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Abstract

We examine degree characterizations for 2-multitrees. These are multigraphs
with underlying tree structure and at most 2 copies of each edge. We provide
characterizations for both when a degree bipartition is given and when it is not
given.
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1 Introduction

A 2-multigraph is a graph for which each edge multiplicity is 1 or 2. We will call a
2-multitree or 2-multiforest such a graph in which the underlying graph is a tree or
forest. We will characterize degree sequences for these. While the proofs are reasonably
straightforward, it is interesting to see how ‘standard’ proofs for characterizations of
degree sequences of trees extend to this setting. Hence we review three different proofs
characterizing degree sequences of trees and forests and then provide parallel proofs
for 2-multitrees and forests.

Unlike degree sequences for trees we get different conditions depending on whether or
not a degree partition is given. Given the degree sequence of a tree and any partition
of this sequence into 2 parts with equal sums, there is a tree with a bipartition such
that the degrees of the parts correspond to the the given partition. The same does
not hold for 2-multitrees. We will also give conditions for a partitioned sequence to
be the degrees of a 2-multitree with corresponding bipartition. Also, unlike the case
for trees, for a given degree sum we can get 2-multiforest realizations with different
numbers of components. We also include discussion of the number of components the
forest realization may have.
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1.1 Review of basic definitions

We start with notation and basic definitions including brief comments on basic defini-
tions to make this self contained even with minimal exposure to graph theory. See for
example standard introductory texts such as [1], [3] for more details on graph theory.

A k-multigraph is a vertex set V along with a multiset E of pairs of distinct vertices
called edges with each edge appearing at most k times. We will not consider loops,
which would correspond to an edge which is a size 2 multiset, with the same vertex
twice. A graph is the case k = 1 and a multigraph is the case where there is no bound
on the number repeated edges (i.e., k =∞). The underlying graph for a k-multigraph
is the graph obtained by keeping one copy of each edge.

A path is a sequence of distinct vertices v1v2, . . . , vt with vivi+1 an edge for each i. A
cycle is as a path except v1 = vt and all other vertices distinct. A graph is connected
if there is a path between each pair of vertices. Components are maximal connected
subgraphs. A forest is a graph with no cycles and a tree is a connected forest. A
graph is bipartite if V partitions into two sets with every edge having one end in each
part. Forests are bipartite. A k-multibipartite graph, k-multiforest, k-multitree has
underlying graph that is bipartite, forest or tree respectively.

The degree of a vertex is the number of edges it is contained in. The degree sequence of a
k-multigraph is the sequence of vertex degrees. Usually we will assume nonincreasing
order d1 ≥ d2 ≥ · · · ≥ dn. A basic result, often called the handshaking lemma is
that degree sequences have even sum (as each edge contributes to 2 vertex degrees).
A realization of a sequence is a k-multigraph with the given sequence as its degree
sequence.

For degree sums we will write
∑
di for

∑n
i=1 di when there is no chance of confusion.

For a sequence we will use the notation nj to denote the number of di = j. While
technically forests might contain components consisting of a single vertex and no edges,
for convenience in notation we will usually omit these trivial cases and assume all vertex
degrees are positive.

The degree bipartition of a bipartite graph is the degree sequence partitioned into two
parts corresponding to the vertex bipartition. The parts have equal sum. We will
refer to a partitioned sequence as a pair of integer sequences with equal sums and an
unpartitioned sequence as an arbitrary sequence.

Characterizations of degree sequences for k-multigraphs, k-multibipartite graphs (in-
cluding the k = ∞ cases of multigraphs and bipartite multigraphs) as well as forests
and trees (the k = 1 case) are well known. In another paper [2] we examine the straight-
forward characterization of multitrees and multiforests (k =∞ case) and observe that
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every degree sequence of a multibipartite graph has a realization as a mulitiforest. This
paper examines the k = 2 case for forests and trees.

1.2 Partitioned vs. unpartitioned sequences

Consider the sequence 4, 4, 3, 3, 1, 1. This can be realized as a 2 multitree (indeed as a
2-multipath) by taking a path on 6 vertices and making the three internal edges have
multiplicity 2.

2-multitree with degree
bipartition (4, 3, 1); (4, 3, 1)

3-multitree with degree
bipartition (4, 4); (3, 3, 1, 1)

2-multibipartite graph
with degree bipartition
(4, 4); (3, 3, 1, 1)

Figure 1: Realizations of (4, 4, 3, 3, 1, 1)

Note that the degree bipartition has parts 4, 3, 1 and 4, 3, 1. Consider the sequence
partition with parts 4, 4 and 3, 3, 1, 1, having equal sum. It is straightforward to check
that there is no 2-multitree or 2-multiforest realization with this equal sum partition.
For 4, 4 and 3, 3, 1, 1, there is a bipartite 2-multigraph realization with this degree
partition and there is a multiforest realization with this degree partition but it uses
edges of multiplicity 3. See Figure 1 for examples of these realizations.

In Section 4 we will give necessary and sufficient conditions for realizability of an
unpartitioned sequence as a 2-multiforest and in Section 5 we consider the case where
the sequence is partitioned into two parts with equal sum.

2 Review of some tree proofs

Note first that as trees on n vertices have n− 1 edges the degree sum is 2(n− 1) from
the handshaking lemma. So ∑

di = 2n− 2 (1)

is a necessary condition for degree sequences of trees. This condition is also sufficient:

Fact 2 (Degree sequences for Trees) For n ≥ 2, positive integers d1, d2, . . . , dn are
the degrees of a tree if and only if

∑
di = 2n− 2.
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We will provide quick proof sketches of three standard proofs of sufficiency. Each will
then have a parallel proof in the 2-multitree setting.

While the third proof below is somewhat longer for trees and is very close to the second
but with different bookkeeping, we present it as its analog in the 2-multi-tree setting is
fairly short. Each proof makes different additional properties more obvious. As these
proofs are elementary and well known, we do not provide details, only a sketch of the
ideas.

We will sketch three proofs of sufficiency after observing a rewrite of the condition and
a connection to forests.

2.1 Alternative version of characterization equation

We observe an alternate way of writing
∑
di = 2n − 2, that will be useful for two of

our proofs. We use the idea that the average degree is about 2. Let N2+ denote the
set of indices i with di ≥ 2 and let n1 denote the number of di = 1. Then the degree
condition of equation 1 becomes

2 +
∑
i∈N2+

(di − 2) = n1 (3)

The ‘excess’ for degrees more than 2 equals two less than the number of 1’s. We can
view this as indicating how many 1’s to add to a sequence of numbers greater than 1
to get the degree sequence of a tree.

Observe that this also makes clear the role of degree 2 vertices. To any sequence
realizable as a forest we can remove or add an arbitrary number of 2’s and still have a
realizable sequence. This corresponds in a realization to either replacing an edge with
a path, i.e., subdividing an edge, or reversing this process. As there are no 3 cycles,
the reverse process does not create multiple edges.

We observe that Equation (3) holds more generally if the sum includes some values
equal to 1 and the right side counts the number of 1’s not included in the sum. That is,
if B is a set of indices that includes all di ≥ 2 and possibly some di = 1 then Equation
(1) becomes

2 +
∑
i∈B

(di − 2) = n− |B|. (4)
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2.2 Forest characterization from tree characterization

It is not difficult to extend the characterization of degree sequences of trees to degree
sequences of forests using the same proof ideas. However it is more convenient to give
the proofs for trees and note the forest version as an easy corollary of the tree version.

Fact 5 (Degree sequences for Forests) For n ≥ 2, t ≥ 0, positive integers
d1, d2, . . . , dn are the degrees of a forest with t+ 1 components if and only if∑
di = 2n− 2− 2t.

Moreover there is a realization with t components each of which is a single edge.

Proof sketch: If the sequence has sum 2n − 2 − 2t then there are at least 2t + 2
ones. Remove 2t ones from the sequence to get a sequence with n− 2t terms and sum
2n−2−2t−2t = 2(n−2t)−2. By Fact 2 we can construct a tree using the remaining
terms. Then add t disjoint edges to realize the original degree sequence. 2

2.3 Proof 1 of sufficiency in Fact 2: Leaf removal

Use induction on n, the sequence size. The basis is the sequence 1, 1 realized by an
edge. A sequence of n ≥ 3 positive integers with sum 2n − 2 contains at least one 1
and at least one di ≥ 2. Remove a 1 and replace some di ≥ 2 by di − 1. The new
sequence has sum 2(n− 1)− 2, so by induction can be realized by a tree. Add a new
vertex with an edge incident to a vertex with the degree di − 1 to obtain a tree with
the specified degrees. 2

We call this leaf removal despite the fact that we actually remove a number, 1, from
the sequence, use induction and then add a leaf. We use the term removal as the
underlying idea is that the tree we construct is built from one with a leaf removed.

Note that this proof shows that given any degree at least 2, there is a realization in
which a vertex with that degree is incident to a leaf. Indeed, by strengthening the
hypothesis it is easy to see there is a realization with a vertex of a given degree d ≥ 2
incident to d− 1 leaves.

Finally this proof shows that given any partition of the sequence into two parts with
equal sums there is a realization in which the partition corresponds to the degrees in
the parts of a bipartition since for any partition with equal sums we can pick a 2 and
a 1 from different parts (except for the sequence 1, 1).

Observe also that if we implement the induction as a recursive algorithm and repeatedly
pick the same index until it reduces to 1 we will construct the same tree as in the
caterpillar construction below.

5



2.4 Proof 2 of of sufficiency in Fact 2: Caterpillar construction

A caterpillar is a tree for which deleting the leaves leaves a path.

If n1 of the di are 1, construct a path with n − n1 vertices. Arbitrarily assign each
di ≥ 2 to a vertex on the path and add di − 2 leaves to the corresponding vertex if
it is not a path end and add di − 1 leaves to the ends of the path. This creates a
caterpillar with the correct degrees on the path and the correct number of degree 1
vertices n1 = 2 +

∑
i∈N2+

(di − 2) by Equation (3). 2

The word caterpillar used in a different context also relates to leaf removal.

Note that this proof shows that given any two degree that are at least 2, there is a
realization in which vertices of these degree are adjacent. It also shows that there is
a realization with a vertex of a given degree d ≥ 2 incident to d− 1 leaves by placing
such a degree on the end of the initial path in the construction. Finally, it shows, by
appropriate placement along the path, that for any partition of the degrees that are
at least 2 there is a realization with an edge whose removal creates two components
with the degrees (that are at least 2) in the components corresponding to the given
partition.

Observe also that instead of starting with a path, we can use any tree on n−n1 vertices
with the degree of the ith vertex at most di for i = 1, 2, . . . , n − n1. Using a path to
start is convenient as the degree property is obvious.

2.5 Proof 3 of sufficiency in Fact 2: Branch repair

We first give a small example. 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1 satisfies the conditions. Par-
tition the values greater than 1 into 2 nonempty part arbitrarily, say 5, 3, 2 and 3, 2.
Pick a value in each to reduce by 1, for example to get 4, 3, 2 and 3, 1. Then spread the
seven 1’s to make each a tree sequence, 4, 3, 2, 1, 1, 1, 1, 1 and 3, 1, 1, 1. By induction
constructs trees with these values then add an edge between the degree 4 vertex and
one of the degree 1 vertices in the other part.

Use induction on the number of di ≥ 2. For the basis the sequence is 1, 1 or d, 1, 1, . . . , 1
where d ≥ 2. Realize 1, 1 as an edge and d, 1, 1, . . . , 1 as a star, a tree with a vertex of
degree d adjacent to d leaves.

Partition N2+, the indices of degrees that are at least 2, into two nonempty parts L
and R. Add 2 − 1 +

∑
i∈L(di − 2) ones to L and replace some di with di − 1 and

similarly for R. This is a partition of the original list with 2 of the d− i reduced by 1
as, by equation (3), n1 = 2 +

∑
i∈N2+

(di − 2) = (1 +
∑

i∈L di) + (1 +
∑

i∈R di). Each
sequence clearly satisfies the degree condition (4) so inductively realize as a tree and
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add an edge between a vertex in each part having the degree that was reduced by 1. 2

Note that this proof shows that for any partition of all degrees into parts with equal
sum there is a realization with an edge whose removal creates two components with the
degrees (that are at least 2) in the components corresponding to the given partition.

3 2-Multiforests when all degrees are even

For degree sequences of 2-multiforests we will get different conditions depending on
whether or not some degree is odd. When all degrees are even a characterization fol-
lows immediately from characterizations for forests. In this case there is no difference
between unpartitioned and partitioned sequences. In addition, the degree sum deter-
mines exactly the number of components in a 2-forest realization. When some degree
is odd there will be a range for the number of components and as observed earlier,
realizability may depend on the partition.

We start by observing an elementary condition when all degrees are even. A general
version for degrees of multitrees with arbitrary multiplicity using the greatest common
divisor of the degrees is also noted in [2].

Fact 6 If G is a 2-multiforest with all degrees even then all edge multiplicities are two.

Proof: If all degrees are even then the edge multiplicities for edges adjacent to degree
1 vertices in the underlying forest are 2. Removing all such we get a forest in which
all degrees are even. Inductively all remaining edge multiplicities are even. 2

Thus a sequence of even integers is the degree sequence of a 2-multitree or 2-multiforest
if and only if the sequence obtained by halving each term is the degree sequence of a
tree or forest. As degree sequences of trees and forests have even sum, sequences of
even integers are degree sequences of 2-multiforests when the degree sum is at most
4n− 4 and is a multiple of 4:

Fact 7 For n ≥ 2, t ≥ 0, positive even integers d1, d2, . . . , dn are the degrees of a
2-multiforest with t+ 1 components if and only if

∑
di = 4n− 4− 4t.

Moreover there is a realization with t components each of which is a pair of vertices
joined by 2 parallel edges.

Proof: Immediate from Facts 5 and 6. 2
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4 2-Multiforests when some degree is odd

When some degree is odd, we start by noting some obvious necessary conditions. We
will need additional conditions which will turn out to imply the obvious conditions.
However, it is worth commenting on the obvious necessary conditions.

Once we establish the slightly less obvious necessary conditions we will give three proofs
which will parallel the three tree proofs, albeit with more cases for the 2-multitree case.

For sequences with some term odd we start by noting three obvious conditions for
degree sequences of multiforests.

As the underlying graph has at most n− 1 edges there are at most 2n− 2 edges in the
multigraph so the degree sum is at most 2(2n−2) = 4n−4. As each vertex is adjacent
to at most n− 1 other vertices with edge multiplicity at most 2, the maximum degree
is at most 2(n − 1) = 2n − 2. As the underlying forest has at least two vertices of
degree 1 and these have degree 1 or 2 in the multiforest, there are at least 2 degrees
that are 1 or 2.

Observe that the analogs of the second two conditions for trees, the maximum degree
is at most n− 1 and at least two degrees are 1 do not need to be stated in the degree
conditions for trees as they follow from being a sequence of positive integers with sum
at most 2n − 2. For 2-multitrees the corresponding conditions do not immediately
follow from the upper bound on the degree sum but it is reasonably straightforward
to show that they follow from the more general necessary conditions that we will now
describe.

Fact 8 Let G be a 2-multiforest on n ≥ 3 vertices with degrees d1 ≥ d2 · · · dn ≥ 1 at
least one of which is odd. Let no denote the number of odd di and n1 denote the number
of di = 1. Then

1.
∑n

i=1 di ≤ 4n− 4− 2n1

2.
∑n

i=1 di ≤ 4n− 4− no

Proof: For the first condition, when some di ≥ 2, the subgraph induced by vertices with
degree at least two is a 2-multiforest on n−n1 vertices. This has at most 2(n−n1− 1)
edges. There are at most n1 edges with one end a vertex with degree 1. Thus there
are at most 2(n − n1 − 1) + n1 = 2n − 2 − n1 edges and the degree sum is twice the
number of edges. If all di = 1 it is easy to check that the inequality holds.

For the second condition observe that every odd degree vertex must be incident to at
least one edge with multiplicity one and each such single edge is incident to at most
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2 odd degree vertices. Hence at least no

2
edges are ‘missing’ from the possible 2n − 2

edges and the degree sum is twice the number of edges, which is at most 2n− 2− no

2
.

2

In the case that n = 2, the sequence 1,1 is realizable (as a single edge) even though the
second condition in Fact 8 fails. This will play a role when we determine the number
of possible components for realizations.

Recall that Fact 7 covers the case when all di are even. The necessary conditions above
are sufficient when some di is odd.

Theorem 9 For n ≥ 3, positive integers d1, d2, . . . , dn with even sum which are not
all even are the degrees of a 2-multiforest if and only if

n∑
i=1

di ≤ 4n− 4−max{no, 2n1} (10)

where no denotes the number of odd di and n1 denotes the number of di = 1. Moreover,
if
∑n

i=1 di ≥ 2n− 2 there is a 2-multitree realization.

Observe that these conditions do imply that at least 2 values are 1 or 2. Using nj for
the number of di = j: n1 + 2n2 + 3n3 + 4(n− n1− n2− n3) ≤

∑n
i=1 di ≤ 4n− 4− no ≤

4n− 4− (n1 + n3)⇒ n1 + n2 ≥ 2.

We will first note an alternative way to write Inequality (10) that will be useful for
our proofs. We will then observe how we can get the result in general from the result
when equality holds in Inequality (10) and discuss the range of numbers of components
that can be realized. Finally we provide three proofs sufficiency of this condition for a
2-multitree realization that parallel the proofs sketched for trees.

4.1 Alternate version of characterization inequality

We will use the following notations. N4+ denotes the set of indices i with di ≥ 4, no
k+

denotes the number of indices i with di ≥ k and odd and ne
k+ denotes the number of

indices i with di ≥ k and even.

It is convenient to rewrite the Inequality (10) in Theorem 9 in a manner similar to what
we did for degree sequences of trees in Equation (3). This is motivated by the the fact
that the average degree is about 4. An easy computation shows that the following is
equivalent to Inequality (10) in Theorem 9.
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4 +
∑
i∈N4+

(di − 4) + max{n3 + no
5+, n1} ≤ n3 + 2n2 + 2n1 (11)

Hence we have two inequalities depending on which term yields the maximum.

4 +
∑
i∈N4+

(di − 4) + no
5+ ≤ 2n2 + 2n1 if n1 ≤ no

3+ (12)

4 +
∑
i∈N4+

(di − 4) ≤ n3 + 2n2 + n1 if n1 ≥ no
3+ (13)

Observe that in the case that we include some values that are 2 or 3 in the sum on the
left and adjust the right side values to count the number of 2’s and 3’s not included in
the sum these are still valid.

We can view Inequalities (12) and (13) as indicating how many ‘small’ (at most 3)
terms are necessary for the sequence to be that of a 2-multiforest.

Observe also that the inequalities are valid when all di are even. Indeed if all di are even
and equality holds in (12) and (13) then

∑
di = 4n− 4 and the sequence is realizable

as a 2-multitree by Fact 7. We will make use of this in our proofs to avoid the need to
check that a ‘new’ sequence has odd terms.

The rewritten inequality also makes clear the role of degree 4 vertices in 2-multitrees.
To (almost) any sequence realizable as a 2-multiforest we can remove or add an ar-
bitrary number of 4’s and still have a realizable sequence. This corresponds in a
realization to either replacing an edge with multiplicity 2 with a path having all edges
with multiplicity 2 or reversing this process. If there are no multiplicity 2 edges re-
place a vertex with degree at least 2 with an edge with multiplicity 2 having one end
adjacent to two edges (creating the new degree 4 vertex) and the other end adjacent
to the remaining edges. If all degrees are 1, we can replace a pair of edges by a star
with a central vertex adjacent to 4 leaves to add a degree 4 vertex. Each of these can
also be reversed. The only case where we cannot add a degree 4 vertex is the sequence
1,1 corresponding to an edge which fails the necessary conditions which apply when
n ≥ 3.

In addition, as long as n1 ≤ no
3+ we see that degree 3 vertices (in pairs to maintain

an even number of odd degree vertices) can added or removed as such vertices play no
role in Equation (12). An edge of multiplicity 1, which exists since some degrees are
odd, can be replaced with a path which alternates edge multiplicity 1 and 2 having
multiplicity 1 edges on both ends. Reversing, i.e., removing pairs of degree 3 vertices
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if n1 ≤ 2 + no
3+ does not have an obvious construction but from equation (12) we do

see that we can delete 3’s from a degree sequence of a 2-multitree with n1 ≤ no
3+ and

still have a 2-multitree realizable sequence.

4.2 2-Multiforests and numbers of components

As noted above we will, in later sections, give proofs for the case where equality holds in
Inequality (10). For now we use Fact 7 and assume that if equality holds in Inequality
(10) there is a connected realization except for the case n = 4 with the sequence
(1, 1, 1, 1).

We will perform reductions on the initial sequence until we get a new sequence where
equality holds. Thus along with the assumption of the previous paragraph we will be
able to get a connected realization of the new sequence except possibly when the new
sequence is (1, 1, 1, 1). However, it is straightforward to check that the reductions will
not result in this sequence.

If there is a strict inequality in Inequality (10), we proceed as follows. Let g = 4n −
4 −max{no, 2n1} −

∑n
i=1 di denote the gap in the inequality. Note that both sides of

the inequality in the condition are even so the gap g is even. Let t = bg
4
c.

Removing a 2 from the sequence or removing a 1 and a 3 together reduces the gap by
2. If n1 > no

3+ (there are more 1’s than larger odd terms), then removing a pair of 1’s
reduces the gap by 2.

Case 1: n1 ≤ no
3+ . Remove 2’s and 3,1 pairs as described above until the gap is 0.

Observe that if n2 = n3 = 0 and Inequality (12) holds then, as the left side is at least
4 + 2no

5+ and the right side is 2n1, we would have n1 > no
3+ , a contradiction. So we

can remove 2’s and 3,1 pairs to get equality. By removing 2’s first it is straightforward
to check that we will not end with a sequence having all terms even. The number of
removals is g

2
≥ 2t.

Realize the remaining sequence as a 2-multitree. Then, for any given s ∈ {0, 1, . . . , t}
we construct a realization of the original sequence with s + 1 components as follows.
Add s components that have one of the degree sequences (3, 2, 1), (3, 3, 1, 1), (2, 2)
corresponding to degrees from removal of a 2 and a 3,1 pair, two 3,1 pairs and two
2’s respectively. These are trivial to realize. For any remaining 2’s and 3, 1 pairs we
replace an edge with multiplicity 1 (which exists as some vertex degree is odd) with a
path having as many internal vertices as the number of 2’s and 3’s then add pendent
edges to a vertex of degree 1 for those corresponding to a 3.

Thus we can get realizations with from 1 to t+ 1 components in this case.
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Case 2: If n1 > no
3+ , let 2r = n1 − no

3+ .

Case 2a: If g ≤ 2r then remove g 1’s. Realize the remaining sequence as a 2-multitree.
This is possible even if the remaining sequence has all even terms as in this case the
sum is 4 times the number of terms in the new sequence minus 4. Add g

2
isolated edges

to get a realization with g
2

+ 1 components. Note that this is 2t or 2t+ 1 components
depending on g modulo 4.

Case 2b: If g > 2r then remove 2r 1’s to get a new sequence with n1 = no
3+ . If some

odd terms remain, proceed as in Case 1, using a gap of g′ = g − 2r and t′ = bg′
4
c.

We can construct 2-multitrees with s ∈ {1, 2, . . . , t′ + 1} components from Fact 7 or
Case 1 and add r isolated edges to get 2-multitrees with between r + 1 and r + t′ + 1
components.

In this case we might have a sequence with all even terms after removing the 1’s. We
will remove g′

2
2’s and realize the remaining sequence as a 2-multitree by Fact 7. We

add r isolated edges and then proceed with the g′

2
2’s as in Case 1, using one of the r

edges as an edge with multiplicity 1.

To complete Case 2 we need to consider minimizing the number of components. If∑
di ≥ 2n−2 we will be able to get 1 component and any number up to the maximums

noted above. If
∑
di = 2n − 2 − 2u we need at least u + 1 components as this is the

minimum number of components on any graph with this degree sum. We will be able
to get u + 1 components and any number up to the maximums noted above. We can
easily get u + 1 realizing as a forest by Fact 5 but will need to do a little more to get
all values in the range we have described.

If there is an isolated edge uv and an edge xy with multiplicity 2 (in some other
component). Then removing edges uv and xy and adding edges ux and vy produces a
new 2-multitree with one less component. Call this an edge switch. We can repeatedly
perform edge switches until either there are no remaining isolated edges or there are no
remaining edges of multiplicity 2. It is straightforward to check using the handshaking
lemma that the numbers of edges with multiplicity 2 are correct to obtain the ranges
described in the previous paragraph.

To summarize informally, we have described how to construct realizations where the
number of components is 1 plus the one fourth the gap plus up to an additional one
fourth the gap depending on the number of ‘excess’ 1’s. Below we will show that it
is impossible to have more components. The minimum number of components is 1,
i.e., there is a connected realization, if the degree sum is at least 2n − 2 and if the
degree sum is smaller, the minimum number of components is the same as the number
of components for a regular forest. Note that this is only when some degree is odd. If
all degrees are even there is only one possible value for the number of components as
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in Fact 7. We state this as follow. The details for converting the values from the cases
omitted above are omitted and straightforward.

So assuming the results we will show below, that there is a connected realization when
equality holds in the condition for Theorem 10, we have already described all but the
upper bounds on components in the following.

Fact 14 Let positive integers d1, d2, . . . , dn, not all even, satisfy the conditions of The-
orem 9 to be realized as a 2-multiforest. There are 2-mulitforest realizations with the
number of components between the minimum and maximum values noted below.

If
∑
di ≥ 2n−2 there is a connected realization. The minimum number of components

is 1.
If

∑
di = 2n− 2− 2t the minimum number of components is t+ 1.

Let g = 4n− 4−max{no, 2n1} −
∑n

i=1 di and let no
3+ denote the number of odd di ≥ 3

and n1 denote the number of di = 1. Also let δ = 1 if both g and n1−n0
3+ are 2 modulo

4 and δ = 0 otherwise.

The maximum number of components is:
1 + bg

4
c if n1 ≤ no

3+.

1 + bg
4
c+ bn1−n0

3+

4
c+ δ if n1 > no

3+ and n1 − n0
3+ < g.

1 + g
2
if n1 > no

3+ and n1 − no
3+ ≥ g.

We outline a proof to show the maximum bounds on number of components.

Consider first a realization T with c components F1, F2, . . . , Fc, none of which is a single
edge with degrees 1, 1. Each component has a vertex with degree at least 2. Add a
2-edge between a pair of vertices with degree at least 2 for each Fi, Fi+1 to form G′.
G′ is a 2-multitree with the same n, no, n1 as G and

∑
d′i =

∑
di + 4(c − 1). Since

4(c − 1) +
∑n

i=1 di =
∑n

i=1 d
′
i ≤ 4n − 4 − max{no, 2n1} we have g ≥ 4(c − 1). So

c ≤ bg
4
c+ 1.

When n1 ≤ n3+ the previous construction and bound hold even if some of the Fi are a
single edge as including these only decreases n1 and thus does not change max{no, 2n1}.
If n1 > n0

3+ consider any realization and let c1 be the number of components that
are a single edge. The subgraph after omitting these edges has gap g′ = g − 2c1 if
2c1 ≤ n1 − no

3+ . So by the previous paragraph this subgraph has at most bg−2c1
4
c + 1

components and the original graph has at most c1+bg−2c14
c+1 = bg+2c1

4
c+1 components.

As the gap must stay positive 2c1 ≤ g so c1 ≤ g
2

and we get the bound 1 + g
2

when
n1 > no

3+ and n1 − no
3+ ≥ g.

If n1 > no
3+ and n1−n0

3+ < g we still have the bound bg+2c1
4
c+1 as long as 2c1 ≤ n1−no

3+ .

13



This matches the stated bound for this case. If 2c1 > n1 − no
3+ the subgraph obtained

by omitting exactly
n1−n3+

2
of the single edge components has its max term attained

by the new n1. So the bound of the first paragraph applies and we again get at most

bg+2c1
4
c+ 1 = bg+n1−no

3+

4
c+ 1 which is the given bound.

4.3 All degrees at most 3

In each of the three alternate proofs below we will need a basis involving cases when
all degrees are at most 3. For convenience we do this separately.

If all di ≤ 3 and equality holds in Inequality (12) or (13), the left side is 4. It is straight-
forward to check that the sequence must be one of (3, 3, . . . , 3, 2, 2) or (3, 3, . . . , 3, 2, 1)
or (3, 3, . . . , 3, 1, 1) or (3, 1, 1, 1). The first three are realized by paths with edges al-
ternating multiplicity 1 and 2 with the multiplicities of first and last edge determining
whether the end vertex degrees are 2, 2 or 2, 1 or 1, 1. The sequence (3, 1, 1, 1) is realized
by a vertex adjacent to 3 leaves.

4.4 Proof 1 of ‘if ’ in Theorem 9: Leaf removal

We prove ‘if’ in Theorem 9 for the case that equality holds in the condition of Inequality
(10) parallel to the leaf removal proof for trees.

Note first that at least two of the di are 1 or 2: n1 + 2n2 + 3n3 + 4(n−n1−n2−n3) ≤∑n
i=1 di ≤ 4n− 4− no ≤ 4n− 4− (n1 + n3)⇒ n1 + n2 ≥ 2.

Proceed by induction on n. The basis has been noted above.

We consider several cases. In each case we create a new sequence, form a new 2-
multitree by induction and add a new vertex with either 1 or 2 edges to an existing
vertex. In the underlying graph the new vertex is incident to the inductive tree and
has degree 1 so the new underlying graph is connected and has no cycles, hence we get
a 2-multitree.

Induction case 1: If n2 ≥ 1 and some di ≥ 4 then create a new sequence with one less
2 and some di ≥ 4 replaced with di − 2. The new sequence has degree sum 4 less than
the original. The new sequence has the same n1 and no and as it has n− 1 terms the
right side in the condition is 4 less than the original. By induction the conditions hold
for the new sequence. Add a new vertex with 2 edges to a vertex with degree di − 2.

Induction case 2: If n1 ≥ 1, some odd di ≥ 3 and no ≥ 4 then create a new sequence
with one less 1 and some odd di ≥ 3 replaced with di − 1. The new sequence still has
at least one odd entry and has degree sum 2 less than the original. The new sequence

14



has one less 1 and 2 less odd entries and n− 1 terms so the right side of the condition
is 2 less than the original. By induction the conditions hold for the new sequence. Add
a new vertex with 1 edge to a vertex with degree di − 1.

Induction case 3: If n1 = no (all odd entries are 1’s) and some di ≥ 4 then create a new
sequence with one less 1 and some di ≥ 4 replaced with di − 1. The new sequence has
degree sum 2 less than the original. The new sequence has one less entry that is 1 and
the same no. However as n1 = nodd and n1 ≥ 2 the max in the right side is attained
by 2n1 and is 2 smaller than the original. As also the new sequence has n − 1 terms
the sum in right side of the condition is 2 less than the original (4 less for the sum and
2 more for the max). By induction the conditions hold for the new sequence. Add a
new vertex with 1 edge to a vertex with degree di − 1.

If none of the cases can be applied and some entry is at least 4 then there are no 2’s,
exactly 2 odd entries, a 1 and a 3. By the condition, the sum must be at most 4n− 6
but this is impossible as there is one 1, no 2’s and one 3. 2

4.5 Proof 2 of ‘if ’ in Theorem 9: Lobster construction

We prove ‘if’ in Theorem 9 for the case that equality holds in the condition of Inequality
(10) parallel to the caterpillar construction proof for trees.

Recall that a caterpillar is a tree for which removal of leaves leaves a path. That is, a
caterpillar is a path with pendent edges attached. A lobster is a tree for which removal
of leaves leaves a caterpillar. That is, the process of removing leaves twice leaves a
path. We will construct a 2-multitree with underlying tree that is a special type of
lobster, a path with pendent edges and pendent paths of length 2.

The cases where all degrees are at most 3 have been noted above so we assume some
term is at least 4 and hence the shell we describe below is nonempty.

Before the more formal description we note Figure 2. We begin with a ‘shell’ which
is an underlying path along with some pendent edges and will attach three different
types of pendent graphs. We use 3 parameters for the shell, r, s, t which correspond to
the number of degree 3, degree 4 and degree 5 vertices in the shell (except each end
of the path which will have degree 1, 2, or 3 treated as degree 3, 4 or 5 respectively
for internal vertices). Always r will be even. Even though we could avoid pendent
edges in the shell and add single pendent edge in the construction we do it as below
for convenience in keeping track that parities are correct. What we need to check is
that we can pick the sizes r, s, t, x, y, z and make the attachments to get the desired
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degree sequence.

r s t x y z

Shell Attachments

Figure 2: Lobster Construction Example

Use R, S, T to denote the vertices of the path on the shell with degrees 3,4,5 respec-
tively so |R| = r, |S| = s, |T | = t. Specifically we have vertices v1, v2, . . . , vr+s+t with
edges v2i−1v2i having multiplicity 1 for i = 1, . . . r

2
and all other edges vjvj+1 having

multiplicity 2. In addition we add new vertices and pendent edges to these vertices for
vr+s+1, . . . , vr+s+t. That is, every other edge has multiplicity 1 in R and pendents are
attached to T . We will further split r = r1 + r2 with r1 the number of 3’s assigned
to vertices in R and r2 the number of odds at least 5. The degree sum in the shell is
3r + 4s+ 5t− 4.

We describe three types of pendent graphs. These are: vertices a, b, c with ab having
multiplicity 2 and bc with multiplicity 1; vertices a, b with edge ab with multiplicity 2;
vertices a, b, c with edges ab and ac each having multiplicity 1. We will use x, y, z to
denote the number of each used. In each case we will attach with vertex a corresponding
to a vertex in the path of the shell.

There will be 3 cases. In each we need to check that once we have specified r, s, t, x, y, z
and the attachments, the number of degree 1,2,3 vertices is correct and that the ad-
ditional degrees from the pendent graphs are correct to get the correct degrees on the
shell. The difference between the ‘target’ degree of vertices on the shell and their de-
gree on the shell will be even and as attachments increase degree by 2 we do not need
to check parity.

Correct number of degree 1 vertices: n1 = x+ 2z + t
Correct number of degree 2 vertices: n2 = y
Correct number of degree 3 vertices: n3 = r1 + x
Correct degree requirements: 2x+2z+3r+5t = 4no

5++3r1+n3+2n1−max{n3+n
o
5+, n1}.

To see the degree requirement equation, the degree requirements on shell match those
provided by attachments:

∑
R∪S∪T di−(3r+4s+5t−4) = 2x+2y+2z. Using Inequality
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(11) at equality, noting that in each case we will have R∪S∪T equal to all values at least
4 plus r1 3’s we get

∑
R∪S∪T di = 4ne

4++4no
5++3r1+n3+2n2+2n1−4−max{n3+n

o
5+, n1}.

Then noting that in each case we will assign the even values at least 4 to vertices of
S (so s = ne

4+) and we will set y = n2 we get the degree requirement equation noted
above.

We consider 3 cases. In each case checking that the 3 degree requirement equation
above holds is straightforward.

Case 1: n1 ≥ no
3+. Let r = 0, s = ne

4+ and t = no
5+ assigning N o

5+ = T in any order.

Also x = n3, y = n2 and z =
n1−no

5+−n3

2
(the numerator here is even as there are an

even number of odd values).

Case 2: n1 ≤ no
3+ and n1 ≤ no

5+. Let r = no
5+ + n3 − n1 with r1 = n3, s = ne

4+ and
t = n1 assigning any n1 values from N o

5+ to T in any order and the rest of N o
5+ along

with all 3’s to R. Also x = 0, y = n2 and z = 0.

Case 3: n1 ≤ no
3+ and n1 ≥ no

5+. Let r = r1 = no
5+ + n3 − n1, s = ne

4+ and t = no
5+

assigning all n1 of N o
5+ to T in any order and no

5+ +n3−n1 3’s to R. Also x = n1−no
5+,

y = n2 and z = 0. 2

4.6 Proof 3 of ‘if ’ Theorem 9: Branch repair

We prove ‘if’ in Theorem 9 for the case that equality holds in the condition of Inequality
(10) parallel to the branch repair proof for trees.

Use induction on the number of di ≥ 4. The basis is a sequence with (at most) one
value d ≥ 4 and n3 threes, n2 twos and n1 ones. If there is a d ≥ 4 start with a vertex
v and add n2 vertices adjacent to v with an edge of multiplicity 2. Additional edges
will depend on whether n1 > n3 or n1 ≤ n3.

If n1 > n3 then we have d = n3 + 2n2 +n1, add n3 pairs of vertices x, y with x adjacent
to v with an edge of multiplicity 2 and x adjacent to y with an edge of multiplicity 1,
and add n1 − n3 leaves adjacent to v. This gives the correct degrees.

If n1 ≤ n3 then we have d + δ = 2n2 + 2n1 where δ is 1 if d is odd and 0 otherwise.
Add n1− δ pairs of vertices x, y with x adjacent to v with an edge of multiplicity 2 and
x adjacent to y with an edge of multiplicity 1 and add a vertex adjacent to v with an
edge of multiplity 1 if δ = 1. Finally replace some edge of multiplicity 1 with a path
having n3 − n1 + δ (which is even) vertices and every other edge having multiplicity 2
with the end edges having multiplicity 1. This gives the correct degrees.

Let N4+ denote the set of indices i with di ≥ 4. Partition N4+ into two nonempty parts
L and R. Pick an entry in each sequence and decrease it by 2. We will distribute the
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1’s, 2’s and 3’s to L and R so that each part satisfies the conditions for realizability.
By induction realize the parts and add an edge of multiplicity 2 between vertices
corresponding to the values that were decreased by 2 to get a realization.

We observe that when inequalities (12) and (13) hold with equality and there are no
odd di, we have

∑
di = 4n − 4 which is realizable as a 2-multitree. Hence we do not

need ensure that each part of the split has an odd value. We use n′, d′i, . . . and n′′, d′′i , . . .
for the values in the parts L and R.

Case 1: n1 ≥ no
3+. We have 4 +

∑
i∈N4+

(di − 4) = n3 + 2n2 + n1 and need to choose
n′1 +n′′1 = n1, n

′
2 +n′′2 = n2, n

′
3 +n′′3 = n3 so that 4−2+

∑
i∈N4+

(d′i−4) = n′3 +2n′2 +n′1
and 4− 2 +

∑
i∈N4+

(d′i− 4) = n′′3 + 2n′′2 +n′′1. The -2 in each case is as we have reduced
one value in L and R by 2. We get the equalities immediately but also need that
n′1 ≥ n′o3+ and n′′1 ≥ n′′o3+ to be in the correct case for induction. Initially place n′o5+
1’s in L and n′′o5+ 1’s in R. This is possible as n1 ≥ n3 + no

5+ and the left side of each
equation is at least the number of odds that are at least 5. There are still at least n3

unplaced 1’s so we can ensure that for each 3 placed in L or R we also place another
1 to n′1 ≥ n′o3+ and n′′1 ≥ n′′o3+.

Case 2: n1 ≤ no
3+. We have 4 +

∑
i∈N4+

(di − 4) + no
5+ = 2n2 + 2n1 and need to choose

n′1+n′′1 = n1, n
′
2+n′′2 = n2, n

′
3+n′′3 = n3 so that 4−2+

∑
i∈N4+

(d′i−4)+n′o5+ = 2n′2+2n′1
and 4 − 2 +

∑
i∈N4+

(d′′i − 4) + n′′o5+ = 2n′′2 + 2n′′1. The -2 in each case is as we have
reduced one value in L and R by 2. We get the equalities immediately but also need
that n′1 ≤ n′o3+ and n′′1 ≤ n′′o3+ to be in the correct case for induction. The left side of
each equation is at least twice the number of odds that are at least 5. So we initially
place 1’s so that at most n′o5+ are in L and at most n′o5+ are in R. For each remaining
1, if any, when we place it in L or R we also place 3 in the same set. This is possible
as n1 ≤ no

3+ and 3’s do not play a role in the equation. Hence we can place the 1’s, 2’s
and 3’s so that we get equality and maintain n′1 ≤ n′o3+ and n′′1 ≤ n′′o3+. 2

5 Partitioned degree sequences for 2-multiforests

Recall that forests are bipartite, the vertices can be partitioned in two parts so that all
edges are between the parts. Thus the degree sequence partitions into two parts with
equal sum. For trees and forests it is easy to see that given any partition of the degree
sequence into two parts with equal sum there is a tree/forest realization for which the
bipartite degree sequences corresponds to the given degree partition. For example, the
standard proof using induction, removing one 1 from the sequence, reducing by 1 an
entry that is at least 2 an using induction can easily be modified so the the 1 and the
larger entry are from different parts.
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We have already observed in Section 1.2 examples where the partition matters for
2-multiforests.

Our goal now is to describe conditions on a partitioned sequence which characterize
when there is a 2-multiforest realization. We have already noted in Section 3 that in
the case that all degrees are even realizability does not depend on the partition. For a
partitioned sequence if all values are even the overall sum is a multiple of 4 and there
is a realization with this (indeed any) partition.

In the following we need at least 3 terms as the sequence 1, 1 fails the conditions but
is realized as a single edge.

Theorem 15 For n = r+s ≥ 3, positive integer sequences a1, a2, . . . , ar and b1, b2, . . . , bs
with at least one of the ai or bj odd having

∑
ai =

∑
bj = e (the number of edges) are

the partitioned degrees of a 2-multiforest if and only if e ≤ 2n − 2 − max{no
a, n

o
b, n1}

where no
a denotes the number of odd ai, n

o
b denotes the number of odd bj and n1 denotes

the total number of 1’s in both sequences.

Proof: The necessity of the conditions parallels Fact 8;

To show e ≤ 2n − 2 − n1, consider a1, a2, . . . , ar and b1, b2, . . . , bs as an unpartitioned
sequence and use Fact 8 and

∑
ai =

∑
bj.

To show e ≤ 2n − 2 − no
a (and similarly e ≤ 2n − 2 − no

b) note that each odd degree
vertex among the ai is incident to at least one edge with multiplicity one and each
such single edge is incident to at most one odd degree among the ai. Hence at least no

a

edges are ‘missing’ from the possible 2n− 2 edges.

For sufficiency of the conditions we outline a proof along the lines of the leaf removal
proof of Theorem 9. As it is similar we omit some details. This proof will include the
strict inequality portion and use induction on e rather than n.

For the basis, if e ≤ n− 1 then we can realize as a forest by Fact 5. Observe that this
includes the case that all values (in both parts) are at most 2. In addition, if all values
are 2’s there is a realization as a disjoint union of edges of multiplicity 2.

In each of the following cases removing the smaller value and reducing the other by
this smaller value produces new partitioned sequence that satisfies conditions as can
easily be checked.

(a) Remove a 1 in one part and reduce an odd value that is at least 3 in the other part
by 1.

(b) Remove a 1 in one part and reduce an even value that is at least 4 in the other
part by 1 if the maximum is not the number of odds in the part not containing the 1
(in particular if the only odd values in that part, if any, are 1’s).
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(c) Remove a 2 in one part and reduce a value that is at least 4 in the other part by 2.

(d) Remove a 2 in one part and reduce a value that is exactly 3 in the other part if n1

is not the maximum (in particular if there are no 1’s in the part with the 2).

Note that there is some value at most 2 as the degree sum is at most 4n− 4. We may
assume that some ai ≤ 2. We can use induction, removing some ai using one of (a) -
(d) unless all bj ≤ 2. Then, again using one of (a) - (d) we can remove some bj ≤ 2
unless all ai ≤ 2. So we can assume all ai, bj ≤ 2, which is covered by the basis. 2

6 Conclusion

Informally, the underlying forest has at most n− 1 edges, so 2n− 2 edges if each has
multiplicity 2. We subtract the number that are forced to have multiplicity 1 by parity
conditions in each part or by having degree 1.
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