induced non-traceable subgraphs, $K_{1,3}$, Nets for example
- 2-tree with a non-traceable induced subgraph that is a 2-tree is not traceable
- Suggests ideas for SEO-induced subgraphs that will apply in more general setting of Chordal graphs

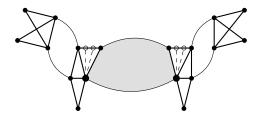
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

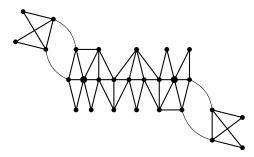


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●





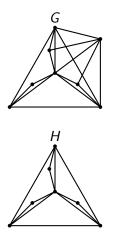


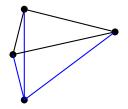


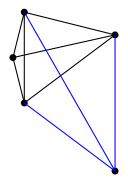
▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

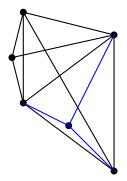
Finally to the title

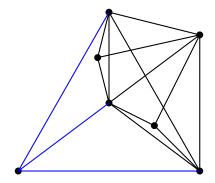
H - NOT Hamiltonian induced subgraph of Hamiltonian G

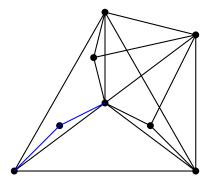












G is a 2,3-Tree (induced subgraph of a treewidth 3 chordal graph) Built joining new vertices to 2 or 3 cliques Consider only subgraphs in a building sequence for forbidden list

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fact (Elementary)

Let G be a chordal graph built with a reverse SEO ordering as $G_0, G_1, G_2, \ldots, G_t = G$ Then G Hamiltonian \Rightarrow each G_i is Hamiltonian

Constructing G by adding simplicial vertices cannot 'patch' a non-Hamiltonian graph into a Hamiltonian graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fact (Restated)

If Chordal G is not Hamiltonian then some G_i in a reverse SEO building sequence is not Hamiltonian and minimal with respect to this property. If G is a family of chordal graphs (closed under SEO induced) then hope for a nice theorem like: G Hamiltonian \Leftrightarrow no SEO induced graph from \mathcal{F}

- Produces a certificate when G is not Hamiltonian
- SEO induced subgraph idea behind proof for forbidden subgraphs for traceable 2-trees
- same idea works for traceable, 1HP, path partition
- Find such for cases where there is an efficient algorithm but no nice characterization/certificates e.g., Ptolemaic graphs, 1HP in interval graphs, ...