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2-COMPETITION GRAPHS*

GARTH ISAAKf, SUH-RYUNG KIMz 2, TERRY A. McKEE, F. R. McMORRIS,
AND FRED S. ROBERTS ’2

Abstract. If D (V, A) is a digraph, its p-competition graph for p a positive integer has vertex set V and
an edge between x and y if and only if there are distinct vertices a, , an in D with (x, a and (y, a) arcs
of D for each 1, , p. This notion generalizes the notion of ordinary competition graph, which has been
widely studied and is the special case where p 1. Results about the case where p 2 are obtained. In particular,
the paper addresses the question of which complete bipartite graphs are 2-competition graphs. This problem is
formulated as the following combinatorial problem: Given disjoint sets A and B such that A tO BI n, when
can one find n subsets of A tO B so that every a in A and b in B are together contained in at least two of the
subsets and so that the intersection of every pair of subsets contains at most one element from A and at most
one element from B?
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1. Introduction. Suppose that D (F, .4) is a digraph, loops allowed. (For all un-
defined graph theory terminology, see ], 9 ].) Ifp is a positive integer, the p-competition
graph corresponding to D, Cp(D), is defined to have vertex set F and to have an edge
between x and y in F if and only if, for some distinct al, ap in F, (x, al), (y, a ),
(x, a2), (y, a2), (x, ap), (y, a) are in.4. This concept was introduced in [5] as a
generalization ofthe special case where p 1, which has been studied by many authors.3

The 1-competition graphs were motivated by a problem in ecology and have applications
to a variety of fields, as summarized in [8]. The p-competition graphs have a similar
motivation and similar applications to other fields. The ecological motivation is as follows:
The vertices ofD are considered species in an ecosystem, and there is an arc from species
x to species a if x preys on a. Then x and y are joined by an edge in the p-competition
graph if and only if they have at least p common prey. The literature of 1-competition
graphs, otherwise known as competition graphs, is summarized in [4], [6], and [8]. In
this paper, we study the special case where p 2.

It is easy to reduce the study ofp-competition graphs to a combinatorial problem
that itself is of interest. Suppose that G is a graph and that F { S, Sr is a family
of subsets of the vertex set of G, repetitions allowed. We say that F is a p-edge clique
covering, or p-ECC, if, for every set of p distinct subscripts l, i2, ip, T Si t3
Si2 t 3 Sip is either empty or induces a clique of G, and the collection of sets of the

Received by the editors January 26, 1990; accepted for publication (in revised form) July 25, 1991.
? Department of Mathematics and Computer Science, Dartmouth College, Hanover, New Hampshire

03755.
$ Department of Mathematics, St. Johns University, Staten Island, New York 10301.
Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435. This author’s

research was supported by Office of Naval Research grant N00014-88-K-0163.
Department ofMathematics, University ofLouisville, Louisville, Kentucky 40292. This author’s research

was supported by Office of Naval Research grant N00014-89-J- 1643.
Department of Mathematics and Rutgers Center for Operations Research, Rutgers University, New

Brunswick, New Jersey 08903.
This author’s research was supported by Air Force Office of Scientific Research grants AFOSR-89-0066,

AFOSR-89-0512, and AFOSR-90-0008.
Those who are familiar with the competition graphs literature will note that we do not assume that the

digraph D is acyclic, as is often assumed in that literature.

524



2-COMPETITION GRAPHS 525

form T covers all edges of G. Let 0(G) be the smallest r for which there is a p-ECC F.
(A 1-ECC is an ordinary edge clique coveting. Edge clique coverings have played a
central role in the theory of competition graphs; cf. [10 ].)

THEOREM (see [5]). A graph G with n vertices is a p-competition graph if and
only ifOPec(G) <- n.

Proof. Suppose that G Cp(D), where D (V, A), and let V(G) v l, vn ).
For each i, let Si { vj: (vj, vi A ). It is easy to verify that the family of S; is a p-ECC.
Conversely, suppose that G and a p-ECC F $1,’", Mr), r <= n, are given. Now
define D (V, A) on V V(G) by letting (v, v) A if and only if v; 6 S. It is easy to
verify that G C,(D). E]

COROLLARY. A graph G with n vertices is a p-competition graph if and only if G
has a p-ECC consisting ofn sets.

Proof. Suppose that F is a p-ECC of r < n sets. Since repetitions are allowed in F,
we can add n r copies of the empty set to F to obtain a p-ECC of size n. []

Kim et al. [5] obtain a number of results about p-competition graphs in general;
for example, they extend the basic results about ordinary competition graphs obtained
in 2 ], 7 ], and 11 ]. They also obtain a variety of results about 2-competition graphs.
For instance, they show that all trees are 2-competition graphs, all unicyclic graphs are
2-competition graphs except the 4-cycle C4, and all chordal graphs are 2-competition
graphs. In this paper, we study the question: What complete bipartite graphs are 2-
competition graphs?

A graph G Km,x is a complete bipartite graph if the vertices are partitioned into a
pair ofdisjoint sets A and B ofm and x vertices, respectively, and there is an edge between
two vertices if and only if they are in different sets. By virtue ofthe corollary to Theorem
1, the question of whether Km,x is a 2-competition graph is reduced to the combinatorial
question: If A tO B m + x n, are there n subsets ofA t3 B (not necessarily distinct)
so that (i) for all a e A and b e B, a and b are contained in at least two sets, and (ii)
each pair of elements from A appears together in at most one set, and similarly for each
pair of elements from B? In 2 we study this question for general m and x, showing
that for fixed m, there are real numbers a(m) < b(m) < c(m) so that Km, is not a 2-
competition graph for x e [a(m), b(m)] and Km, is a 2-competition graph for x >_-
c(m). In 3 we answer the question entirely for the special case where m 2. In 4
and 5 we consider the special cases where m 3 and m x. Finally, 6 gives closing
remarks and open questions.

2. Fixed m and arbitrary x. In this section, we study Km,x for arbitrary m and x.
We show that for fixed m, Km,x is a 2-competition graph for all x sufficiently large.
However, when m is sufficiently large (at least 24), we show that there is an interval of
intermediate values ofx for which Km,x is not a 2-competition graph. We do not yet have
evidence to dispute the conjecture that, for all x

_
m >= 2, if Km,x is a 2-competition

graph, then so is Km,x+l. Our results in the next section do prove this conjecture for
m 2 (though we do not have a direct proof).

THEOREM 2. For every m -> 1, Km,x is a 2-competition graph for all x suffi-
ciently large.

Proof. Given m and x, let y be an integer such that x <= yZm, let C be the set of all
(2m)-tuples c (c, 2m) with entries from { 1, 2, y}, and let C’ be the set of
all (2m )-tuples d (dl, d2m- 1) with entries from { 1, 2, y }. Let B be any
subset of C with BI x. Note that CI yZm and C’[ y2m-1. Let G Km,x have
one independent set Ul, Um } and the other independent set B. Build a 2-ECC for
G as follows. Given =< =< 2m and cin B, define c/i (cl, ci-l, ci+ 1, C2m).
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Note that c is in C’. Given =< =< 2m and given d in C’, let

Sid Uri/} U { C e B: c/i d}.
Thus the family of all such sets has 2my2m- members. To see why they form a 2-ECC,
first fix u;. Then any c in B appears with u in e- 2Sc/2i. ui UjOc/(2i-1) and Also, and never
appear together if 4: j. Finally, consider c 4: c’ in B. Then there is some i, so that ci 4:
c;. It follows that when j 4: i, then, for any d in C’, either c or c’ is not in S. We next
show that c and c’ appear together in at most one S.

Case 1. For some j 4: i, cj 4: cj. Here for every d in C’, either or ’ is not in S.
Case 2. For all j 4: i, cj cj. Here c c’/i and c and c’ both appear in the set

Sic/ Sc,/i. However, whenever d in C’ is different from c c’/i, neither c nor c’ is
in S.

We conclude that G is a 2-competition graph as long as the number of sets in the
family is at most the number of vertices of G; i.e.,

2my2m- <= m +x
or

2my2m- m <= x.
Thus we have shown that Km,x is a 2-competition graph whenever

(2) 2my2m m <= x <= y2m,
i.e., whenever x belongs to the interval

Iy 2my2m- m, yzm].

Note that Iy 4: if y >_- 2m. Note also that, if y is sufficiently large, say y >= Y (where
Y >_- 2m), then

2m(y+ )m- <_ ym,
and therefore

2m(y+ )2m- m <- y2m.

Thus, for all y

_
Y, the intervals Iy and Iy /l overlap. It follows that, for all x ->

2mY2m- m, Km,x is a 2-competition graph.
COROLLARY. Km,,:,, is a 2-competition graph whenever rn >- and y >- 2m.
Proof. By the proof, Km,x is a 2-competition graph as long as (2) holds. However,

(2) holds ifx y2m and y >-_ 2m.
We now introduce the following notation, which we use throughout this section.

Let A { a, ..., am } and B { b, .’., bx }. Let S, ..., St be a 2-ECC for Km,x with
bipartition A and B. Suppose that v1 is the number of sets Si containing bj and v
min vj. (In calculating vj, if a set S and a set S are the same for 4: k, we count
them both.)

LEMMA 3. It holds that

+/1 +8mv>=
2

Proof. Given j, note that, for each i, there are two distinct subscripts a(i) and/3(i),
so that sets Sti) and Sati) both contain a and bj. The pairs { Sti), Sate)} are all different
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because, if { Sa(i), SB(i } { Sa(k), (k) } for q: k, then ai and ak are in two sets together,
which is impossible. It follows that

(vJ)>=m’2
and so () >- m. Thus v 2 v 2m >_- 0. Using the quadratic formula and the fact that

1-/1 +8m
<0_-<v,

2

we conclude that v >_- / /1 / 8m)/2. E]

Remark. Suppose that u; is the number of sets Sj. containing ai (again, with multiple
counting as for vj) and u min u;. By symmetry,

1+/1 +8x
2

LEMMA 4. IfS, St is a 2-ECCfor Km,x, then >= v2x/(v + x ).
Proof. We may assume that all of the S are nonempty and contain an element of

B. Otherwise, we remove the empty sets and those not containing elements of B, and
we still have a 2-ECC with the same v; the result follows for the original 2-ECC from the
result for the new 2-ECC. Let S S; N B. Thus we may assume that all of the S are
nonempty.

We next note that since each b is in at least v sets S, we have that

(3) Z ISl >-xv,
i=1

Note that no pair of elements from B is together in more than one set S, and so

_. 2 2

Using the Cauchy-Schwartz inequality and (4), we have that

]2(5) ISl 7] ISl < Z ISl = Z ISl <x=-x
i=1 i=1 i=1 i=1

Since no S is empty, = Sl >-- t. Then, by (5) and (3),

i=1 i=1

so >= 1)2X/(l) / X- 1). if]

Remark. By symmetry, if u is defined as in the Remark after Lemma 3, we have
that >-_ uZm/( u / m ).

Remark. It follows from Lemma 4 and Theorem that Km,x is not a 2-competition
graph if

(6) m+x<
l)2X

vWx-1
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By symmetry, the same conclusion holds if

m+x<
bl2m

u+m-1

THEOREM 5. Forfixed m >= 24, Km,x is not a 2-competition graph if

xI m+12 ]/m2+4m+ l-2m]/l ,----t-m+l /m2+4m+ l-2m]/l

Proof. Let 3, /1 + 8m. By Lemma 3, v >= (1 + 3,)/2. Since x _-> (by tacit
assumption) and v >= 1,

/)2x
ix(v)

v+x-1

is increasing in v for fixed x. (This is easy to check by taking the first derivative.) It
follows that, since v > + 3’)/2,

2
x

I2X
1+3, v+x-1
+x-

2

Hence, if we can show that

(7) m+x<
1+3,+x-

then (6) follows. However, since x >- and since

+..3, ]2 + 3’ + 2m
2 J 2

we see by cross-multiplying that (7) holds if and only if

F(x)=x2+(-1-m)x+[3"-1]2
m<O.

Thus, for given m, this holds if x is between the roots of the quadratic F(x), namely,

+m+/m2+2m+ 1-2(3"- 1)m m + "!Vm2 + 4m + 2m/i + 8m

2 2 2

This proves the desired result. Note that the hypothesis m >- 24 is needed for

m2+4m+ 1-2m/1 +8m

to be nonnegative, and hence for

Vm2 + 4m + 2ml + 8m

to be defined (to give a real number). For m < 24, the square root is undefined, and
there are no real roots of the quadratic F(x); hence F(x) < 0 is never the case.
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COIOI.LAIY 1. Forfixed rn large, Km,x is not a 2-competition graph for

/1 + 8m 3 /1 + 8m )x
2 +,m- 2

-1

Proof. Consider

g(m) [m2 + 4m + 2m/1 + 8m] 1/2 m[1 + 4/m + 1/m2- /4/m2 + 32/m] 1/2.

Using the binomial theorem and the notation o( for terms that go to zero as m goes
to o, we find that

g(m) m{1 + 1/2 [4/m + 1/m2- /4/m2 + 32/m] + 1/2(-1/2)
2

[4/m + 1/m2

]/4/m2 + 32/m] -} + o(1)

rn + 1/2[4 + 1/m /4 + 32m] [4/fm + 1/m3/2 /4/m + 32] 2 + o(1)

m- /1 + 8m-2.

Thus

rn + g m rn [ m /1 + 8m
2 2 2+ 2 2

-1
/1 +8m 3

2 2’

and

] /1 +8mrn + g m rn rn /1 + 8m
rn ff-+ 2 2 ++ 2 2 2 2"

COROLLARY 2. Forfixed m large, Km,x is not a 2-competition graph for
xe(Z+m+l +2(m+ 1),(m-Z)Z).

Proof. By symmetw, Corolla holds with m and x reversed. Thus, for fixed x
large, Km,x is not a 2-competition graph for

(l+8x 3 l+8x 1)m
2 +,x- 2 -Since 1 + 8x < + 1, we have that Km,x is not a 2-competition graph for fixed x

large and

me +,x- 2

i.e., for

(8)

Note that

(9)

m(2x+2, x- 2x-1).

m> 2x+2--m-2> 2x
x < 1/2(m 2) 2.

(The second equivalence follows, since rn 2 > 0.)
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Let z x (using the positive square root). Then, using the quadratic formula and
the fact that z > 0, we have that

m < x- Vx- -- m < z2 Vz-
z2-Vz-(m+ 1)>0

(10)
,--, z> 1/2[ + /2 + 4(m + 1)]- x> 2 + m+ l/i + 2(m+ 1).

Since Km,x is not a 2-competition graph for m in the interval given in (8), it follows
from (9) and (10) that Km,x is not a 2-competition graph for

x e (2 + m + /1 + 2(m + 1), 1/2(m 2)2). [--1

Independently, Jacobson [3] obtained results that can be stated as follows.
THEOIEM 6 (see [3]). Forfixed m large,
(a) Km,x is not a 2-competition graph ifx [m, (2 + f)m);
(b) Km,x is a 2-competition graph ifx 16m2, + ).
Proof. (a) Jacobson proves that Km,x is not a 2-competition graph for sufficiently

large x. c > 2 /-J, and m cx, i.e., for sufficiently large m and x < m/(2 f)
(2 + f)m.

(b) Let a(t) be the smallest prime power that is at least as large as t. Since 2 <
_-< 2 r+l for some r, a(t) =< 2t. Jacobson proves that 0P _-< mp(a(x)) whenever
(x) >-_ pm/(p ). We show that ifx >_- 16m2, then 2m(a(x)) _-< m + x, which by
Theorem shows that Km,x is a 2-competition graph. (Note that a(x) >_- a(4m) >_-
4m > 2m; so Jacobson’s result applies. If x >_- 16m 2, we have

2ma(x) =< 2m(2x) =< x < m + x.

Combining part (a) with Corollary 2 gives us that Km,x is not a 2-competition graph
for x e[m, 1/2(m 2) 2) when m is a fixed large number. We are not sure for what values
ofx [1/2(m 2) 2, 16m2 the graph Km,x is a 2-competition graph. Using better bounds
on a (for example, those in Jacobson’s paper), the constant 16 in 16m2 can be improved
somewhat (to some value greater than or equal to 4).

3. K2,x. In this section, we study the values of x for which Kz,x is a 2-competition
graph. Suppose that Kz,x has one independent set { a, b } and a second independent set
B al, ax }, and suppose that Sl, Sr is a 2-ECC for Kz,x. Let ra be the number
of sets Sj. that contain a and suppose similarly for re. Let sa be the largest size of a
set B f3 Sj for a set Sj. containing a and suppose similarly for Sb. We start with a sim-
ple lemma.

LEMMA 7. Suppose that St, Sr is a 2-ECC for K2,x. Then
(a) r>--_ra+rb-- 1;
b ra Sa + 1, rb >- Sb + 1; and
(c) Ifs 1, then r >= 2x; ifs 1, then r >= 2x.
Proof. (a) The elements a and b cannot be in more than one set together.
(b) Start with a set S containing a such that [B S] Sa. Each element of B

S appears in another set S, k 4: j, containing a, and no two elements of B f S can
appear together in more than one set of the 2-ECC. The same is true for b.

(c) Each element ofB appears twice in a set containing a and twice in a set contain-
ing b.

Continuing with the above notation, suppose that Kz,x is a 2-competition graph and
that r 2 + x. Let S; be any set containing a and b, if there is such a set (there can be
at most one), and let it be any set containing a otherwise. Let N B
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LEMMh 8. IfS, $2 + x is a 2-ECC for K2.x, =< x < 15, and N is defined as
above, then

(a) N-< (3 + 3x)/(15 x),
b x <= 2N + 1, and
(c) x >= 7 orx <- 3.

Proof. (a) We can assume that each set Sj contains either a or b, since otherwise
we may replace Sj by and still have a 2-ECC. Every element ak of B Si appears in
at least two sets S, j 4: i, with a, and in at least two sets S, j 4: i, with b. If ak is in more
than two sets containing a, or more than two sets containing b, it can be deleted from
one of these sets without changing the fact that we have a 2-ECC. Thus, by iterating the
argument, it follows that we can assume that ak appears in exactly two of each kind of
set. Moreover, since a and b appear together at most in Si, these four sets containing a
and a and b and a have distinct subscripts. Thus every element a of B Si appears
in exactly four sets Sj.

Let T S f3 (B Si ). Suppose that every Tj, j i, is empty. Then, if B Si is
not empty, there is a vertex in B that is in none of the sets in the 2-ECC. This vertex is
an isolated vertex ofK2,, which is a contradiction. Thus B Si must be empty, Nmust
be 0, and so (a) follows trivially. Thus assume that some T, j :P i, is nonempty, and
therefore B S; q: and N > 0. Without loss of generality, relabel the sets so that Tj
is nonempty if and only ifj _-< q. Thus, since every element ak of B Si is in exactly
four sets T, we have that

q

(11) ] ITI 4N.
j=l

Moreover, since Ti , we have that q < 2 + x.
Now every pair of elements in B Si appears in at most one T. Hence

Thus

q q

E ITjl -- E ITjl <-_N(N- 1).
j=l j:l

Using 11 ), we have that

(12)
q

T/I: -< N- + 3N.
j=l

By the Cauchy-Schwartz inequality,

2 q

TI q E TI 2,
j=

so (since q >= (12) implies that

[o1 Z ITjl <=N:+3N.
qj=l
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Using 11 ), the observation that q < 2 + x, and the facts that N > 0 and x < 15, we
have that

-(4N)2 < N2 + 3N,
q

3
q- 16 16N’

3
16N l+x 16

N=<
3+3x
15-x

15-X
16( + x)

(b) Note that ]B N S;] x N. Now every element ofB N S; appears in another
set S together with a and in another set Sj together with b. Since a and b do not appear
together in any sets other than S; and since two elements ofB can appear together in at
most one set, it follows that all of these additional sets Sj. have distinct subscripts. Hence,
counting Si, the 2-ECC has at least 2(x N) + sets. Thus 2x 2N + _-< 2 + x or
x_-< 2N+ 1.

(c) By parts (a) and (b),

so (x- 7)(x- 3) >_- 0.

3+3x x-1>_
15 -x 2

THEOREM 9. K2,x is a 2-competition graph ifand only ifx or x >-_ 9.
Proof. It is useful to consider three separate cases: (a) x 1, (b) 2 =< x _-< 8, and

(c)x>= 9.
(a) x .1. Then it is trivial to show by Theorem that K,x is a 2-competi-

tion graph.
(b) 2 =< x _-< 8. Let us use the notation defined before Lemmas 7 and 8, taking

r 2 + x. If Sa 1, then, since r6 must be at least 2, parts (a) and (c) of Lemma 7
imply that

2+x=r>-_ra+r6 >_-2x+2 1,

which is a contradiction. Thus we may assume that sa >-- 2 and, similarly, that Sb >- 2.
Hence, by Lemma 7 (b), ra >_- 3 and rb >---- 3.

By Lemma 8 (c), x _-< 3 or x >_- 7. If x 2, then by Lemma 7 (a),

4=2+x=r_>-3+3-1 =5,

which is a contradiction.
Next, suppose that x 3. Then, if r >_- 4 or rb >= 4, we have that

5=2+X>-4+3-1=6,

which is a contradiction. Thus r rb 3 and, by Lemma 7 (b), sa Sb 2. Thus the
sets containing a must, in their intersections with B, be the sets { al, a }, { a2, a3 }, and
{ al, a3 }. The same is true for the sets containing b in their intersections with B. However,
now two elements of B appear together in more than one set, which is a contradiction.

We now consider the case where x 7. By Lemma 8(a), N =< z 3. If N =< 2,
then, by Lemma 8 (b), x _-< 5, which is a contradiction. Thus we have that N 3. Using
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the notation of the proof of Lemma 8 (a), we have q < 2 + x sets T, which are subsets
of a 3-element set B S; and whose cardinalities total 4N 12. Moreover, any two of
these sets have at most one element in common, since two elements of B appear in at
most one set in common. Thus, if some T is all of B Si, all of the other T must be
1-element sets. It follows by that q >- 0, which contradicts q < 2 + x. If all Tj. are
1-element sets, then q 12 >_- 2 + x, again a contradiction. Even if some T’s have two
elements, at most three of these sets can have two elements, and then we need six more
sets to get a total sum of cardinalities of 2. Hence q >= 9 ->_ 2 + x, and again there is a
contradiction.

Finally, consider x 8. By Lemma 8(a), N _-< , so N =< 3. By Lemma 8(b),
however, x =< 2N + =< 7, and we have a contradiction.

(c) x >_- 9. We construct a 2-ECC Ex for Kz,x recursively. Ex will consist of the
2 + x sets Rx, K, Ko, L{, L, where

x/2 + if x is even,
P

(x + / 2 if x is odd;

x/2 if x is even,
q

(x + )/2 if x is odd.

The set Rx will contain a, b, and some elements of B; the sets Kix will contain a and
some elements of B; and the sets L will contain b and some elements of B. For x 9,
the sets are as follows:

R9= { a,b,al,a3,as,aT,a9 },

K9 {a,a,,a2}, L9={b,az,a3,a6},

K= { a,a3,a4 ), L 92 { b, az, a4, a7 )

K { a,a4,as,a6 }, L9= {b,a,,a4,a8},

K94 { a, a2, a8, a9 }, L94= {b,a,as},

K9 { a, a6, a7, a8 L95 { b, a6, a9 }
That these sets form a 2-ECC for K2,9 is easy to verify.

We now extend this definition recursively. If x is even, x >= 10, let

/2-4= Kx/-4 lO { ax} x -’ U{ax}Lx/2-1 =Lx/2-1

L x/=Lx-’LJ{ax}, K/+, {a,ax},
and, otherwise, let RX RX- , K K- L Lx- If x is odd, x > 11, let

RX=RX-’t.J{ax}, K(x+l)/z=K(;-+l)/ztO{ax}, L(x+l)/z={b,ax},
and, otherwise, let Kix K- , L L- 1.

Observe the following: (i) If ay E Rx, K[, or Lix then y -< x; (ii) If ay E R, then
y is odd; and (iii) If ax K[ for x odd, x >- 11, then (x + )/2. Observation (iii)
follows, since, by construction, if 4: (x + )/2, K Kix-1 and, by (i), a does not
belong to K-1

To see that we have defined a 2-ECC when x > 9, let us first observe that, for all
y =< x, a and ay appear in common in at least two of the sets, and b and ay appear in
common in at least two of the sets. This is because, if x is even, a and ax appear in
common in K/2-4 and Kc/2+ 1, and b and ax appear in common in L/2-1 and
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xLx/2, ifx is odd, then a and ax appear in common in Rx and Kx+ 1)/2, and b and ax
appear in common in Rx and L(x+ 1)/2. The result follows because Kf is a subset of
Kf/1 LZ is a subset of LZ/ and RZ is a subset ofRZ/

Note also that a and b appear in common only in Rx. Thus it suffices to show that,
if y < z

_
x, then ay and az appear in common in at most one set ofEx. We prove this

by induction on x. It is true for x 9. Assume that it is true for x’ < x. Suppose that
y < z. If z < x, then it is true for x, because, in going from Ex- to Ex, neither ay nor
az is added to any set, and the inductive hypothesis can be applied. Thus it suces to
show this for z x.

We first assume that x is odd, x 11. Note that ax appears only in Rx, Kx+ 1)/2,

and Lx+ /2, and ay is not in the last ofthese sets. Also, ifay is in Rx, then, by obseation
(ii), y is odd. However, since x is odd and x is even and geater than or equal to 10,

Kx+ )/2 K)/2 {a} K;)/2 + { ax} { a,ax- ,ax}.
Since y is odd and y < x, we have that y x 1.

Next, suppose that x is even, x 10. Here ax appears in only four sets. The case
where x 10 is a special case. In this case,

x x-ILx/- Lx/2- U { ax } LU { a,o } { b, as, a, a,o },
x xLx/2=Lx;2 U{ax}=LU{ao}={b,a6,a9,ao},
x x-IKx/2-4 Kx/ -4 U { ax } KU { a,o } { a, a a, ao },
xKx/z+,={a,ax}={a,a,o}.

Thus, clearly, if y < 10, ar appears in at most one of these sets.
The case where x 12 is also a special case. In this case,

L/2- L’ U { a2 } LU { a2 } { b,a6,ag,ao,a2 },

Lx/=L,X U{a2}={b,a,,a},
x =K =KOKx/2-4 U{a,} U{a}=KU{a,}={a,a3,a4,a,2},
XK/+,- { a, a,2 }.

Thus, if y < 12, ay appears in at most one of these sets.
Finally, suppose that x is even and x 14. Then

x _LX-ILx/--

L;2)/2 U { ax }
X--3Lx-)/U { ax-2 } { ax}

={b,ax-3,a-z,ax},
which holds, since x- 3 11. Also,

x xLx/= Lx; U { a}

X--IK/2-4 Kx/2-4 {ax}
X--2=Kx-)/-3U{a}
x-3K(x- 2/- { a },
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and

KX/2+ {a,ax}.

To prove that ay and ax are not in common in more than one of these four sets, it
x-3 implies that y < x 3 By observationtherefore suffices to show that ay K(x-2)/2-3

x- implies that <(i), however, ay K(x-2)/2-3 y x 3. If y x 3 then, by observation
(iii), since x- 3 -> 11, we must have that

x-2 (x-3)+
-3=
2 2

which is false. []

4. K3,x. In this section, we consider the case where rn 3. That K3,1 is a 2-com-
petition graph follows by a straightforward construction of a 2-ECC. It also follows from
the result of[ 5 that every tree is a 2-competition graph. That K3,2 is not a 2-competition
graph follows from Theorem 9.

THEOREM 10. K3,3 is not a 2-competition graph.
Proof. Let K3,3 have one independent set { a, b, c } and a second independent set

{ x, y, z }. If K3,3 is a 2-competition graph, then, by the corollary to Theorem 1, there is
a 2-ECC $1, $6. We first show that each vertex of K3,3 is contained in exactly three
of the sets Sj. Now a and x are in two sets together. However, y can be in at most one
of these sets, since x and y are nonadjacent. Thus a and y must be in a third set. Hence
a is in at least three sets. Similarly, each vertex must be contained in at least three S/s.
Suppose that a vertex, say a, is contained in more than three S’s, say $1, $2, $3, $4.
Since b is in at least three sets, b is in one of $1, $2, $3, $4, and it cannot be in more
than one of these sets, since a and b are in at most one Sj. together. Thus b is in $5 and
$6. Similarly, c is in $5 and $6. This, however, is impossible.

Let us suppose that a is contained in $1, $2, $3 only. If b is in none of these sets,
then b is in all three of $4, $5, $6. However, c must either be in at least two of $1, $2,
$3 or in at least two of $4, $5, $6. In either case, there is a contradiction, since either a
and c or b and c are in two sets together. Thus we may assume that b is in one of these
sets, say $1. Then b cannot be in $2 or $3. Since b is in three sets, we may assume that
it is also in $4 and $5. Similarly, c is in one of $1, $2, $3 and two of $4, $5, $6. Since b
is in two of the latter, b and c will overlap in one of the latter, and hence c cannot be in
$1. Thus, without loss of generality, we have c in $2, $4, $6. Then x must be in two sets
with a, two with b, and two with c, and the only possibility is for x to be in $1, $2, $4.
The same argument, however, puts y in $1, $2, $4. Then x and y are in two sets together,
which is a contradiction. [2]

In the following lemma, we use the notation u defined in the remark after Lemma 3.
LEMMA 1. If$1, St is a 2-ECCfor Km,x and u >= m l, then

t>=mu
m(m- 1)

Proof. Note that element al of A must be in at least u sets of the 2-ECC; say it
belongs to Sl, Sl2, Slu. Element a2 must be in at least u sets of the 2-ECC, and,
since al and a2 can be in at most one set together, a2 is in at least u sets not included
in the sets Sl. Call these sets Szl, $22, S2u- 1). Similarly, a3 is in at most one of the
$1 and at most one of the $2, so in at least u 2 other sets. Call these S31, $32,
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S3(u-2). By continuing the argument, (since u ->_ m we find that

t>=u+(u- 1)+(u-2)+... +(u-m+ 1)

=mu-[1 +2+ +(m- 1)]

m(m- 1)
mu-

2

THEOREM 12. Ka,x is not a 2-competition graph for x 4, 5, 7, 8, 11.
Proof. In addition to Lemma l, the proof will use the following facts:
(i) u >= (1 + /1 + 8x)/2,
(ii) >= u-m/(u + rn 1) fm(U),
(iii) For fixed m, fm(u) is increasing in u (since u >= ),
(iv) rn + x < implies that Km,x is not a 2-competition graph.

Fact (i) is noted in the remark after Lemma 3, fact (ii) in the first remark before Theorem
5. Fact (iii) is easy to check by taking the derivative. Fact (iv) follows from Theorem 1.

Let x 4. By (i),

1+ 3V
u>_->3,

2

and therefore u >= 4. Then, by (ii) and (iii), however,

>=(u) >=f3(4 48/6 8> m + x.

By (iv), K3,4 is not a 2-competition graph.
Next, let x 5. By (i),

+4
u>->3,

2

so u >- 4. By Lemma 11, >= 12 3 9 > rn + x. By (iv), K3,5 is not a 2-competi-
tion graph.

Suppose that x 7. By (i),

1+
u>_->4,

2

so u >_- 5. Then

sot>-- 11 >m+x.
Ifx 8, then, by (i),

t>-_j(u)>__j(5) =,

1+6 
u>_->4,

2

sou>=5. ByLemma ll, t>= 15-3= 12>m+x.
Ifx 11, then, by (i),

u>__>5.
2

Thusu>=6. ByLemmall, t>= 18-3= 15>rn+x.
Theorem 12 gives some values ofx for which K3,x is known not to be a 2-competition

graph. The next result gives values ofx for which it is known to be such a graph.
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THEOREM 13 (see 3 ). K3,x is a 2-competition graph for x >= 38.
We do not know if K3,37 is a 2-competition graph or if there is any x 6 1, 38) such

that K3,x is a 2-competition graph. The smallest value of x for which we do not know
whether K3,x is a 2-competition graph is x 6.

5. Kx, We turn now to the case where m x. Theorems 9 and 10 already show
that Kx,x is not a 2-competition graph ifx 2 or 3. The next theorem follows by a simple
argument, and therefore we include it here although it also follows from a stronger (and
more difficult) result of[3 ], which we state below. To state the next theorem, we first
need a lemma. In this lemma, we use the notation [ a] to denote the least integer greater
than or equal to a.

LEMMA 14. Every positive integer x can be expressed uniquely in theform

w-l)(13) x=
2

+q’ 0<q--<w- 1’

where

+/1 +8x](14) w=
2

Proof. Let h(s) (s(s ))/2 and let w be the smallest positive integer so that
h(w) >= x. Hence, if s is such that h(s) x, it follows because h is increasing for s >_-
that w [s]. Since

2 2

it follows that x can be expressed in the form 13 ). By the quadratic formula, it follows
that s(s )/2 x and s > 0 imply that

+/l+8x
S’-"

2

This gives us (14). []

THEOREM 15. Ifw and q are defined as in Lemma 14, then Kx,x is not a 2-competition
graph ifq < w/ 2.

Proof. The proof uses (i)-(iv) of the proof of Theorem 12. By (i), u _>- w. By (ii)
and (iii), >-fm(U) >=fm(W) f(w). Then

W2X
f(w)> m+x=2x----> 2x

w+x-1

Hence, by (13),

.-- w2> 2w+ 2x- 2.

fx(w)>m+x-w2>2w+[(w 1)(w-2)+2q]-2-- w> 2q

--q< w/2.

The theorem follows by (iv).
Remark. By using this theorem, we can show, for example, that Kx,x is not a 2-

competition graph for x 2, 4, 7, 8, 11, 12, 16, 17, 18, 22, 23, 24, 29, 30, 31, 32, 37,
38, 39, 40. From Theorem 10, we know that this conclusion also holds for x 3.

THEOREM 16 (see 3 ). Kx,x is not a 2-competition graph for x >= 4.
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6. Closing remarks. The results in this paper leave some natural questions unre-
solved. For instance, the proof of Theorem 9 shows that if KE,x is a 2-cornpetition graph
and x > l, then KE,x+ is a 2-competition graph. We have not been able to settle whether,
for x >_- m > 2, Km,x being a 2-competition graph implies that Km, / is a 2-competition
graph. While we have determined exactly for what values of x K2, is a 2-competition
graph, the problem for K3,x remains open. In particular, small values ofx such as x 6
remain unresolved, as does the question of whether K3, can be a 2-competition graph
for any < x < 38. For the case of K4,, which we have not discussed in this paper, 3
shows that K4,x is a 2-competition graph for x >_- 124 and that K4, is not a 2-competition
graph for x 4, 10. However, nothing else is known here.
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